
CS ���� Operating Systems Summer Quarter� ����

Midterm

Friday July ��� ����

Reminder� OPEN Book and OPEN Notes

�� Anderson�s Array Based Queueing Lock��� points�

Anderson�s array based queueing lock is shown below� with Mellor�Crummey�s correction�
and Riley�s correction to Mellor�Crummey�s correction� This version assumes numprocs is ��
meaning we have exactly four CPU�s which can be contending for the lock� The pseudo�code
is given in a C�like format� rather than the Pascal�like format in the paper� Pay careful
attention to the initialization of the �elds in the Lock structure� which is slightly di	erent
than that given in the paper� Think carefully about parts a and b�

�a� As coded below� what is the smallest and largest �ie� the range of values� that will ever
be assigned to variable Lock�nextslot

�b� As coded below� and remembering that each processor has a private copy of variable
myplace� what is the smallest and largest �ie� the range of values� that any instance of
variable myplace can be assigned

�c� Variable Lock�slots is shown to be initialized to �T�F�F�F�� During normal execution of
the algorithm� is it possible that Lock�slots will have the value �F�F�F�F�
 If so� explain
what this means� or if not explain why not�

�d� Is it possible for variable Lock�slots to have the value �T�T�T�T�
 Is so� explain what this
means� or if not explain why not�

�define F �

�define T �

�define numprocs �

typedef struct �

int slots�numprocs� � �T� F� F� F	

int nextslot � numprocs

	 Lock

void acquire�lock� Lock L� int myplace�

�

myplace � fetch�and�increment��L��nextslot�

if ��myplace � numprocs� �� �� � � is the mod operator �

atomic�add��L��nextslot� �numprocs�

myplace � myplace � numprocs

while�L��slots�myplace� �� F� spin

L��slots�myplace� � F

	

void release�lock�Lock L� int myplace�

�

L��slots��myplace � �� � numprocs� � T

	

�

� Barriers ��� points�

The code for BuggyBarrier� that we discussed in class� along with the Sense Reversing Cen�

tralized Barrier �Mellor�Crummey algorithm �� slightly modi�ed� is shown below�

�a� What is the problem with BuggyBarrier�
 Explain in detail why it cannot work�

�b� The Sense Reversing barrier is quite similar to BuggyBarrier�� but it is in fact correct�
Explain how the Sense Reversing barrier corrects the problem with BuggyBarrier��

�c� Notice that the Sense Reversing barrier shown below has added a processor private
variable Barrier Invocation Number �BIN�� which simply counts by one each time the
Central Barrier routine is entered� Is it possible for some processor to be executing in
routine Central Barrier with BIN � k �k � � at the same time as some other processor
in also executing in routine Central Barrier with BIN � �k� ��
 If so explain how this
can happen� or explain why not�

�d� Is it possible for some processor to be executing in routine Central Barrier with BIN �
k �k � � at the same time as some other processor in also executing in routine Cen�

tral Barrier with BIN � �k � �
 If so explain how this can happen� or explain why
not�

Algorithm BuggyBarrier� by George Riley

� shared int CountBarrier � ��
 Procedure BuggyBarrier
� mycount � FetchAndIncrement�CountBarrier��
� if�mycount �� �numprocs � ��� f
� CountBarrier � �� �� All there� let others know and reset
� else

� while�CountBarrier �� �� spin �� Wait for others

Sense�Reversing Centralized Barrier

� shared int CountBarrier � P�
 shared Boolean sense � TRUE�
� processor private Boolean local sense � TRUE�
� processor private int BIN � ��
� Procedure Central Barrier
� BIN � BIN � ��
� local sense � NOT local sense�
� mycount � FetchAndDecrement�CountBarrier��
� if�mycount �� �� f
�� CountBarrier � P� �� All there� reset count for next pass
�� sense � local sense� �� All there� let others know
� else

�� while�Sense �� local sense� spin �� Wait for others

�� Filaments ��� points� For this question� assume we are running on a platform with � CPU�s�
and we are creating � servers in our �laments code �ie� we are calling f initialize����

�a� The code for sequential code on page � is reproduced below� Notice that on line � the
variable k is incremented� but not atomically� Keeping in mind that we have de�ned �
servers� it this an error
 Should we have used an atomic increment here
 Explain why
or why not�

�b� Refering to the main program at the bottom on page �� give pseudo code or a verbal
explanation of what the subroutine f iterative thread has to do to work properly�

� sequential�code��

� real temp

� k��

� if �k � MAXITERS or maxdiff � EPSILON� then return DONE

� temp � old
 old � new
 new � temp

� maxdiff � ���

� return NOTDONE

� end

�� Remote Procedure Calls ��� points�

�a� Why is it necessary for the RPC Server to bu	er the Reply blocks for possible later
reuse

�b� Of the RPC server application� RPC server stub� or RPC server runtime �see �g� � in
the RPC paper�� which of these does the bu	ering of the Replies

�c� When can these bu	ered reply blocks be discarded

�d� What is the purpose of the random value Y in the RFA message shown in �g of the
Secure RPC paper

�e� Assume that an RPC client is system A and the RPC server is system B� The protocol
for the Request for Authenticator RFA message between B and A is somewhat complex�
It would seem simpler just to have B ask the KDC for the conversation key �which would
of course be given encrypted with B�s private key�� Give two reasons why Birrell did
not design it this way�

�� Active Messages ��� points�

�a� Give two reasons why an implementation of RPC�s using active messages can perform
so much better than traditional RPC�s�

�b� Explain two problems with the original design of active messages that the Optimistic

active messages design is attempting to solve� How does it solve them

�c� Why does the performance of Optimistic active messages drop o	 so dramtically as the
number of processes increases above a certain threshold �see �gure in the Wallach
paper��

�

