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Description

Basic Geometry
Initial Coordinates

Points
Vectors Computer Graphics are mathematics!
Lines Although maths used in computer graphics are not
| we need to have a good understanding of them before
Planes defining some techniques.
Spheres
Matrices

Transformations with matrices
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Basic idea
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Right-handed or Left-handed Reference System?

= There are two different ways in which we can set 3D coordinates — right-handed
or left-handed.

y axis A yT
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PART A- Basic Geometry
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Number of Example co-ordinate systems

dimensions
Dimension y
P
= How much freedom has an \ o
. P %
“object” to move around in X
S p a Ce ? Number line Angle
= How many variables do we need " " £
to define an exact position in Iy P / P
space? , 3 Phf (O
X X - | ;;
X
Cartesian (two-dimensional) Polar Latitude and longitude
= 1z <
)
3 . x y | _ | :' -
/ i /
https://en.wikipedia.org/wiki/Dimension e il

X
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Reference Point — 2D

When we create a scene in computer graphics, we are essentially defining the
scene with simple geometry.

For 2D scenes we use simple two-dimensional Cartesian coordinates.
All objects are defined by simple pairs of coordinates

y axis 4

»

X axis
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Reference Point — 2D

y * I
2, 7) (7,7)
A E— . A
SR ® ®-----—---
(2,3) (7, 3)
2 7
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Reference Point — 3D

= For three-dimensional scenes
we just add an extra coordinate. 4 y axis

= P(x,y, 2)

Z axis e axis
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Points & Lines

Line from
(2,7)to (7, 3)
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(7, 3)
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The equation of a straight line

= The slope equation for a straight line is:
y=m-X+b
= when:
m — Yend — Yo
Xend — %o
b=y,—m-X, o

= This straight line equation gives us the corresponding point y for each point x.
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A simple example

= Let's see a part of the line given by the equation:

5" 5

= What is the y coordinate for every x point?
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A simple example

= For each value x we calculate the value of y:

wa—g §=2
'
wn—g §=5
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Vectors

Vector:

A vector is defined as the difference between two points.

The important thing, however, is that each vector has a direction and a length.
Where are the vectors used?

A vector shows us how and how much an object will move from one point to
another.

Vectors are very important in graphics, especially in the transformations that we
will see later (translation)
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Vectors (2D)

= To identify the vector between two points, we simply subtract them

. P, (7, 10)
y axis 4

V=P,-R

Vip, 6,7 P,(10,7)

P, (2, 6) — (XZ — X Yo — yl)
! ! = (6-1,7-23)

P.(1,3) P,(53)
=54

X axis

Attention: Many pairs of points have the same vector.
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Vectors (34A)

In the three dimensions, the vectors are calculated in the same way

4 y axis V:|:>2_|:>1
B \ =(X, =X, Y, — Y1, 2, — Z4)
ir\ :}ir = (\/x , Vy ’ Vz)
P |
e So, from (2, 1, 3)to
' (7, 10, 5) we will have

~(7-2,10-1,5-3)
= (5,9,2)

Z axis X axis
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Vectors

There are many important functions we need to know in order to properly manage
and process vectors:

Calculate the length of the vector
Adding vectors Yt
Scalar multiplication of vectors

Inner product (Scalar or dot product)
Outer product (Vector or cross product)

(0,0,0) X
Points! = Vectors
vector + vector = vector
point + vector = point

point - point = vector (why?)
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Vectors

’ /
/ % /_1)\, (1/2)V

Scalar multiplication of vectors (keep
the direction)

Subtract vectors : V- w =V + (-w)

18 ENA426 | Tpadika YmoAoyLotwy

V+Ww

Add vectors: v + w

y
P
0 X
The VectorEIS



Vectors: The length of a vector

= The length of a vector (modulus) is easily calculated in two
dimensions (Euclidean norm):

= /zn:vf = V24V
=1

= And in 3 dimensions:

u=(4,2)

WARNING: this quantity does not represent the > >
geometric length unless the vectors are coded on an |11| — \/4 + 2
orthonormal basis. (Common source of bugs!)

= (4,2)
V= \/vxz +V, +V, /

V(X,Y,2)] :\/x2 +y°+2°
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Vectors: Unit vector

= Unit vector
= Normalization

vector V B |74
modulusV  |V|

V=
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Vectors: Adding vectors

= The sum of two vectors is calculated by simply adding its individual elements

V1 "‘Vz — (le +V2x’V1y "'sz)

y axis 4 y axis a

X axis X axis

= Same in 3 dimensions.
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Vectors: Scalar multiplication of vectors

= The multiplication of a vector by a constant is calculated by simply multiplying
its individual elements

sV =(sV,,sV,)

y axis y axis

/
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Vectors: Scalar multiplication of vectors

= Example
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u

NI

5(4,2)
(4-3/2,2-3/2)
= (12/2,6/2)
= (6,

3)



Vectors: Scalar multiplication of vectors & Addition

= What if we try to add two scalable vectors? Or change the scale to two vectors
added together?

Evbladépov - daivetal otL €xoupe To iblo anotedeopa onwg katva éxe: a(u+v) =au+av
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Vectors: Properties

= For each vector u, v, w, and constants a, b
ut+v=v+u
u+(v+w)=(WvV+u)+w
v+0=04+v=v
v+ (—v)=(—-v)+v=0
a(bv) = (ab)v
a(v+u) =av+ au
(a +b)v=av+ bv
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Vectors: Midpoint

= What is the midpoint m between a = (3,4) and b = (7,2);

m = 5(a+b)

=3((3,4) +(7,2))
- - 1106

= (5,3)
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Vectors: Functions

= Another very important example of the use of vectors in
computer graphics is in functions.

= Why? Because many of the objects we want to process in
graphics are the result of functions! (e.g., images, glow
from a light source, surfaces, vibrations, ...)

0.0
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Vectors: Functions

= E.g. Adding two functions

f(x)

g(x)

(f+8)x):

flx) +g(x)

X

= Scalar multiplication in one function

f(x)
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Vectors: Inner product (dot product)

(a,b) = 21 a;b;

a.b = a,b, + a,b, + a,b,

a.b = |al||b|cosb
a.b
la||b|

= cO0SO=

What if the vectors were normalized?
What if the inner product was == 0 or == 1;

= The result is a simple value, not a vector!
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Vectors: Inner product (dot product)

= Example (A method)
=a-b=|al x|b| xcos(6)
a+b=10x 13 x cos(59.5°)
=a*b=10x13 x0.5075...
=a-b=66

= Example (B method)
“a-b=axb,+a xb,
“a‘b=-6x5+8x12
=a-b=-30+96
=a-b=66
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Vectors: Outer product (cross product)

= The result is not a scalar number, but

= We find the vector using the determinant.

a x b = [la]| |[b]| sin(6) n

i §j k —j—k i k —f—1
uxv=luy uz ug| = U, U U Uy U u U, 4
BT V2 Vs v, U, U v Uy U v, U, W
L/ L/
=‘uz ul, |w "’\.H 1 “"k
V2 Vs 1 Vs y v

= (ugvs — ugva)i — (u1vs — usv1)j + (w1v2 — uavr )k
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Vectors: Outer product (cross product)

= The size of the vector is equal to the area of the rectangle
= laxb| =|a||b]|sinO

= And its direction is perpendicular to the 2 vectors
= ... But in which direction?
= Use the Right-Handed Reference System!

= The outer product of a vector with itself (or in parallel

: o o] 4 b
vectors e.g. angle 0 between them is 0° or 180°) is the a
zero vector. alq P
g
bxa a
=-aXb
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Vectors: Outer product (cross product)

Example 1

The outer product of a=(2,3,4) and b = (5,6,7)
“c,=ab,-ab, =3x7-4x6=-3
“ C,=a,b,—a,b,=4x5-2x7=6
“ c,=a,b,—ab =2x6-3x5=-3

= Consequently:ax b =(-3,6,-3)
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Vectors: Outer product (cross product)

Example 2
Calculate the outer product of vectorsa = (3,—3,1) and b = (4,9,2).

i j k
axb=[(3 -3 1
4 9 2
=i(-3:-2—-1-9)—-j3-2—-1-4)+k(3-9+3-4)
— —15i — 2j + 39k
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Vectors: Outer product (cross product)

Example 3

= Calculate the area of the rectangle you create from the vectors a=(3,-3,1) and
b=(4,9,2).

« The area equals |laxb]| = V152 + 22 + 392 = 54/70.
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Exercise 1

= Draw the straight liney = %x + 2 from the pointx=1tox =9

yA
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Polar Co-ordinates

= AvectorV (X, Y, z) can be expressed at spherical coordinates with 3 values: length and two
angles 9, o.

= From Cartesian to spherical:

" r= \/(x2+y2+22) (\/ is the square root)
U = arccos(z/r)
@ = atan(y/x)

= From spherical to Cartesian :
X=r sin¥ cosp
y = r sind sing
Z =r cost
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Parametric equation of straight line — radius

= Suppose we have two points P, = (X,, Yo, Zo) and P, = (x;, y;, Z;), we can express
the line that joins them as follows:

X(t) = Xo * Xy - Xo)
P(t) = Py + 1Py -Po) =1 y(t) = yo+t(y; -Yo)
2(t) = z5 + (2, - 2)

where -o<t< o
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Equation of a plane

= Even a, b, c and d are constants that define a unique plane in space.

= A, b and c give us the slash in the plane.
= Some point p (X, y, z) you find in the layer if and only if it satisfies the equation.

ax+by+cz+d =0

Omnowodnmnote onpeio oto enimédo
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Equation of a plane

= If we have 3 points we can calculate the equation of the plane:

= We create 2 vectors and find the outer product, this gives us the "(a, b, c)"

= We replace any of the 3 points in the equation
ax + by + cz+d = 0 and gives us the d.

P Apl

0
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How to find the a,b,c & d

= The outer product defines the perpendicular to the plane with n=(a, b, c)
A

n ,[\30\ ,
p n=(py = Py )% (P, — Py)

po\\ Y pl
~

(P1-P)
= We have 2 perpendiculars (reverse direlctioons)

= The vectors in the plane are perpendicular to the perpendicular ¢
= Fromax+by+cz+d=0

= d = - (ax + by + cz) if we replace the p,

= d =n.py = -(n; X, + N,*y, + N3.z;)

(P1-Po)
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How to find the a,b,c & d

Example:
Consider the pointsP=(1,1, 1), Q=(1, 2,0),and R=(-1, 2, 1). We look for the
constants of the equation ax + by + cz = d, where P, Q and R satisfy the equation:
at+b+c=d

a+2b+0c=d

-a+2b+c=d
By subtracting the first equation from the second, and then adding the first equation

to the third, we eliminate a.
b-c=0
4b + c=2d
By adding the equations we have 5b = 2d, or b = (2/5)d, so solving asto c = b =(2/5)d,

anda=d-b-c=(1/5)d.
So the equation is
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Half-Space

One plane divides the space into 2 half-spaces
Let's define:

l(X,y,2) =ax+by+cz+d

if I(p) =0
the point p is in the plane
if I(p) >0
The p-point is in the positive half-space

if I(p) <O

the p-point is in the negative half-space
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Intersection of line-plane

= Straight line:
X(1) = Xo (X - %)
P(t) = Py + (P -Pp) = | y(t) = Yo +ty1 - Yo)
2(t) = 2, *+ 1z, - 2p)

= Plane:ax+by+cz+d=0

= We replace x, y, z in the equation of the layer and solve against t

Line contained
in plane

- =

MNo intersection Point
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Intersection of line-plane

Example:
Let the plane be: 2x +y-4z=4

Let the straight line be X(t) = t
P(t) = Py +1t(P;-Py) =¢ y(t)= 2+ 3t
z() =t

We replace x(t), y(t), z(t) in the equation of the plane and solve against t
2t + (243t)—-4t=4 > t=2
So for t=2, the intersection point is the (2,8,2)
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Circle (2D)

The Pythagorean theorem: hypotenus&

22 + 2 = 2 ¢ b

If we have a circle at the origin of the axes, with a radius r, then for each point P
in it, we have:

X2 + Y2 = 2 Yol t

0,0 Xp
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Circle (2D)

If the circle is not set at the origin of the system (0, 0), then again we have:

but |
// P (%,.Y,)

Yp
a2 + b2 = 12 b+
Ye

So the general form becomes: (XerYe)

a =X~ X, /

b = yp' Ye

0, 0) X —— X

(X=X + (Y- Yo)? = 1
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Sphere (3D)

= The Pythagorean theorem is generalized in the 3D by giving a2 + b% + ¢ = d?.
Based on this we can easily prove that the equation of the sphere is:

(X=X )2+ (Y- Yo)? + (Z- 2 =12

= And in the (0,0,0):

X2+y2+22:r2
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Intersection sphere with line
(x-x.)? + (y-y.)? + (z-z.)? = r? sphere

(x; ¥ 2,) (1) = x; + 0 -xy)
| Straight line{ y(t) = y, + t(y, -y,)
z(t) = z, +t(z, -2¢)

(x1 Vi 31)

By replacing the values x, y and z in the equation of the sphere,
we will have an equation of the form: at?+bt+c=0

(xe ve 2c) Vb2 — 4ac
t=-b +
2a
Case for intersection: b2 -4ac>0
Case when tangential: b2-4ac=0
There is no intersection when: b2 -4ac<0
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PART B - Matrices
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Vectors and Matrices

Matrix is a set of values arranged in M rows with N columns

Example
Matrix 3 X 6

The element 2,3 is the 7
We will see only 2-dimensional matrices

A vector can be thought of as a 1xM matrix

EMNA426: Tpadikd YmoAoylotwy

1 11 13
10 4 -3
2 0 6

b1 2 3 4]

VES
6.7

12

|

A

8 15
16 23 42

21 -2
41 -1
0 0 1
v=(xy z)




