
CS ���� Operating Systems Summer Quarter� ����

Midterm Answer Key

Wednesday July ��� ����

�� Anderson�s Array Based Queueing Lock� ��� points�

�a� The nextslot variable has a range of � to ��

�b� The myplace variable has a range of � to ��

�c� The slots variable can de�nitely go to 	F
F
F
F�� This indicates that a processor has
obtained the lock
 has set it�s place to F �inside acquire lock at the last line�
 but net
yet called release lock�

�d� The slots variable can NOT go to 	T
T
T
T�� A true value in the slots array indicates
that whatever process gets the corresponding place on the next entry to acquire lock

can have the lock without waiting� Clearly
 this can only be true for one processor

otherwise all processors could think they have the lock at the same time� This of course
assumes only processors holding the lock will call the release lock procedure�

�� Barriers �out of �� points�

�a� BuggyBarrier� is erroneous due to the way it spins at line �� The last processor to enter
the barrier will clear the count at line 
 presuming that all other processors will notice
this and stop spinning at line �� The problem is that there is some chance that not all
other processors will notice this right away� Then there some chance that some other
processor will enter BuggyBarrier� again
 incrementing the count to a non�zero value
before all others have noticed it went to zero�

�b� Then sense�reversing barrier corrects the problem by spinning di�erently �at line ���� It
spins on a variable �sense� which only changes when ALL processors have entered the
lock
 not when any single processor enters� Thus even if we have the situation above

processors entering the barrier before all others have exited does not create a problem�

�c� We can in fact have one or more processors running in the barrier with BIN � k at
the same time other processors are in the barrier with BIN � �k� ��� This is precisely
the situation described in �a� above
 that all processors have arrived at the barrier with
BIN � �k � ��
 some have left and re�entered �with BIN � k� but others have not left
yet�

�d� No
 this situation cannot happen� This would mean that some one �or more� processor
is stuck in the barrier with BIN � �k � ��
 while some one or more other processors
have entered AND LEFT the barrier with BIN � �k � ��
 and re�entered again with
BIN � k� Then cannot have left the k � � invocation while one or more processors at
stuck at k � ��

�� Filaments �out of �� points�

�a� The non�atomic increment of k at line � is NOT an error� The design of the �laments
package is such that only server � will execute the sequential code� Since only one CPU
can possibly be executing this procedure
 an atomic increment is not necessary�

�



�b� The answer to this can be found almost verbatim in the paper� The paper gives code for
f rtc thread
 not f iterative thread but there is no di�erence� You could also say
that the code is the same as GThread create if you point out you don�t need to allocate
a private stack�

�� Remote Procedure Calls �out of �� points�

�a� Reply blocks are bu�ered to handle the case of them being lost on the network and not
arriving at the client� The client will eventually ask for the RPC again
 but the key
point is we DON�T to execute the remote call again� We just want to send the previous
reply again�

�b� They are bu�ered by the Server RPC Runtime�

�c� They can be discarded either when a new RPC �with a di�erent CallID� is received from
the same client
 or an acknowledgement is recieved from the client for that reply�

�d� The nonce value Y allows the server to be sure that the reply to the RFA message in fact
came from some system that already knows the conversation key Ck
 which presumably
can only be the client� When the server receives the RFA reply
 one of the �elds is the
Y value encrypted with Ck� If the server decrypts it with this Ck it should be the same
Y that was send in the original RFA message�

�e� If my scheme were used
 the KDC would be stuck with remembering the conversation
keys that it handed out inde�nitely
 since it can�t know how long will elapse before B
would eventually ask for it� Secondly
 Birrell�s scheme puts less load on the KDC than
my scheme
 thus helping to reduce a potential bottleneck in the KDC�

� Active Messages �out of �� points�

�a� Active Messages don�t have to wait for a server thread to schedule to respond to the
request
 in that they already have a CPU assigned �by virtue of the ISR�� They don�t
have to do a second context switch to the server thread� They don�t have to copy the
data twice
 �once to kernel memory and again to user memory�
 but instead can copy
directly to the correct location in user memory�

�b� Active Messages cannot block
 since they are running in the context of a ISR� Also
 they
cannot run for a �long� time
 for the same reason� Optimistic Active Messages solve
these two by assuming that the code for the AM will NOT block and NOT run for a long
time� Then runtime checks embedded in the AM code will check for these conditions

abort the Active Message
 and demote it to a normal RPC call� We optimistically hope
that the good case �not blocking and not taking too long� happens far more often than
the bad case�

�c� As the number of requests goes up
 the output queues on the network interfaces will grow
and eventually �ll up� Then
 the bad news is that we will have successfully processed
the AM �without blocking or running too long�
 but then �nd that we have to block
because the output queue is full on the network write� So we have to abort
 demote to
a normal RPC call after having already done all of the associated work�

�


