EITA221:

Opydvmon YToAOYIGTOV Kot
2opPoiikoc Ipoypoupationog

Epyactnpio Ap. 2
Elcaymyn otnv ApyITEKTOVIKN)
ARMYvVS-A
Arithmetic and Logic Instr.
.data, Branch and Loops
[TeTpog [avayn, PhD

! Department of Computer Sclence - Tufjua MAnpogopikiig
X | University of Cyprus - Navemomuio Kinrpou

[Tétpog [avayn

Yeh. 1

Memory Allocation LEGVS

MEMORY ALLOCATION
SP =P 0000 007f ffff fffope, Stack

v
4

Dynamic Data

0000 0000 1000 0000y .
Static Data

0000 0000 0041 0OO0OOnex

PC=P» 0000 0000 0040 0000}, ~exd

Reserved
Ohex

1’! Department of Computer Sclence - Tufjpa rIAqPocpoputﬁ;
X | University of Cyprus - Navemomuio Kinrpou

[Tétpog [Hoavayn Xel. 2

B(X,Gl](ég EVTOKég Type Instructions

Arithmetic ADD, SUB, ADC, SBC, NEG

Arithmetic and logical operations
Logical AND, BIC, ORR, ORN, EOR, EON

Comparison CMP, CMN, TST

Move MOV, MVN

Some instructions also have an S suffix, indicating that the instruction sets flags. Of the
mstructions in Table 6-1, this includes ADDS, SUBS, ADCS, SBCS, ANDS, and BICS. There are other flag
setting instructions, notably CMP, CMN and TST, but these do not take an S suffix.

The operations ADC and SBC perform additions and subtractions that also use the carry condition
flag as an mput.

ADC{S}: Rd = Rn + Rm + C
SBC{S}: Rd =Rn - Rm - 1+ C

Example 6-1 Arithmetic instructions

ADD WO, W1, W2, LSL #3 [/ WO = W1 + (W2 << 3)

SUBS X0, X4, X3, ASR #2 // X0 = X4 - (X3 >> 2), set flags
MOV X0, X1 // Copy X1 to X0

CMP W3, W4 // Set flags based on W3 - W4
ADD W@, W5, #27 J// WO = WS + 27

Department of Computer Sclence - Tufjpa rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Hoavayn Xeh. 3

Special dedicated registers

2 dedicated registers:

= sp, the stack pointer register: holds pointer to bottom of the stack
= preferred register to access the stack

" must be 16-bytes aligned

STR WO, [SP, #4] ; Stores WO into the stack at address SP + 4.
SP - ; WARNING: SP is now “unusable”: it is not aligned anymore!
X0, ; ERROR: cannot use unaligned SP!

zr: the zero register
= when used as source register it always returns the integer value zero.

MOV WO, #0 ; WO =0
MOV WO, WZR ; WO = 0, same effect as previous instruction

* when used as a destination register it discards the value

SUBS WZR, W10, W1l ; Does W10 - W1ll, set the flags and discard the result
CMP W1l0, W1l ; Compare two numbers: CMP is an alias for the SUBS above

Two ways of writing the same instruction

Ak Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Hoavayn Xeh. 4

Multiplication and division

= Regular 32-bit and 64-bit multiplication:

* MUL Rd, Rn, Rm - Rd = Rn*Rm (alias of MADD: Ra = ZR)
* MADD Rd, Rn, Rm, Ra - Rd = Ra + Rn*Rm
* MSUB Rd, Rn, Rm, Ra 2 Rd = Ra - Rn*Rm
* MNEG Rd, Rn, Rm - Rd = -Rn*Rm (alias of MSUB: Ra = ZR)

= Long result multiplication: 32-bit source registers, 64-bit destination register.
= Signed variants: SMULL, SMADDL , SMSUBL, SMNEGL
* Unsigned variants: UMULL, UMADDL , UMSUBL, UMNEGL
* Upper 64 bits in 128-bit multiplication result: UMULH, SMULH

= Signed and unsigned 32-bit and 64-bit division
* SDIV/UDIV Rd, Rm, Rn = Rd = Rn/Rm

= Division by 0 returns 0 (with no exception)
* MAXNEG integer divided by -1 overflows (returns MAXNEG)

;! Department of Computer Sclence - Tufjua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn Xel. S

Examples

Lab2_examplel.s
Lab2_example2.s
Lab2_example3.s

1’! Department of Computer Sclence - Tufjua MAnpogopikiig
X | University of Cyprus - Navemomuio Kinrpou

[Tétpoc TTavayn Xel. 6

Data processing

* Values in registers can be processed using many different instructions
= Arithmetic, logic, data moves, bit field manipulations, shifts, conditional comparisons, and more
* These instructions always operate between registers, or between a register and an immediate

Example bit manipulation: Example countdown loop:

; add W3 to all elements of an

; Clear bit 4, set bit 7 at X1 ; array of loop count ints in X2
LDR X0, [X1] MOV X0, #<loop count>

AND X0, X0, #~(1 << 4) loop:

ORR X0, X0, #(1 << 7) ILDR W1, [X2]

STR X0, [X1] ADD Wl, Wi, W3

STR Wl, [X2], #4
SUB X0, X0, #1
CBNZ X0, loop

V.| Department of Computer Sclence - Tupa rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn Xel. 7

Shifts and rotates

= Standalone instructions for shifts and rotates

= Source register may be an Xn or Wn register

= Also used for flexible second operands, such as to shift an LDR / STR Xn register offset

= Shift amount may be an immediate or a register

= |mmediate shifts up to (register_size — 1)
= Register values taken modulo 32-bit or 64-bit

LSL
Logical Shift Left

register A S
Multiply by power of 2

ASR
Arithmetic Shift Right

E.l register

Divide by power of 2
(preserves sign bit)

21 64-bit Android on ARM, Campus London, September 2015

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

LSR
Logical Shift Right

register

Divide by power of 2

ROR
Rotate Right

register J

Shift right with wrap
around from
LSB to MSB

[Tétpog [Hoavayn Xeh. 8

Table 6-3 Shift and move operations

Instruction Description
Shaft
ASR Anthmetic shift right
LSL Logical shift left
LSR Logical shift right
ROR Rotate right
Move
MoV Move
MVN Bitwise NOT
LSL Logical shift left LSR Logical shift right
Egs:rzi?:s ﬁ,” J -« Register «— 0 0—» Register En j g:‘:lsas'rzifs;
Multiplication by 2n where n is Unsigned division by 2n

the shift amount

ASR Arithmetic shift right

sign-bit ﬂ

- Bits shifted

Register —p
e I} out are lost

Division by 2n, where n is the
shift amount, preserving the

Departmen o
University o

where n is the shift amount

ROR Rotate right

L Register J

Bit rotate with wrap around
from LSB to MSB

Figure 6-1 Shift operations

>el. 9

Extension

* SXTB/ SXTH/ SXTW
= Sign-extend byte / half-word / single-word

" UXTB/UXTH/ UXTW
= Zero-extend byte / half-word / single-word

= Destination register may be an Xn or Wn register
*= Wn destination extends source to 32-bits, Xn destination extends source to 64-bits
= Source register must always be a wn register

SXTB X3, W2 ; Sign-extend low byte of W2 to 64-bits
UXTH W4, WS ; Zero-extend low half-word of W5 to 32-bits
SXTW X6, W7 ; Sign-extend word in W7 to 64-bits

2! Depariment of Computer Sclence - Tufjpa MAnpogopikijg

University of Cyprus - Navermomiuio Kinrpou Hétp 05 HOWOWﬁ Zeh. 10

Examples

Lab2_exampled4.s
Lab2_exampleb.s
Lab2_example6.s

1’! Department of Computer Sclence - Tufjua MAnpogopikiig
X | University of Cyprus - Navemomuio Kinrpou

[Tétpoc TTavayn el 11

Boowkéc EvtoAég

Arithmetic and logical operations

The logical operations are essentially the same as the corresponding boolean operators operating
on individual bits of the register.

The BIC (Bitwise bit Clear) instruction performs an AND of the register that is the first after the
destination register, with the inverted value of the second operand. For example, to clear bat [11]
of register X0. use:

MOV X1, #0x800
BIC X0, X0, X1

ORN and EON perform an OR or EOR respectively with a bitwise-NOT of the second operand.

The comparison mstructions only modify the flags and have no other effect. The range of
mmmediate values for these mstructions 1s 12 bits. and this value can be optionally shifted 12 bits
to the left.

3! Department of Computer Sclence - Tufjua MAnpogopikijg
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn el 12

Examples

Lab2_example7.s

’! Department of Computer Sclence - Tufjua MAnpogopikiig
~ | University of Cyprus - Navemnomiuio Kitrpou

[Tétpog [avayn el 13

Useful assembler directives and macros for the GNU assembler
(https://community.arm.com/processors/b/blog/posts/useful-assembler-directives-and-
macros-for-the-gnu-assembler
https://sourceware.org/binutils/docs/as/index.htmi#Top)

The .text directive switches the current section to the .text section.
The .text section 1s normally used for storing code in.

This is usually going in your flash-memory of your microcontroller (but you can customize your linker-
script, so that it puts it somewhere else)

.text
(put your code here)
The .data directive switches the current section to the .data section.

You can use the .data section for storing all kind of various data, which will be copied to the
microcontroller's RAM, when your program starts up:

Binary values, strings, pointers, etc.

-data
hello_string: .asciz "Hello World!\n*
The .space directive reserves a number of bytes in the current section. By default, it will be filled with

ZCrocs.

https://sourceware.org/binutils/docs/as/Pseudo-Ops.html#Pseudo-Ops

3! Department of Computer Sclence - Tufjua MAnpogopikijg
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [avayn el 14

Memory Allocation LEGVS

MEMORY ALLOCATION
SP =P 0000 007f ffff fffope, Stack

v
4

Dynamic Data

0000 0000 1000 0000y .
Static Data

0000 0000 0041 0OO0OOnex

PC=P» 0000 0000 0040 0000}, ~exd

Reserved
Ohex

1’! Department of Computer Sclence - Tufjpa rIAqPocpoputﬁ;
X | University of Cyprus - Navemomuio Kinrpou

[Tétpog [Hoavayn Xeh. 15

objdump
gcc -g Lab2 examplel.s
objdump -s -jJ .data ./a.out

_/Ja.out: File format elfo4-li1ttleaarch64
Contents of section .data:
410a00 00000000 57656c63 6F6d6520 74612045 ... _Welcome to E

410a10 504c3232 3120616e 64204861 76652061 PL221 and Have a
410a20 206e6963 65204461 79202121 21002563 nice Day !!1!_%c

410a30 0a00 - -

objdump -d ./a.out -j .text | less
00000000004005b0 <main>:

4005b0: a9be7bfd stp x29, x30, [sp,#-32]!
4005b4: 910003fd mov X29, sp
4005b8: 90000080 adrp x0, 410000 < FRAME END +0x¥838>
4005bc: 91281000 add x0, x0, #0xa04
4005c0: aa0003f3 mov x19, xO
From gdb (when break on main)
sp OX7fFFFfflb0

&\ Depariment of Computer Sclence - Tufjua MAnpogopikijg
X | University of Cyprus - Navemomuio Kinrpou

[Tétpoc TTavayn el 16

(gdb) info file
Symbols from “./a.out™.

Local exec file: "~ _./a.out”, file type elf64-littleaarch64.

Entry point: 0x4004cO

0x0000000000400200 -
0x000000000040021c -
0x000000000040023c -
0x0000000000400260 -
0x0000000000400298 -
0x0000000000400328 -
0x0000000000400372 -
0x0000000000400380 -
0x00000000004003a0 -
0x00000000004003b8 -
0x0000000000400430 -
0x0000000000400450 -
0x00000000004004c0O0 -
0x00000000004006bc -
0x00000000004006d0 -
0x00000000004006F8 -
0x0000000000400738 -
0x0000000000410828 -
0x0000000000410830 -
0x0000000000410838 -
0x0000000000410840 -
0x0000000000410a10 -
0x0000000000410a20 -
0x0000000000410a60 -
0x0000000000410a96 -

0x000000000040021b
0x000000000040023c
0x0000000000400260
0x0000000000400294
0x0000000000400328
0x0000000000400372
0x000000000040037e
0x00000000004003a0
0x00000000004003b8
0x0000000000400430
0x0000000000400444
0x00000000004004c0
0x00000000004006bc
0x00000000004006¢cc
0x00000000004006T8
0x0000000000400734
0x0000000000400824
0x0000000000410830
0x0000000000410838
0x0000000000410840
0x0000000000410a10
0x0000000000410a20
0x0000000000410a60
0x0000000000410a96
0x0000000000410a98

! Y. Department of Computer Sclence - Tufjua MAnpogopikiig

University of Cyprus - Navermomiuio Kinrpou

nw u no un uno nnnonnnonoonoononuonoononononononononon

.interp
-note.ABlI-tag
.note.gnu.build-id
-gnhu.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
.rela.dyn
.rela.plt
.init

-plt

-text

Fini

.rodata
.eh_frame_hdr
.eh_frame
.init_array
-.Fini_array
-jcr

-.dynamic

.got

.got.plt
.data

.bss

[Tétpog [avayn

Memory access instructions

The general form of a Load instruction 1s as follows:

LDR Rt, <addr>

For loads into integer registers, you can choose a size to load. For example, to load a size smaller
than the specified register value, append one of the following suffixes to the LDR mstruction:

. LDRB (8-bit, zero extended).

. LDRSB (8-bit, sign extended).
. LDRH (16-bit, zero extended).
. LDRSH (16-bit. sign extended).
. LDRSW (32-bit, sign extended).

Similarly, the general form of a Store mstruction is as follows:

STR Rn, <addr>

’! Department of Computer Sclence - Tufjpa rIAqPocpoputﬁ;
" | University of Cyprus - Navemompuio Kinrpou

[Tétpog [Hoavayn Xeh. 18

Register load/store

= LDR
* Load data from an address into a register

= STR
= Store data from a register to an address

LDR X0, <addr> ; Load from <addr> into XO0
STR X0, <addr> ; Store contents of X0 to <addr>

= By default, the size of the load/store is determined by the source/destination register name
* Xn will load/store 64 bits, wn will load/store 32 bits

= [nstruction can be suffixed to force a smaller load/store size
= B’ for byte, *H’ for half-word, ‘W’ for word
= Result will be zero-extended by default, combine with the ‘s’ suffix for sign-extension

ILDRSB X0, <addr> ; Load byte from <addr> into X0 and sign-extend
STRH Wl, <addr> ; Store half-word from W1l to <addr>

v,| Department of Computer Sclence - Tufjpa MAnpopopikiic : .
University of Cyprus - Navermomiuio Kinrpou = HSTP 0G Howown Xeh. 19

Memory access instructions

Example: Byte loads

Sign-extended 8-bit load to a wn register:

Hex 8A is decimal =118 or 138
depending on whether it is
considered signed or unsigned

University of Cyprus - Navermomiuio Kinrpou

LDRSB W4, <addr> _ 8A
Sign-extend
< v
00 00 00 00 FF FF FF 8A
Sign-extended 8-bit load to an Xn register:
LDRSB X4, <addr> . 8A
Sign-extend
< v
FF FF FF FF FF FF FF 8A
Zero-extended 8-bit load to a wn register:
LDRB W4, <addr> 8A
Zero-extend
< v
00 00 00 00 00 00 00 8A
Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ; Tétpoc Mavory

Memory

R4

Memory

R4

Memory

R4

Xeh. 20

Memory access instructions

Offset modes

Offset addressing modes add an immediate value or an optionally-modified register value to a

64-bit base register to generate an address.

Table 6-8 Offset addressing modes

Example instruction

Description

LDR X0, [X1]

Load from the address in X1

LDR X@, [X1, #8]

Load from address X1 + 8

LDR X0, [X1, X2]

Load from address X1 + X2

LDR X0, [X1, X2, LSL, #3]

Load from address X1 + (X2 << 3)

LDR X@, [X1, W2, SXTW]

Load from address X1 + sign_extend(W2)

LDR X0, [X1, W2, SXTW, #3]

Load from address X1 + (sign_extend(W2) << 3)

.|| Department of Computer Sclence - Tufua MAnpogopikijg
| | University of Cyprus - Navemomijuio Kintpou

[Tétpog [oavayn Xel 21

Memory access instructions

There are two variants: pre-index modes which apply the offset before accessing the memory.
and post-index modes which apply the offset after accessing the memory.

Table 6-9 Index addressing modes

Example instruction Description
LDR X0, [X1, #8]! Pre-index: Update X1 first (to X1 + #8). then load from the new address
LDR X0, [X1], #8 Post-index: Load from the unmodified address in X1 first. then update X1 (to X1 + #8)

STP X0, X1, [SP, #-16]! Push X0 and X1 to the stack.

LDP X0, X1, [SP], #16 Pop X0 and X1 off the stack.

V.| Department of Computer Sclence - Tufjua NMAnpopopikfic 2 ;
University of Cyprus - Navermomiuio Kinrpou = HSTP 05 Howayn Xed. 22

Specifying the load/store address

= Address to load/store from is a 64-bit base register plus an optional offset

LDR X0, [X1] ; Load from address held in X1
STR X0, [X1] ; Store to address held in X1

= Offset can be an immediate or a register

LDR X0, [X1, #8] ; Load from address [X1 + 8 bytes]
LDR X0, [X1, #-8] ; Load with negative offset
LDR X0, [X1, X2] ; Load from address [X1 + X2]

* A Wn register offset needs to be extended to 64 bits

LDR X0, [X1, W2, SXTW] ; Sign-extend offset in W2
LDR X0, [X1, W2, UXTW] ; Zero-extend offset in W2

* Both Xn and wn register offsets can include an optional left-shift

LDR X0, [X1, W2, UXTW #2] ; Zero-extend offset in W2 & left-shift by 2
LDR X0, [X1, X2, LSL #2] ; Left-shift offset in X2 by 2

V.| Department of Computer Sclence - Tupa rIAqPocpoputﬁ;

University of Cyprus - Navermomiuio Kinrpou Hétp 05 HOWOWﬁ Zeh. 23

Addressing modes

Simple: X1 is not changed
LDR WO, [X1]

Offset: X1 is not changed
LDR WO, [X1, #4]

Pre-indexed: X1 changed before load

LDR WO, [X1, #4]! [::::i} ADD X1, X1, #4

LDR WO, [X1]

Post-indexed: X1 changed after load

LDR WO, [X1], #4 [:::::} LDR WO, [X1]

ADD X1, X1, #4

;! Department of Computer Sclence - Tufjua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

/* Analogous C code */
int *intptr = ..; JF 31
int out; // WO

out = *intptr;

out = intptr[1l];

out = * (++intptr);

out = * (intptr++) ;

[Tétpog [oavayn Xel. 24

Accessing multiple memory locations

In A64 code, there are the Load Pair (LDP) and Store Pair (STP) instructions
Table 6-11 Register Load/Store pair

Load and Store pair Description

LDP W3, W7, [X0] Loads word at address X0 into W3 and word at
address X0 + 4 into W7. See Figure 6-6.

LDP X8, X2, [X0, #0x10]! Loads doubleword at address X0 +0x10 into X8
and the doubleword at address X0 + 0x10 + 8
into X2 and add 0x10 to X0. See Figure 6-7.

LDPSW X3, X4, [X0] Loads word at address X0 into X3 and word at
address X0 + 4 into X4. and sign extends both
to doubleword size.

LDP D8, D2, [X11], #0x10 Loads doubleword at address X11 into DS and
the doubleword at address X11 + 8 into D2 and
adds 0x10 to X11.

STP X9, X8, [X4] Stores the doubleword 1n X9 to address X4 and
stores the doubleword in X8 to address X4 + 8.

1!”! Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Hoavayn Xeh. 25

Register pair load/store

= New Load Pair and Store Pair instructions
= Support both integer and scalar FP / SIMD registers
* Both source/destination registers must be the same width

LDP W3, W7, [XO] ; [X0] => W3, [X0 + 4 bytes] => W7
STP Q0, Q1, [X4] ; Q0 => [X4], Q1 => [X4 + 16 bytes]

= No Load Multiple, Store Multiple, or PUSH / POP instructions in AArch64
= Construct these operations using STP and LDP instructions

STP X0, X1, [sSP, #-16]!
LDP X0, X1, [SP], #16

; Push X0 and X1 onto the stack
; Pop X0 and X1 from the stack

* There are variants of LDR to load PC relative data

= Use a label operand rather than a 64-bit base address register
= Linker generates a PcC relative load from the address of the label in the executable image

LDR X0, label ; Load value at <label>

* Assemblers may support a “Load (immediate)” pseudo-instruction
= (Creates a Pc relative load, and a literal pool containing the value to be loaded

LDR X0, =imm ; Load from literal containing imm

University of Cyprus - NavemoTiuio Komrpou R e

Accessing multiple memory locations

In A64 code, there are the Load Pair (LDP) and Store Pair (STP) instructions

X0 +4 X0
4 bytes 4 bytes
63 /’ 3231 | 0
| \
h 4
W7 W3
Flow control Figure 6-6 LDP W3, W7 [X0]
[X0+0x10]+8 [X0+0x10]
8 bytes 8 bytes
127 i 6463 ‘ 0
. \
v
X2 X8

Figure 6-7 LDP X8, X2, [X0 + #0x10]!

1’! Department of Computer Sclence - Tufjpa rIAqPocpoputﬁ;
X | University of Cyprus - Navemomuio Kinrpou

[Tétpog [Hoavayn Xel. 27

Using the PC

5.3.4 Address Generation
ADRP Xd, label

Address of Page: sign extends a 21-bit offset, shifts it left by 12 and adds it to the value of the PC with its
bottom 12 bits cleared, writing the result to register Xd. This computes the base address of the 4KiB
aligned memory region containing label, and is designed to be used in conjunction with a load, store or
ADD instruction which supplies the bottom 12 bits of the label's address. This permits position-
independent addressing of any location within =4GiB of the PC using two instructions, providing that
dynamic relocation is done with a minimum granularity of 4KiB (i.e. the bottom 12 bits of the label’s
address are unaffected by the relocation). The term “page” is short-hand for the 4KiB relocation granule,
and is not necessarily related to the virtual memory page size.

ADR Xd, label

Address: adds a 21-bit signed byte offset to the program counter, writing the result to register Xd. Used to
compute the effective address of any location within +1MiB of the PC.

Departiment of Computer Sclence - Tufua MAnpopopikiic 2 ;
University of Cyprus - Navermomiuio Kinrpou = HSTP 0S Howayn 2eh. 28

Using the PC

* Obtaining the address of a label
= PC relative loads and ADR are limited in range to +1MB, whereas ADRP has range +4GB

LDR X0, =label ; Load address of label from literal pool

ADR X0, label ; Calculate address of label (PC relative)

ADR X0, . ; Get current PC (address of ADR instruction)
ADRP X0, label ; Calculate address of 4KB page containing label

Our Assembly Code

adrp X0, message str

add X0, x0, :lol2:message_str

Disassembly Code

4005b8: 90000080 adrp x0, 410000 < FRAME _END +0x¥838>
4005bc: 91281000 add x0, x0, #0xa04 //x0= 0x410a04

Contents of section .data:

410a00 00000000 57656c63 6F6d6520 7462045_Welcome to E
410al10 504c3232 3120616e 64204861 76652061 PL221 and Have a
410a20 206e6963 65204461 79202121 21002563 nice Day !!!_%c

410a30 0a00 .

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;

University of Cyprus - Navermomiuio Kinrpou Hétp 05 Howmm Zeh. 29

Examples

Lab2_example8.s
Lab2_example9.s

1’! Department of Computer Sclence - Tufjua MAnpogopikiig
X | University of Cyprus - Navemomuio Kinrpou

[Tétpoc TTavayn el 30

5.1 Control Flow
5.1.1 Conditional Branch

Unless stated, conditional branches have a branch offset range of +1MiB from the program counter.

B.cond label

Branch: conditionally jumps to program-relative label if cond is true.
CBNZ Wn, label
Compare and Branch Not Zero: conditionally jumps to program-relative 1abel if Wn is not equal to zero.

CBNZ Xn, label
Compare and Branch Not Zero (extended): conditionally jumps to 1abel if Xn is not equal to zero.
CBZ Wn, label
Compare and Branch Zero: conditionally jumps to 1abel if Wn is equal to zero.
CBZ Xn, label
Compare and Branch Zero (extended): conditionally jumps to 1abel if Xn is equal to zero.
TBNZ Xn|Wn, #uimmé, label

Test and Branch Not Zero: conditionally jumps to 1abel if bit number uimmé in register Xn is not zero.
The bit number implies the width of the register, which may be written and should be disassembled as Wn
if uimm is less than 32. Limited to a branch offset range of +32KiB.

TBZ Xn|Wn, #uimmé, label

Test and Branch Zero: conditionally jumps to 1abel if bit number uimmé in register Xn is zero. The bit
number implies the width of the register, which may be written and should be disassembled as Wn if
uimmé is less than 32. Limited to a branch offset range of +32KiB.

“1 Department of Computer Sclence - Tufjua MAnpogopikiig
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn el 31

5.1.2 Unconditional Branch (immediate)

Unconditional branches support an immediate branch offset range of £+128MiB.

B label
Branch: unconditionally jumps to pc-relative 1abel.
BL label

Branch and Link: unconditionally jumps to pc-relative 1abel, writing the address of the next sequential
instruction to register X30.

5.1.3 Unconditional Branch (register)
BLR Xm

Branch and Link Register: unconditionally jumps to address in Xm, writing the address of the next
sequential instruction to register X30.

BR Xm
Branch Register: jumps to address in Xm, with a hint to the CPU that this is not a subroutine return.
RET {Xm}

Return: jumps to register Xm, with a hint to the CPU that this is a subroutine return. An assembler shall
default to register X30 if Xm is omitted.

1 Department of Computer Sclence - Tufjua MAnpogopikiig

University of Cyprus - Navermomiuio Kinrpou Hétp 05 HOWOWﬁ Zed. 32

Branches

B <offset>
= PC relative branch +128 MB
= Conditional version B. cond (covered later) has +1 MB range

= BL <offset>

= Similar to B (branch range +128 MB) but also stores return address in LR (X30), hinting that this is a function call
= No conditional version

= BR Xm
= Absolute branch to address in Xm

* BLR Xm
= Similar to BR, but also stores return address in LR (X30), hinting that this is a function call

* RET Xmorsimply RET
= Similar to BR, but also hints that this is a function return
= Use LR (X30) if register is omitted, but can use other register

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn Xel. 33

Conditional execution

= A64 does not allow instructions to be conditionally executed
= Except for branch instructions
= Unlike A32, which allows for most instructions to include a condition code, for example ADDEQ RO, R1, R2
* Unlike T32, which supports the 1T (If Then) instruction

= A64 has conditional operations
= These instructions are always executed, but their result depends on the ALU flags

= Some data processing instructions will set the ALU flags after execution
= Mnemonics appended with ‘S’, for example SUBS

= Some encodings have preferred syntax for disassembly to aid in clarity

SUBS X0, X1, X2 ; X0 = (X1 - X2), and set ALU flags
TST X0, #(1 << 20) ; Alias of ANDS XZR, X0, #(1 << 20)
CMP X0, #5 ; Alias of SUBS XZR, X0, #5

1 Department of Computer Sclence - Tufjua MAnpopopikric : .
University of Cyprus - Navermomiuio Kinrpou = HS’L’p 0G Howown Xelh. 34

Flow control using Branch Inst.

Branch instructions

B (offset)

Program relative branch forward or back 128MB.
A conditional version. for example B.EQ. has a 1MB range.

BL (offset)

As B but store the return address in X30. and hint to branch prediction logic
that this is a function call.

BR Xn Absolute branch to address in Xn.

BLR Xn As BR but store the return address in X30. and hint to branch prediction
logic that this 1s a function call.

RET{Xn} As BR. but hint to branch prediction logic that this is a function return.

Returns to the address in X30 by default. but a different register can be
specified.

Conditional branch instructions

(CBZ Rt, Tabel

Compare and branch if zero. If Rt is zero. branch forward or back up to
IMB.

CBNZ Rt, Tabel

Compare and branch if non-zero. If Rt is not zero. branch forward or back
up to IMB.

TBNZ Rt, bit, Tabel

Test and branch if zero. Branch forward or back up to 32kB.

TBNZ Rt, bit, label

Test and branch if non-zero. Branch forward or back up to 32kB.

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;

University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn

Yeh. 35

Conditionally executed Instructions
Saved Process Status Register

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

N|Z|C|V SS| IL DIA]I|F M M [3:0]

Figure 4-4 SPSR

The individual bits represent the following values for AArch64:

N Negative result (N flag).
Z Zero result (Z) flag.
i Carry out (C flag).
\'% Overflow (V flag).
Table 6-4 Condition flag
Flag Name Description
N Negative Set to the same value as bit[31] of the result. For a 32-bit signed integer, bit[31] being set indicates

that the value is negative.

Z Zero Set to 1 if the result is zero, otherwise 1t 15 set to 0.

- Carry Set to the carry-out value from result, or to the value of the last bit shifted out from a shift
operation.

v Overflow Set to 1 if signed overflow or underflow occurred, otherwise it is set to 0.

The C flag is set if the result of an unsigned operation overflows the result register.

V.| Department The V flag operates in the same way as the C flag. but for signed operations. , ,
e il ’) § p [Tétpog Hovayn Xel. 36

University of vyprus = nuvennw injuiv nviipuw

Setting the ALU flags

= The ALU flags are part of PSTATE
= NzcV > Negative, Zero, Carry, Overflow

MOV X0, #1 ; NZCV
SUBS X1, X0, XO ; 0100

MOV WO, #O0XFFFFFFFF
MOV Wl, #1 : NZCV
ADDS W2, WO, W1 : 0110

MOV WO, #0O
MOV Wl, #1 ; NZCV
SUBS W2, WO, W1 ; 1000

“ Department of Computer Sclence - Tufjua MAnpogopikiig

University of Cyprus - Navermomiuio Kinrpou Hétp o5 Howowﬁ Xeh. 37

Using the ALU flags

= Condition codes change the behaviour of some instructions based on the ALU flags
= Suffixed to conditional branches, for example B.EQ label
= Passed as an operand to conditional operations, for example CSINC W0, EQ

= Some of the available condition codes are shown below
= See appendix for complete list

Condition Code ALU Flags

EQ Equal Z == 1
NE Not Equal Z =0
Cs / HS Unsigned Higher or Same =
cc / Lo Unsigned Lower c =0
MI Minus N == 1

.| Department of Computer Sclence - Tufipa rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn el 38

Conditional branches

= B.cond
= Branch to label if condition code evaluates to true

CMP X0, #5
B.EQ label ; Branch to label if (X0 == #5)

" CBZ/CBNZ
= Branch to label if operand register is equal to zero (CBZ) or not equal to zero (CBNZ)

CBZ X0, label ; Branch to label if (X0 == #0)
CBNZ WO, label ; Branch to label if (WO !'= #0)
* TBZ/ TBNZ

= Branch to a label if a specific bit in the operand register is set (TBNZ) or cleared (TBZ)

TBZ WO, #20, label ; Branch to label if (WO0[20] == #0b0)
TBNZ X0, #50, label ; Branch to label if (X0[50] == #0bl)

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Mavayn Yel. 39

Example: Condition execution

C Source Code: A64 Conditional Branching:
if (a == 0) CMP WO, #0
{ B.NE else
y =y + 1; ADD Wl, W1, #1
} B end
else else:
{ SUB W1, W1, #1
Y = P - L end:

& | & Department of Computer Sclence - Tufiua MAnpopopIkic . .
University of Cyprus - Navermomiuio Kinrpou = HSTP 05 Howown Zeh. 40

Instructions that set the Flags .
Type Instructions

Arithmetic and logical operations Arithmetic ADD, SUB, ADC, SBC, NEG

Logical AND, BIC, ORR, ORN, EOR, EON

Comparison CMP, CMN, TST

Move MOV, MVN

Some instructions also have an S suffix, indicating that the instruction sets flags. Of the
mstructions in Table 6-1, this includeslﬁDDS. SUBS, ADCS, SBCS, ANDS, and BICY. There are other flag
setting instructions, notably CMP, CMN and TST, but these do not take an S suffix.

The operations ADC and SBC perform additions and subtractions that also use the carry condition
flag as an mput.

ADC{S}: Rd = Rn + Rm + C
SBC{S}: Rd =Rn -Rm-1+C
Example 6-1 Arithmetic instructions
ADD Wo, W1, w2, LSL #3 [/ WO = WL + (W2 << 3)
SUBS X0, X4, X3, ASR #2 // X0 = X4 - (X3 >> 2), set flags
MOV X0, X1 // Copy X1 to X0
CMP W3, W4 // Set flags based on W3 - W4
ADD W0, WS, #27 // WO = WS + 27

V.| Department of Computer Sclence - Tufjua MAnpogopikijg

University of Cyprus - Navermomiuio Kinrpou Hétp 05 HOWOWﬁ Zed. 41

Instructions that set the Flags

The AB4 ISA has instructions which set or test condition codes. Those that do will be identified as
follows:

1. Instructions which set the condition flags are notionally different instructions, and will continue to be
identified by appending an ‘s’ to the base mnemonic, e.g. ADDS.

2. Instructions which are truly conditionally executed (i.e. when the condition is false they have no effect on
the architectural state, aside from advancing the program counter) have the condition appended to the
instruction with a ".' delimiter. For example B. EQ.

If there is more than one instruction extension, then the conditional extension is always last.

Where a conditional instruction has qualifiers, the qualifiers follow the condition.

Instructions which are unconditionally executed, but use the condition flags as a source operand, will
specify the condition to test in their final operand position, e.g. CSEL Wd, Wm, Wn, NE

kW

A Department of Computer Sclence - Tufjua MAnpopopikric , ,
| University of Cyprus - Navemomjuio Kintpou = [Tézpog avoym Xeh. 42

The full list of condition codes is as follows:

Contitional Execution

Name
Encoding (& Meaning (integer) Meaning (floating point) Flags

alias)
0000 EQ Equal Equal Z==1
0001 NE Not equal Not equal, or unordered Z==0

HS Unsigned higher or same
0010 |

(Ccs) (Carry set) Greater than, equal, or unordered

LO Unsigned lower L
011 (cc) (Carry clear) Less than ===
0100 MI Minus (negative) Less than N==1
0101 PL Plus (positive or zero) Greater than, equal, or unordered N==0
0110 VS Overflow set Unordered V==1
0111 VC Overflow clear Ordered V==0
1000 HI Unsigned higher Greater than, or unordered C==1 && Z==0
1001 LS Unsigned lower or same Less than or equal ! (C==1 && Z==0)
i - féir:d greater than or Greater than or equal N==V
1011 LT Signed less than Less than or unordered N!=V
1100 GT Signed greater than Greater than Z==0 && N==V
1101 LE Signed less than or equal Less than, equal, or unordered 1 (Z==0 && N==V)
1110 AL

An
TET = Always Always Yy
Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ; Tétpoc Mavory Sl 43

University of Cyprus - Navermomiuio Kinrpou

Examples

Lab2_example10.s
Lab2_example11.s

1’! Department of Computer Sclence - Tufjua MAnpogopikiig
X | University of Cyprus - Navemomuio Kinrpou

[Tétpoc TTavayn el 44

Emovainyn

AAPCS64: Role of integer registers

Alternative
Register name

RO Return value (for integers and pointers)
| RO .. R7 Arguments in function calls (for integers and pointers) |
RS Indirect result location register. Used in C++ for returning non-trivial objects (set
by the caller).
| R9 .. R15 Temporary reg_;isters (trashed across calls) |

The intra-procedure-call temporary registers. The linker may use these in PLT

R16, R17 IPO, IP1 .
! ! code. Can be used as temporary registers between calls

R18 Platform register
IR19 .. R28 Callee-saved registers: register preserved across calls |
R29 EFP Frame pointer. Copy of SP before function stack allocation
R30 LR Link register. BL and BLR instructions save return address in it
SP Stack pointer

2! Depariment of Computer Sclence - Tufjpa MAnpogopikijg
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Hoavayn Xeh. 45

Indirect result
X19
X0 location register i,
X1 X9 X20
X2 X10 X21
X3 X11 X22
Parameter and Caller saved X13 Callee saved X23
result registers X4 temporary registers
X5 registers X13 X24
X6 X14 X25
X7 X15 X26
Intra-procedure : ac
i X16 (IPO
call scratch (1P9) X28
registers AR Frame pointer X29 (FP)
Platform register X18 (PR) | procedure Link register X30 (LR)

Figure 9-1 General-purpose register use in the ABI

“1 Department of Computer Sclence - Tufjua MAnpogopikiig
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [Hoavayn Xel. 46

For the purposes of function calls, the general-purpose registers are divided into four groups:

Argument registers (X0-X7)
These are used to pass parameters to a function and to return a result. They can
be used as scratch registers or as caller-saved register variables that can hold
intermediate values within a function, between calls to other functions. The fact
that 8 registers are available for passing parameters reduces the need to spill
parameters to the stack when compared with AArch32.

Caller-saved temporary registers (X9-X15)

If the caller requires the values in any of these registers to be preserved across a
call to another function, the caller must save the affected registers in its own stack
frame. They can be modified by the called subroutine without the need to save
and restore them before returning to the caller.

Callee-saved registers (X19-X29)

These registers are saved in the callee frame. They can be modified by the called
subroutine as long as they are saved and restored before returning.

.| Department of Computer Sclence - Tufipa rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog TTavayn Yeh. 47

Registers with a special purpose (X8, X16-X18, X29, X30)

X8 1s the indirect result register. This is used to pass the address location of
an indirect result, for example, where a function returns a large structure.

X16 and X17 are IPO and IP1, intra-procedure-call temporary registers.
These can be used by call veneers and similar code. or as temporary
registers for intermediate values between subroutine calls. They are
corruptible by a function. Veneers are small pieces of code which are
automatically inserted by the linker, for example when the branch target is
out of range of the branch instruction.

X18 1s the platform register and is reserved for the use of platform ABIs.
This 1s an additional temporary register on platforms that don't assign a
special meaning to it.

X29 is the frame pointer register (FP).
X30 1s the link register (LR).

2! Depariment of Computer Sclence - Tufjpa MAnpogopikijg

University of Cyprus - Navermomiuio Kinrpou Hétp 05 HOWOWﬁ Zeh. 48

Specifying register load size
| loadSize | Extenson | Xa

i Zero
8-bit :

Sign

16-bit £5M0

- Sign

. Zero
32-bit ,

Sign

64-bit Zero

- LDRB
LDRSB LDRSB
= LDRH
LDRSH LDRSH
= LDR
LDRSW -=
LDR --

= There is no encoding for a zero-extended load of less than 64-bits to an Xn register
= Writing to a wn register automatically clears bits [63:32], which accomplishes the same thing

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
[| University of Cyprus - Navemomuio Kompou

[Tétpog [oavayn

el 49

Condition codes

EQ Equal Z==1
NE Not Equal Z ==0

Cs / HS Unsigned Higher or Same cC =1

cc / Lo Unsigned Lower C==0
MI Minus N==1
PL Positive or Zero N ==20
Vs Overflow V=1
Ve No Overflow V == 0
HI Unsigned Higher C==1 && Z==0
LS Unsigned Lower or Same C=0 && 2==1
GE Greater Than or Equal N =1V
LT Less Than H!=¥
GT Greater Than Z==0 && N==V
LE Less Than or Equal Z==1 || N!'=V
AL Always —

NzZcV - Negative, Zero, Carry, Overflow

Departiment of Computer Sclence - Tufua rIAqPocpoputﬁ;
University of Cyprus - Navermomiuio Kinrpou

[Tétpog [oavayn el 50

Data types

Table 8-1 Basic data types

Type A32 A64 Description

int/long 32-bat 32-bat mteger

short 16-bat 16-bat mnteger

char 8-bit 8-bat byte

long long 64-bit 64-bit mteger

float 32-bat 32-bat single-precision IEEE floating-point
double 64-bit 64-bit double-precision IEEE floating-point
bool 8-bit 8-bat Boolean

V.| Department of Computer Sclence - Tupa rIAqPocpoputﬁ;
_ t University of Cyprus - Navemomiuio Kinmrpou

[Tétpog [oavayn Xel 51

