Computer Graphics
Basic Mathematics: Linear Transformations

Andreas Aristidou
andarist@ucy.ac.cy
http://www.andreasaristidou.com

1on

Introduct

ic Model

Geometr

ing

ith a combination of polygons we can

describe any shape

W

ENA426 | Tpadika YmoAoyLotwy

2

Geometric Modeling: Introduction

$109.00
3dsmax dxf 3ds obj oth 3ds
xsi

1

$100.00

3ds max max

$240.00 $150.00 380.00 $115.00 $60.00

max 3ds max 3ds max lwo max

361.50 $76.00 3220 .00 $76.00
3ds max 3ds max lwo max

obj oth

o

$40.00 $60.00 $80.00 $150.00 $179.00 $50.00

max max

max lwo max

3D Laser Scan

Image-based: Photogrammetry
ENA426 | Tpadika YmoAoyLotwy

Procedural Modeling

Set up objects in the scene

e Once the modeling of the objects/characters is complete, they must be placed
in the environment

e Therefore, we need to know the vertex positions of the objects (reference
point) in the world coordinate system.
e Usually objects are defined in their own local coordinate system.

4 ENA426 | Tpadika YmoAoyLotwy

How do we use geometric transformations?

= Objects in a scene at the lowest level are a collection of vertices...

= These objects have a location, orientation, size
= Correspond to transformations: Translation (T), Rotation (R), and Scaling (S)

5 ENA426 | Tpadika YmoAoyLotwy

Geometric transformations

So, our goal is to transfer, rotate and/or scale the vertices in the global
coordinate system.

6 ENA426 | Tpadika YmoAoyLotwy

Transformations

The most important transformations are

translation (move the object in a straight line),
scaling (change its dimensions),
rotation (rotate based on a point),

7 ENA426 | Tpadika YmoAoyLotwy

Transformations

An object can be scaled, rotated, reflected (flipped), warped, and translated.

8 ENA426 | Tpadika YmoAoyLotwy

2D Translation

= Simply move an object from one location to another

- X’= X + dx y'=y+dy

It can also be expressed as matrices!

X X d

d
| | | | | | . y y Y P
I I I I I I > +
5 6 7 8 9 10 X P

Note: The house moves in relation to the origin of the axes

9 ENA426 | Tpadika YmoAoyLotwy

2D Scaling

= |n scalar scaling we multiply all the coordinates
= Attention!: The objects get bigger and change position!

X'=35, XX y’:Syxy

y \
6 | . .
Same in matrices!
5 L
L ans
‘ X 5 O
5 i =1 n
3 3 '
2 | i N i O Sy
R)
1 1 . —
| | | 1 | | | | | | > /
0 | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 X _ S,
/
Note: The house moves in relation to the origin of the axes | Y] B S,

10 ENA426 | Tpadika YmoAoyLotwy

11

Rotation

= Rotates all coordinates at a specified angle
: x =X xcosd—Yy xsind
y =X xsind+y x cosH

/

= Points always rotate around the origin of the axes

=

»
!

ENA426 | Tpadika YmoAoyLotwy

(cos&,

(1,0)

X

‘(0,1)

sinG) (-sin=, cos—))

Same in matrices!

Rotation

|

x’ _ (2059 _Siﬂg X
y’ Bl Siﬂg C059 | N

Basic Transformations

MEE
El=[5 <l
E =150 1)

Different equations for each transformation
Homogeneous Transformations!

Scale

Rotation

12 ENA426 | Tpadika YmoAoyLotwy

Homogeneous Transformations

= We add an additional dimension, which is equal to 1 (x,y,z,1)

= Why?
Using homogeneous transformation in 2D (or in 3D), transformations can be
described by multiplying with a 3 x 3 matrix (or 4 x 4).

13 ENA426 | Tpadika YmoAoyLotwy

Homogenous Transformations

= Translation

x' 1 0 d,|x x+d,
- el b
1 o0 0o 1]I1 1
= Scale
x' s, 0 Ofrx Sy X
i 3062
1 0 o0 1]l 1
= Rotation

x' cosf@ —sin6 O
y'|=]siné cos 6
1 0

14 ENA426 | Tpadika YmoAoyLotwy

Inverse Transformations

Transformations can be easily reversed using the inverse transformation.
When we want to recall a transformation

It is possible due to the homogeneous expressions

1 0 —dx|
0 1 -—ay

00 1

15 ENA426 | Tpadika YmoAoyLotwy

- cosd sind O]
-sin@ cosd 0O
0 0 1

Apply transformations

= Attention! The multiplication of matrices is NOT commutative!

AB £ BA

= When applying such multiplication of matrices, one important thing to
remember is that they are not commutative; the change in the order of
multiplication will result in different coordinates.

= For example, consider the example of translating and scaling an object:

16 ENA426 | Tpadika YmoAoyLotwy

Apply transformations

= Scale and translate

L(l’l) S:le(:Z) (2,2) Trans_lat;,,,l) ‘(3’1). (5.3)
0 " ©0) > .
= Use matrix multiplication: p" =T(Sp) = (TS)p
(1 03][200] (203
TS=|011||020| =1]021
001)/001] |00T1

You can see that the effect of scaling before translating, is different from when the translation
is done first, and then the scaling.

17 ENA426 | Tpadika YmoAoyLotwy

Apply transformations

Scale and then Translate: p’ = T(Sp) = (TS)p

3
Scale(2,2) (2,2) Translate(3,1) ‘(3 1).)

>

q q
(1.1)
>

(0,0) 0,0) >

Translate and then Scale: p’ = S(T'p) = (ST)p

(4,2) .
(1.1) Translate(3,1) (3’1)‘) Scale(2,2) 6,2)
>

>

(8.4)

(0,0) >

You can see that the effect of scaling before translating, is different from when the translation
is done first, and then the scaling.

18 ENA426 | Tpadika YmoAoyLotwy

19

Apply transformations

Scale and then Translate: p’ = T(Sp) = (TS)p

TS

00

W
0
0

2 0
01

(20 3
0 2 1
00 1

Translate and then Scaling: p' = S(T'p) = (ST)p

ST

If we look at the transformation matrices, you can see that the elements are different when the

f2 O O\
0 20
001

order of multiplication is different.

ENA426 | Tpadika YmoAoyLotwy

flog\
0 11

0 0 1

e 2 O 6 N
0 2 2
0 01

Apply transformations

RDtate then Tra Nnslate

- # ':D.:—:qrtl:z:]:] #

E ' | I H::-le.-l:.- 1 ', deg | ranslat 'jlﬁ'l
. A - -
(0,0 (0,0

Traﬂalate then Rotate 4
il | ':3.".512':':2::.3."'.:-;c|rt£2:|:|
-

(0.0)

Here is another example where first the rotation is done and then the translation. As
before, the end result is different if first the translation is done and then the rotation.

20 ENA426 | Tpadika YmoAoyLotwy

Apply transformations

A number of transformations can be combined into one matrix to make things easier
It is allowed by the fact that we use homogeneous coordinates
Suppose you rotate a polygon around a point (not the origin of the axes)

Transfer the point to the origin of the axes
Rotate around the point
Translating the point back

21 ENA426 | Tpadika YmoAoyLotwy

22

Apply transformations
House (H)

/\

R(O)T (dx,dy)H

N\

ENA426 | Tpadika YmoAoyLotwy

o
~

S

T (dx,dy)H

T (—dx,—dy) R%H)T (dx,dy)H

<

Apply transformations

= The three transformations are expressed in matrices as follows

1 0 —dx]| [cos@® -sin@® 0] [1 0 dx| [x
0 1 —dy|x|sind cos@ O|x/0 1 dy|x|y
00 1[0 o 1/j0o0 1|1

v'=T (—dx,—dy)R(A)T (dx, dy)v

WARNING: the multiplication of the matrices is not commutative, so

the order matters

23 ENA426 | Tpadika YmoAoyLotwy

Rotation, Translation

= The matrix of rotation and then translation is often used so it may be worth to

remember it.

= Itis quite simple ; just add the translation elements in the 3rd column of the rotation

matrix and thats it.

= So if you want to put an object at position (d,, d,) and rotate it around its local origin

for 6 degrees, you need to use this matrix.

xF _CDSH
y’ — SiHO
110

24 ENA426 | Tpadika YmoAoyLotwy

—siﬂ(_)
CDSO
0

d).’

d
¥

]

(dx, dy

o
/\(

3D Translation

= Homogeneous transformation matrices in 3D

(¥ (1
y' 0
Z' 0
1) \0

o »r O O
~—
<
<

-

o O +— O

Y

25 ENA426 | Tpadika YmoAoyLotwy

3D Scaling

= Similarly, the matrix for scalar scaling is:

X'y (s, 0 0 0)(x
%) 0 S, 0 O}y
z| 10 0 s, 0}z '
1) {0 0 0 1){1) e 000
S(8y 8y, 82) = 8 SUJ S[i
0 0 0

26 ENA426 | Tpadika YmoAoyLotwy

_— o o O
l]

3D Rotation

= When we performed rotations in two dimensions, we only had the option of
rotation for the z-axis.

= In the case of the three dimensions we have more options:

Rotate on the axis of X —

i

. ‘H‘ |1
Rotate on the axis of Y — — \/

Y

Rotate on the axis of Z -

Y
Vertical D;h__'. ral

27 ENA426 | Tpadika YmoAoyLotwy

3D Rotation

The equations for the three types of rotations in 3D are as follows:

YA &
YA fe

=Y

- -

<

Y

x’ = x-C0S0O - y-sino X' =X x’ = z-sSInB + X-c0sO
y’ = x-sInf + y-coso y’ = y-c0os0 - z:sino y' =y
z'=z z’=y-sIn6 + z-coso z’=z-C0s0 - x-:Sino

28 ENA426 | Tpadika YmoAoyLotwy

3D Rotation

= Rotate around the x axis - R,.(0)

N (10 0 0
S 0 cedl =sinB T,
A] |

1/ lo o 0 1

Note that the x values do not change as the y and z values change.

29 ENA426 | Tpadika YmoAoyLotwy

30

3D Rotation

= Rotate around the y axis - R,,(0)

(x’\ i cos®

54 —Sine

1) L O

ENA426 | Tpadika YmoAoyLotwy

0
1
0
0

Sine
0
cos0
0

31

3D Rotation

= Rotate around the z axis - R,(6)

\ 4 (Y frcsh
y'| [0
20 1 10
gl I D

ENA426 | Tpadika YmoAoyLotwy

—sin 0
cosB
0
0

O = O O
O
.

- QO O

3D Rotation

(10 0
0 cos) —sinf

0 sinf cosé
_[) 0 0

 cosf 0 sinf
0 1 0
—sinf 0 cosf (

0 0 0

o o = O O O
] L |

P’

cosf —sind 0
sinf cosf 0
0 0 1
0 0 0

o O O

32 ENA426 | Tpadika YmoAoyLotwy

3D Rotation

The total rotation is
Rx,y,z(ex» ey» Hz) = Ry (Hx)Ry (Hy)Rz (62)
The angles 6,, 0,, 0, are called Euler angles

Rx(0x)Ry(0))R;(0;) # R;(0,)R,,(0y)Rx(6x)

33 ENA426 | Tpadika YmoAoyLotwy

Rotate on a random (arbitrary) axis

Rotate(k, 9)

* About (us, Uy, U:), a unit
vector on an arbitrary axis

Y

N (wn(Tc)te wun(T-c)us wall-<)+us0)
v lwu(T-c)+us wu(l-c)+c wu(l-c)us O
2| Nwu(T-¢c)us wu(l-c)tus wu(l-c)+e 0
1 0 0 0 1

e . e A

where C — COS !‘9 & s = Ssin 8

34 ENA426 | Tpadika YmoAoyLotwy

Inverse Rotation

= The inverse rotation can be calculated by the transpose matrix.
R(@,60)'=R(a)"

35 ENA426 | Tpadika YmoAoyLotwy

Rotate around a point

Rotation around Rotation with
origin pivot

36 ENA426 | Tpadika YmoAoyLotwy

Rotate around a point

]

1. Translation T 2. Rotation R 3. Translation T!

p =T 'RTp

37 ENA426 | Tpadika YmoAoyLotwy

Applying multiple transformations together

= We can apply the aforementioned transformations to move, scale, and rotate
the vertices of objects.

= What if we want a combination of many such transformations?

38 ENA426 | Tpadika YmoAoyLotwy

Adding all this together

= R are the elements of rotation and scaling,

= T are the elements of the translation.

/

\

39 ENA426 | Tpadika YmoAoyLotwy

R1
R4

R7
0

R2
R5

Rs
0

3D Rotation: Problems (issues) — Gimbal Lock

= Problem occurs when two of the rotation axes are
aligned. This is called «Gimbal Lock».

= Locking the axes is a key problem when representing
3D rotation with Euler angles or fixed angles.

= Phenomenon in which two axes of rotation of an
object are aligned.

= A degree of freedom is lost

= Simply put, it means that the object will not rotate as
you think it will rotate.

= Solution: Use of another system (e.g., quaternions)

ROTATIONAL MOVEMENT STATIC POSITION

40 ENA426 | Tpadika YmoAoyLotwy