Types of matrices

= |dentity = Symmetric
1000 /a b C\
SHERE b d
01 0010 o
0001 \C e f]
= Diagonal
5 The diagonal matrices are (of course)
100 0 symmetrical
020 0 The identity matrices are (of course)
00-10 diagonal
000 -4
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Operations in matrices: Scalar multiplications

= To multiply the elements of an array by a constant simply multiply each of its

elements
'a b c| [s*a s*b s*c]
s*Id e f|=|s*d s*e s*f
g h 1| [s*g s*h s™I

= Example:

2 4 6] |6 12 18
3* 8 10 12|=|24 30 36
14 16 18| |42 48 54
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Operations in matrices: Addition

= To add two tables simply add their individual elements

a b cl| |r s t] [a+r b+s c+t
d e f|+|lu v w|(=|d+u e+v Tf+w
g h 1| |[xy z| [g+X h+y I+z

= Example:

2 4 6][3 5 7] [5 9 13
8 10 12[+| 9 11 13|=|17 21 25
14 16 18| |15 17 19| |29 33 37

Both matrices must be the same size
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Operations in matrices: [ToAamAaoioouog mvakwy

= If we have two matrices with dimensions N,xM, and N,xM, then the
multiplication can be done if and only if M; = N,

the result matrix will be N, x M,

e.g. Matrix Ais2x3 and tableB3 x4
the result matrix will be 2 x 4

Because A x B is possible does not mean that B x A is possible!

Attention! The multiplication of tables is not transitional, so:

AB = BA
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Operations in matrices: Multiplication of matrices

Suppose that
= Aisnxk
= Bis kxm

Then
= C=AXxBisdefined by

)
Cij = Z ailbij
-1

Attention
= B x A not necessarily equal to A x B
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Operations in matrices: Multiplication of matrices

= Example:

0 -1
5 7
"
5
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1 2 3]

1 2 3]=

0*1+(-1)*3 0*2+(-1)*4| [-3
5*1+7*3  5*2+7*4 |=|26
| —2*1+8*3  -2*2+8%4 | |22
>
5|=[1*4+2*5+3*6]=[32]
_6_
4*1 4*2 4*3| [4 8 12]
5*1 5*2 5*3|=|5 10 15
6*1 6*2 6*3| |6 12 18]

38
28




Operations in matrices: /ranspose Matrix

= The transpose matrix M, is expressed by MT andis achieved simply by
changing the rows and columns in the table

= For instance:

) < 1 4 1 4 9] [1 5 6
1 2 3
| =[2 5 5 2 8| =|4 2 7
- © 13 6 6 7 3] |98 3
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Operations in matrices: /nverse Matrix

« fAxB=1land BxA=1 then
A=BlkatB=A1

- AAT=ATA=|

[ -1 =
A det(A)

(cofactor matrix of A)T
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Operations in matrices: /nverse Matrix

= Example: 1 2 3
A=1|0 4 5]
1 0 6
4 5 0 5 0 4
A11=|u 5‘224 Al““|1 5‘25 Alﬂ:‘l u|=_4
2 3 1 3 1 2
O O - EE T 1
2 3 1 3 1 2
A3l=|4 5‘=_2 Aﬂﬂ__|ﬂ 5‘=_5 Aﬂﬂ:‘n 4|=‘1
24 5 —4 24 —12 =2
cofactorof A =|—-12 3 2 (cofactor of A)T =| 5 3 =5
—2 -5 4 —4 2 4
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Operations in matrices: /nverse Matrix

= Example:
A=10 4 5

123]
1 0 6

= det(A) = 1X4X6+2X5Xx14+3X0X0—-3%X4X1-5X0X1-6%X2%x0=24+10—-12=22

A=—|5 3 -5 5/22  3/22 —5/22

(24 -12 -2 (24/22 —12/22 —=2/22]
22[ ]:
-4 2 4 —4/22  2/22  4/22
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Operations in matrices: Exercises

= Run the following additions to a matrix:

C 3
~14 5
15 2
19 4

20

|

-11 O
-3 6
9 -18

~15 10

13 -3
19 9

—4
8
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|

16

10
-1
3

-1

_|_
{—14

10 -12
-15 15
14 -9
-3 -16

—-15
5

-7
17

[-11 -19 -15 5]+[-1 -14 -5 1]=]

~-11

|

5
0

)

|




Operations in matrices: Exercises

= Perform the following multiplications in a matrix:

-15 19 |
8 15 19 4] |-12 —19
{7 —4 12 3} 0 -13 {
10 7

(16 10 -12 -11] [ 4

10 -15 15 5 11

-1 14 -9 O 6

3 -3 -16 -5 3
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Operations in matrices: Exercises

= Perform the following scalar multiplications in a matrix:

15 19] [
2 5

6* =|—
o -1 |
_1 7_  — -_—

= Compute the transpose matrix

(3 11

S
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