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Abstract—This paper presents the design and implementation
of a highly efficient Double-precision General Matrix Multi-
plication (DGEMM) based on OpenBLAS for 64-bit ARMv8
eight-core processors. We adopt a theory-guided approach by
first developing a performance model for this architecture and
then using it to guide our exploration. The key enabler for a
highly efficient DGEMM is a highly-optimized inner kernel GEBP
developed in assembly language. We have obtained GEBP by (1)
maximizing its compute-to-memory access ratios across all levels
of the memory hierarchy in the ARMv8 architecture with its
performance-critical block sizes being determined analytically,
and (2) optimizing its computations through exploiting loop un-
rolling, instruction scheduling and software-implemented register
rotation and taking advantage of A64 instructions to support
efficient FMA operations, data transfers and prefetching.

We have compared our DGEMM implemented in OpenBLAS
with another implemented in ATLAS (also in terms of a highly-
optimized GEBP in assembly). Our implementation outperforms
the one in ALTAS by improving the peak performance (efficiency)
of DGEMM from 3.88 Gflops (80.9%) to 4.19 Gflops (87.2%) on
one core and from 30.4 Gflops (79.2%) to 32.7 Gflops (85.3%) on
eight cores. These results translate into substantial performance
(efficiency) improvements by 7.79% on one core and 7.70% on
eight cores. In addition, the efficiency of our implementation on
one core is very close to the theoretical upper bound 91.5%
obtained from micro-benchmarking. Our parallel implementation
achieves good performance and scalability under varying thread
counts across a range of matrix sizes evaluated.

Keywords—64-bit ARMv8 processor, register rotation, prefetch-
ing, blocking, DGEMM, BLAS, compute-to-memory access ratio

I. INTRODUCTION

Recently, ARM-based SoCs have a rapid evolution. The
promising qualities, such as competitive performance and en-
ergy efficiency, make ARM-based SoCs the candidates for the
next generation HPC systems [1], [2]. For example, supported
by the Mont-Blanc project, the Barcelona Supercomputing
Center has built Tibidabo, the world’s first ARM-based HPC
cluster [3]. Recently, the new 64-bit ARMv8 instruction set
architecture (ISA) has included a number of new features,
including a greater addressing range, increased availability
of larger registers, double-precision floating-point values sup-
ported by its NEON vector unit, and FMA (fused multiply-add)
SIMD instructions. Therefore, there is now increasing interest
in building HPC systems with ARMv8-based SoCs.

Meanwhile, dense matrix operations play an important role
in scientific and engineering computing. Basic Linear Algebra
Subprogram (BLAS) prescribes an application programming
interface standard for publishing libraries, which is classified
as Level-1, Level-2 and Level-3 BLAS for vector-vector,
vector-matrix and matrix-matrix computations, respectively. To
achieve high performance on a variety of hardware platforms,
CPU vendors and some HPC researchers have developed a
variety of BLAS libraries, including Intel’s MKL, AMD’s
ACML, IBM’s ESSL, ATLAS [4], GotoBLAS [5], [6], Open-
BLAS [7] and BLIS [8]. NVIDIA has also provided CUBLAS
on its own GPUs. In addition, there has also been a lot of work
on optimizing matrix-related applications [9], [10]. For Level-
3 BLAS, the most commonly used matrix-matrix computations
can be implemented as a general matrix multiplication. In the
HPC arena, as the core part of the LINPACK benchmark,
Double-precision General Matrix Multiplication (DGEMM)
has been an important kernel for measuring the potential
performance of a HPC platform.

In this paper, we focus on designing and implementing
a highly efficient DGEMM based on OpenBLAS for 64-
bit ARMv8 eight-core processors. We adopt a theory-guided
approach by first developing a performance model for this
architecture and then using it to guide our exploration. Our
model reveals clearly that optimizing the peak performance
(efficiency) of DGEMM requires its compute-to-memory ac-
cess ratios to be maximized across all levels of the memory
hierarchy. In addition, our model also allows us to bound from
below the performance of a DGEMM implementation.

Guided by our performance model, we obtain a highly
efficient DGEMM for the ARMv8 architecture by developing
systematically a highly-optimized inner kernel, GEBP, in as-
sembly language. To boost the performance of GEBP, the main
challenge lies in choosing the right register block size for its
innermost register kernel. We make such a choice analytically
with the goal of maximizing its compute-to-memory access
ratio from the L1 data cache to registers. In order to realize
the optimal ratio thus found, we optimize the operations in
the register kernel by (1) exploiting loop unrolling, instruction
scheduling and software-implemented register rotation and (2)
taking advantage of A64 instructions to support efficient FMA
operations, data transfer and data prefetching. Subsequently,
we optimize GEBP to maximize its compute-to-memory access
ratios across all three levels of cache memories by determining
analytically the remaining performance-critical block sizes



used by GEBP. We perform this optimization by considering
their set associativities and replacement policies.

Recently, supported by AMCC (Applied Micro Circuits
Corporation), which produces X-Gene, the world’s first
ARMv8 64-bit server on a chip solution, Nuechterlein and
Whaley [11] implemented DGEMM in ATLAS for the ARMv8
architecture by optimizing its inner kernel GEBP also in
assembly. Our DGEMM implemented in OpenBLAS outper-
forms theirs in ALTAS by improving the peak performance
(efficiency) of DGEMM from 3.88 Gflops (80.9%) to 4.19
Gflops (87.2%) on one core and from 30.4 Gflops (79.2%)
to 32.7 Gflops (85.3%) on eight cores. These results, which
translate into performance (efficiency) improvements by 7.79%
on one core and 7.70% on eight cores, are significant as
DGEMM is the core of the LINPACK benchmark. In addition,
the efficiency of our DGEMM implementation on one core
is very close to the theoretical upper bound 91.5% obtained
from micro-benchmarking. Our parallel DGEMM implementa-
tion achieves good performance and scalability under varying
thread counts across a range of matrix sizes evaluated.

The rest of this paper is organized as follows. Section II re-
views the 64-bit ARMv8 architecture and introduces the block-
ing and packing algorithms used in implementing DGEMM
by OpenBLAS. Section III introduces a performance model
crucial for guiding the development of our DGEMM imple-
mentation. Section IV describes our DGEMM implementation
by focusing on optimizing its inner kernel GEBP. Section V
presents and analyzes our experimental results. Section VI
concludes the paper and describes some future work.

II. BACKGROUND

A. The 64-bit ARMv8 Multi-Core Processor

Figure 1 depicts a 64-bit ARMv8 eight-core processor.
Each core has a 32 KB L1 instruction cache and a 32 KB L1
data cache. The two neighboring cores constitute a so-called
dual-core module. The two cores in the same module share a
256 KB L2 cache, and four modules (with eight cores) share
a 8 MB L3 cache. Each core has one floating-point computing
pipeline supporting FMA and runs on 2.4 GHz, offering a peak
performance of 4.8 Gflops.
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Fig. 1. Block diagram of the 64-bit ARMv8 eight-core processor.

Every core is a single-threaded four-issue superscalar de-
sign with out-of-order execution. In every core, the 64-bit
ARMv8 architecture (aarch64) defines 32 128-bit floating-
point registers, v0 – v31, which can be used for floating-point
vector calculations. As shown in Figure 1, the four modules,

the L3 cache, the two memory bridges and the I/O bridge are
all connected to a cache-coherent fabric.

B. Open-Source BLAS implementations

Several well-known open-source BLAS implementations
are netlib BLAS, ATLAS [4], GotoBLAS [5], [6], OpenBLAS
[7] and BLIS [8]. The netlib BLAS is the original reference
implementation, which does not take advantage of memory
hierarchies and thus performs poorly on modern computer ar-
chitectures. ATLAS relies on auto-tuning to improve cache per-
formance, making it well-suited for generating BLAS libraries
on a variety of platforms. OpenBLAS, an extension of the
widely used but discontinued GotoBLAS, offers competitive
performance on a range of architectures. In OpenBLAS, its
inner kernel, known as GEBP (a basic unit of computation),
is often implemented in assembly. BLIS, a new framework for
producing rapid instantiations of BLAS, can be viewed as a
re-implementation of GotoBLAS. BLIS also takes a layered
approach as in GotoBLAS to increase code reuse, and breaks
GEBP down into a double loop over a so-called micro-kernel,
thereby facilitating optimization of level-3 BLAS.

C. Overview of DGEMM in OpenBLAS

DGEMM computes C := α × AB + β × C, where C, A
and B are matrices of sizes M × N , M × K and K × N ,
respectively. Without loss of generality, we assume that α =
β = 1 and thus simplify DGEMM to C+ = AB. We assume
further that a matrix is always stored in column-major order.

Figure 2 illustrates the DGEMM algorithm by Goto [5],
[6], including its multiple layers for blocking (to maximize
cache performance) and packing (to enable data to be moved
efficiently to the registers). In this work, we obtain a highly
efficient DGEMM for the ARMv8 architecture through devel-
oping a highly-optimized GEBP in assembly systematically
with its performance-critical block sizes selected analytically.

The outermost loop at layer 1 partitions C and B into
column panels of sizes M ×nc and K×nc, respectively. The
next loop at layer 2 partitions the M×K matrix A and a K×nc
submatrix of B into column panels of size M × kc and row
panels of size kc×nc, respectively. C is updated as a sequence
of rank-kc updates, meaning that DGEMM consists of several
general panel-panel multiplications (GEPP). Then each M×kc
panel of A is partitioned into mc × kc blocks, by the third
loop at layer 3. In essence, GEPP is decomposed into multiple
calls to block-panel multiplication (GEBP). Since there is a
L3 cache in the 64-bit ARMv8 architecture, we assume that a
kc×nc panel of B will always reside fully in the L3 cache [12].

GEBP, the inner kernel handled at layer 4, updates an mc×
nc panel of C as a product of an mc × kc block of A and a
kc×nc panel of B. To ensure consecutive accesses, OpenBLAS
packs a block (panel) of A (B) into contiguous buffers.

As illustrated in Figure 3, packing A involves extracting a
series of slivers (sub-blocks) of size mr × kc from an mc ×
kc block of A and organizing these slivers in the L2 cache.
Similarly, packing B amounts to extracting a series of slivers
of size kc × nr from a kc × nc panel of B and organizing
these slivers in the L3 cache. To amortize the packing cost,
each kc × nr sliver is moved into the L1 cache one by one.
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Fig. 2. Blocking and packing algorithms used in implementing DGEMM in GotoBLAS, where GEBP is the inner kernel highlighted inside a red box.

Let us return to GEBP in Figure 2. GEBP includes a double
loop formed by the fifth loop at layer 5 and the sixth loop at
layer 6. This double loop is responsible for implementing the
packing process discussed above. In particular, the fifth loop
partitions a kc×nc panel of B into kc×nr slivers and the sixth
loop partitions an mc×kc block of A into mr×kc slivers. The
computations at layers 5 and 6 are referred to as GEBS and
GESS, respectively. GESS, also known as the micro kernel in
BLIS, performs a sequence of rank-1 updates of an mr × nr
sub-block of C using an mr × 1 column sub-sliver of A and
a 1 × nr row sub-sliver of B, where mr and nr are selected
to be the register block sizes for the micro kernel.

When performing each rank-1 update at layer 7, an mr×nr
sub-block of C, two mr×1 column sub-slivers of A, and two
1 × nr row sub-slivers of B will reside in the registers, as
illustrated in Figure 3. Here, one sub-sliver of A (B) is for the
current A (B) elements being used, and the other one is for
the forthcoming A (B) elements required in the next rank-1
update. This last layer is referred to as the register kernel.

III. PERFORMANCE MODELING

What is the theoretical basis that underpins the develop-
ment of a highly efficient DGEMM for the 64-bit ARMv8

architecture? Our starting point is a general-purpose perfor-
mance model with respect to the ratio of CPU speed to memory
speed, i.e., the compute-to-memory access ratio. This model
reveals clearly that optimizing the peak performance (effi-
ciency) of DGEMM requires its compute-to-memory ratios to
be maximized across all levels of the memory hierarchy for this
architecture. In addition, our model also gives rise to a lower
bound for the performance of a DGEMM implementation.

Given the memory hierarchy in the ARMv8 architecture
shown in Figure 4, care must be taken to handle effectively the
amount of data movements from memory to registers relative
to the amount of computations performed on the data. We
assume that a fixed cost µ is needed to perform a single
operation, without differentiating among addition, subtraction
and multiplication. For communication, we also assume a fixed
cost νij to move a word from level i to level j and a fixed
cost ηij to move a message from level i to level j in the
memory hierarchy [13]. Here, a word is one floating-point
value and a message denotes a cache line consisting of several
consecutive words. Thus, νij can be regarded as the inverse of
bandwidth and ηij as latency. If we ignore any overlap between
computation and communication for now, then the execution
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Fig. 3. Packed data storage for GEBP in GotoBLAS.
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Fig. 4. The memory hierarchy in the ARMv8 architecture.

time, denoted T , of a program can be estimated as:

T = Fµ+
∑
i

∑
j

Wijνij +
∑
i

∑
j

Mijηij (1)

where F , Wij , and Mij represent the number of operations,
words, and messages, respectively. For example, W10 denotes
the number of words loaded from the L1 cache to registers.

Given the packed data stored contiguously in slow memory,
as shown at layer 4 in Figure 2, we assume that all the words
in a message are needed in consecutive computations, i.e.,
that they can be read or written together as one message (one
cache line). Hence, the ratio of the number of moved messages
to that of moved words is nearly a constant:

∑
i

∑
jMij '

κ
∑
i

∑
jWij . Since νij ≥ 0 and ηij ≥ 0, we have:

T ≤ Fµ+ (1 + κ)
∑
i

∑
j

Wij × (
∑
i

∑
j

νij +
∑
i

∑
j

ηij)

For convenience, we let π =
∑
i

∑
j νij +

∑
i

∑
j ηij and

W =
∑
i

∑
jWij . Then the compute-to-memory access ratio,

denoted γ, for the program can be expressed as:

γ =
F

W
=

F∑
i

∑
jWij

(2)

Then we can obtain:

T ≤ Fµ+ (1 + κ)Wπ (3)

Since overlapping computation and communication is an im-
portant and necessary optimization for improving performance,
we propose a so-called overlapping factor as a function ψ(γ)
of γ. Using this overlapping factor, we can refine (3) into:

Topt ≤ Fµ+ (1 + κ)Wπψ(γ) (4)

Note that ψ(γ)→ 1 if γ → 0 and ψ(γ)→ 0 if γ → +∞. In
addition, ψ(γ) is typically a monotonically decreasing function
with respect to γ. By (2), we have:

Topt ≤ F (µ+ (1 + κ)π
ψ(γ)

γ
) (5)

Finally, we obtain the following lower bound on the perfor-
mance of a DGEMM implementation:

Perfopt =
F

Topt
≥ 1

(µ+ (1 + κ)πψ(γ)γ )
(6)

which indicates clearly that larger compute-to-memory ratios
γ lead always to better peak performance (efficiency).

IV. FAST IMPLEMENTATION

Based on our performance model, we obtain a highly
efficient implementation of DGEMM for the 64-bit ARMv8
architecture by developing systematically a highly-optimized
GEBP kernel in assembly. As illustrated in Figure 2, GEBP
comprises layers 4 – 7. Its development involves implementing
each rank-1 update performed at layer 7 (referred to as the
register kernel in Section II-C) and determining various block
sizes used across the four layers. We will describe our GEBP
implementation inside out from layer 7 (the register kernel) to
layer 4, i.e., across the four levels of the memory hierarchy
in the ARMv8 architecture, starting from the fastest to the
slowest. Thus, some block sizes determined at a level will be
used later to determine other block sizes at a lower level.

When developing a highly-optimized GEBP, the main
challenge lies in choosing the right register block size for
its register kernel. We make such a choice analytically with
the goal of maximizing its compute-to-memory access ratio
from the L1 data cache to registers. In order to realize the
optimal ratio thus found, we optimize the operations in the
register kernel by (1) exploiting loop unrolling, instruction
scheduling and software-implemented register rotation and (2)
taking advantage of A64 instructions to support efficient FMA
operations, data transfer and data prefetching. Subsequently,
we optimize GEBP by maximizing its compute-to-memory
access ratios across all three levels of cache memories. We
do so by determining analytically the other block sizes used,
considering set associativities and replacement policies.

In Section IV-A, we describe how to determine the register
block size mr×nr for the register kernel, together with asso-
ciated optimizations. In Section IV-B, we find the block sizes
kc, mc and nc corresponding to layers 6, 5 and 4, respectively.
As shown in Figure 3, kc, mc and nc are determined by the
L1, L2 and L3 caches used, respectively. In addition, we also
determine how to insert prefetching instructions to prefetch
data into the L1 data cache in order to accelerate further the
operations in the register kernel. In Section IV-C, we adjust
the block sizes mc and nc when moving from a serial to a
parallel implementation due to cache sharing.



A. Register Blocking

Let us focus on the computation and data movement
happening in the register kernel at layer 7 (Figures 2 and 3).
We are concerned with maximizing the compute-to-memory
access ratio from the L1 cache to registers during its execution.
When the current 2mrnr flops are being performed, an mr×1
column sub-sliver of A and a 1 × nr row sub-sliver of B
are being loaded from L1 cache to registers. Here, a 1 × nr
row sub-sliver of B always resides in the L1 cache and an
mr × 1 column sub-sliver of A also fits into the L1 cache by
prefetching data effectively. The mrnr elements in a sub-block
of C always reside in the registers to participate in consecutive
operations. Hence, the compute-to-memory access ratio is:

2mrnr
(mr × 1)L1→R + (nr × 1)L1→R

(7)

where the subscript L1→ R indicates that the data are moved
from the L1 cache to registers. So the optimization problem is:

max γ =
2

1
nr

+ 1
mr

(8)

subject to the following constraint:

(mrnr+2mr+2nr)×element size ≤ (nf +nrf )×pf (9)

Here, the register block size mr × nr is determined by the
number of registers available, element size is the size of an
element of an matrix in bytes, e.g., 8 bytes in double-precision,
nf is the number of floating-point registers available, nrf is
the number of these registers that can be reused for register
preloading, and finally, pf is the size of a floating-point register
in bytes, e.g., 16 bytes in the 64-bit ARMv8 architecture. Note
that nrf must satisfy the following constraint:

0 ≤ nrf × pf ≤ (mr + nr)× element size. (10)

From this optimization formulation, it is obvious that the
cost of loading the data into registers can be amortized most
effectively when mr ≈ nr. However, there are some practical
issues that influence the choice of mr and nr as well. For
example, in the 64-bit ARMv8 architecture, each floating-point
register can hold two double-precision values. As a result, mr

and nr are preferably to be set as multiples of 2:

mr = 2i, nr = 2j, i = 1, 2, · · · , j = 1, 2, · · · (11)

In our setting, we have nf = 32, pf = 16 and
element size = 8. Based on the objective function (8) and its
three associated constraints (9) – (11), we plot the surface of
the register kernel’s compute-to-memory ratio in terms of mr

and nrf in Figure 5. In order to obtain the highest ratio 6.857,
it suffices to set the number of reused floating-point registers
as nrf = 6 with the register block size mr×nr being selected
as either 8×6 or 6×8. Since a cache line has 64 bytes, it will
be convenient to prefetch the elements of A when the register
block size is selected as mr×nr = 8×6, as will be discussed
in detail in Section IV-B. Hence, we use 24 registers, v8 –
v31, to store the 48 elements of C, and 8 registers, v0 – v7,
to store the 8 elements of A and the 6 elements ofB.

It is easy to allocate 24 registers to the 48 elements of
C as each register holds two elements. However, how do we
allocate the remaining 8 registers to the 8 elements of A and
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Fig. 5. Surface of the compute-to-memory access ratio for the register kernel.

the 6 elements of B. A simple-minded approach is to use just 7
registers, with one to spare. In this paper, we adopt a software-
implemented register rotation scheme to obtain a more efficient
register kernel for the 64-bit ARMv8 architecture, which has
fewer physical registers than x86 for register renaming. As a
result, we start with the following optimization problem:

max
s∈Sc

min
vi∈V

Loc(′R′,′ NF′, vi, s)− Loc(′R′,′ CL′, vi, s) (12)

where V = {v0, v1, · · · , v7} is the set of registers used by A
and B, ‘R’ represents a read instruction (fmla) using vi, ‘CL’
and ‘NF’ mean that the current value in vi is read for the last
time and the next value in the same register is read for the
first time, respectively, Sc is the set of all execution orderings
for the Read (fmla) instructions in the register kernel, and Loc
denotes the location of an instruction in a particular ordering.

When formulating (12), we have purposedly ignored all
the corresponding load instructions for defining the values
used in all the registers. In an optimal solution, the distance
between the instruction at Loc(′R′,′ CL′, vi, s) and the in-
struction at Loc(′R′,′NF′, vi, s) is made as large as possible.
In between the two instructions, there is a load instruction
for writing the value used by the latter instruction into vi.
When Loc(′R′,′ NF′, vi, s)−Loc(′R′,′ CL′, vi, s) is large, there
is a good chance to position the load instruction to prevent
from stalling the pipeline, so that the loaded value is already
available when it is needed at Loc(′R′,′ NF′, vi, s).

TABLE I. SOFTWARE-IMPLEMENTED REGISTER-ROTATION (WITH THE
REGISTERS ALLOCATED FROM {v0, . . . , v7} TO A AND B IN THE i-TH

COPY OF THE LOOP BODY OF THE REGISTER KERNEL).

Eight Copies of the Loop Body of the Register Kernel
Array #0 #1 #2 #3 #4 #5 #6 #7 #0

A

0 2 4 7 6 1 3 5 0
1 3 5 0 2 4 7 6 1
2 4 7 6 1 3 5 0 2
3 5 0 2 4 7 6 1 3

B
4 7 6 1 3 5 0 2 4
5 0 2 4 7 6 1 3 5
6 1 3 5 0 2 4 7 6

To solve (12), we propose a software-implemented register
rotation scheme as illustrated in Table I, which unrolls the
loop governing the execution of the register kernel, i.e., the
innermost loop depicted in Figure 2 by a factor of 8. Here,
#i represents the i-th copy of the loop body in the original
register kernel. To execute #i, a total of 7 (128-bit) registers
are needed to store the 8 elements of A and the 6 elements of
B. To prefetch A and B used during the execution of #(i+
1)%8), another 7 registers are also needed. However, there are



only a total of 8 registers, {v0, . . . , v7}, available. As a result,
nrf = 6, as discussed earlier. This means that 6 registers are
reused between the two consecutive iterations, i.e., #i and
#(i+1)%8, in the original register kernel. Figure 6 illustrates
our register allocation scheme for #0 and #1, together with the
order in which the computations are performed in each case.
The optimal distance 7 from solving (12) has been found.
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When scheduling the instructions for each copy #i from
the original register kernel, we need to consider also their WAR
(write-after-read) and RAW (read-after-write) dependences.
In each copy #i, 24 floating-point FMA instructions (fmla)
and 7 load instructions (ldr) are executed, together with one
prefetching instruction (prfm). Due to register renaming, RAW
must be considered carefully but WAR is not as important
(as validated later). However, we must still strive to hide the
latency of a load instruction to prevent it from stalling the
pipeline so that the loaded value is available when it is needed.
We do so by solving the following optimization problem:

max
s∈S

min
vi∈V

Loc(′R′, vi, s)− Loc(′W′, vi, s) (13)

where ‘R’ and ‘W’ represent a Read (fmla) and Write (ldr)
instruction, respectively, V = {v0, v1, · · · , v7}, S is the set of
all possible instruction execution orderings, and Loc denotes
the location of an instruction in a particular ordering.

In each copy #i, the order in which its 24 floating-point
FMA instructions are executed is fixed, along the zig-zag path
in Figure 6. Thus, the optimization problem (13) is reduced to
one of searching for appropriate points to insert all the required
load instructions. Figure 7 shows how these instructions are
scheduled, with the execution order shown in row-major. The
registers in green are loaded in #i while the registers in red are
loaded in #(i−1)%8 (i.e., one iteration earlier in the original
register kernel). We can observe that the optimal distance 9
from solving (13) has been found. Finally, Figure 8 gives a
code snippet from the loop body of the unrolled register kernel
with the register block size 8× 6 in assembly language.

B. Cache Blocking for Locality

Let us consider GESS at layer 6 in Figure 2. The elements
from a kc×nr silver of B are reused many times, and therefore
remain in the L1 cache (Figure 3). At the same time, the
elements from an mr × kc silver of A should be loaded from
the L2 cache into the L1 cache. When the 2mrnrkc flops are
performed, the mr ×nr elements in a sub-block of C need to
be loaded to registers and the updated results will be stored
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Fig. 7. Instruction scheduling with the optimal RAW dependence distance.

ldr q1,[x14],#16 //ARMv8-64bit load instruction
fmla v8.2d, v0.2d, v4.d[0] //NEON FMA instruction
fmla v9.2d, v0.2d, v4.d[1]
fmla v10.2d, v0.2d, v5.d[0]
ldr q2,[x14], #16
fmla v11.2d, v0.2d, v5.d[1]
fmla v12.2d, v0.2d, v6.d[0]
fmla v13.2d, v0.2d, v6.d[1]
ldr q7,[x15], #16
……
prfm PLDL1KEEP, [x14,#PREFA] //Prefetch A to L1 Cache
……
prfm PLDL2KEEP, [x15,#PREFB] //Prefetch B to L2 Cache
……

Fig. 8. A code snippet from the 8× 6 register kernel in assembly language.

from the registers to the memory hierarchy. Then the compute-
to-memory access ratio of GESS can be estimated to be:

2mrnrkc
(mrkc)L2→L1 + (mrkc)L1→R + (kcnr)L1→R + (2mrnr)M↔R

By conducting a similar analysis, we can also express the
compute-to-memory access ratio of GEBS at layer 5 as:

2mcnrkc
(mckc)L2→L1+(mckc)L1→R+(kcnr)L1→Rdmc

mr
e+(2mcnr)M↔R

In practice, mc is an integer multiple of mr. Then the ratios
of GESS and GEBS are very close and are thus simplified to:

γ =
2

2
nr

+ 1
mr

+ 2
kc

(14)

where the bold-faced mr and nr are already fixed in Sec-
tion IV-A. From (14), we can observe that if nr is larger
than mr, then the cost of loading the elements of A from
the L2 cache to the L1 cache can be more easily amortized.
However, in our implementation, considering that a cache line
has 64 Bytes, we have selected the register block size to be
mr × nr = 8 × 6. As a result, each sub-sliver (8 elements)
of A can be prefetched in one cache line from L2 to L1.
Furthermore, it is impossible to overlap the loading of elements
of C into the registers with computation. However, we can
overlap the process for storing the elements of C back to
memory with computation. Therefore, if mr and nr are known,



the ratio γ in (14) is maximized if kc is the largest possible,
in order to amortize the cost on updating the elements of C.

In our implementation, the L1 cache adopts a LRU re-
placement policy and a kc × nr silver of B is reused many
times. Thus, it is easy to keep B in the L1 cache. Meanwhile,
to optimize performance, at least two columns of a mr × kc
silver of A and one mr × nr sub-block of C should also be
loaded into the L1 cache without causing any conflict misses
with the elements of B. To account for the set associativity of
the L1 cache, we follow [14] by imposing the two constraints:

kc × nr × element size ≤
(assoc1− k1)× L1

assoc1

(mr × nr +mr × 2)× element size ≤ k1× L1
assoc1

(15)

where mr = 8 and nr = 6 as established earlier,
element size = 8, L1 = 32K is the size of the L1 data
cache in bytes, assoc1 = 4 is the number of ways in the L1
cache, and k1 is an integer satisfying 0 < k1 < assoc1. It is
easy to see that the smaller k1 is, the larger kc will be, which
allows us to conclude that k1 = 1 and kc = 512. This means
that a kc × nr silver of B fills 3/4 of the L1 data cache.

Next, we maximize the compute-to-memory access ratio of
GEBP at layer 4 in Figure 2. We assume that an mc×kc block
of A already resides in the L2 cache and a kc×nc panel of B
already resides in the L3 cache (Figure 3). Thus, its compute-
to-memory access ratio is obtained by dividing 2mckcnc with
(mckc)L2→L1dnc

nr
e+(mckc)L1→Rdnc

nr
e+(kcnc)L1→Rdmc

mr
e+

(kcnc)L3→L2 + (kcnc)L2→L1 + (2mcnc)M↔R. Here, mc and
nc are usually integer multiples of mr and nr, respectively.
Proceeding similarly as before, we obtain:

γ =
2

2
nr

+ 1
mr

+ 2
kc

+ 2
mc

(16)

where the bold-faced mr, nr and kc have been determined
previously. We observe that the amount of data movement
(kcnc)L3→L2 can overlap with the 2mckcnc operations, but
the data movement represented by (kcnr)L2→L1 can overlap
only with the last 2mrkcnr operations for the same kc × nr
sliver of B involved. The larger mc is, the better the amount
of data movement (kcnr)L3→L2 can be hidden. Proceeding
similarly as in the case of establishing (15), we obtain:

mc × kc × element size ≤
(assoc2− k2)× L2

assoc2

kc × nr × element size ≤
k2× L2
assoc2

(17)

where kc = 512 and nr = 6 as obtained earlier, L2 = 256K
is the size of L2 cache in bytes, assoc2 = 16 is the number
of ways in the L2 cache, k2 is an integer satisfying 0 < k2 <
assoc2 and element size = 8. From (16), mc is as large as
possible. From (17), we can then obtain k2 = 2 and mc = 56.
Thus, an mc × kc block of A fills 7/8 of the L2 cache and a
kc × nr sliver of B occupies under 1/8 of the L2 cache.

We are now ready to analyze the prefetch distances required
by A and B. Since a kc×nr sliver of B always resides in the
L1 cache when being multiplied with each mr × kc sliver of
A, this sliver of B does not need to be prefetched. It is only
necessary to prefetch the next kc × nr sliver of B to the L2
cache during the multiplication of the current sliver of B and

the last sliver of A. In this case, the prefetch distance is set
to be PREB = kc × nr × element size = 24576. In order
for all accesses to a sub-sliver of A to hit in the L1 cache, we
use a shorter distance for prefetching A: PREA = αprea ×
num unroll×mr × element size = 2× 8× 8× 8 = 1024.

Finally, we discuss how to choose nc. From GEPP per-
formed at layer 3 in Figure 2, we can see that nc should
be as large as possible in order to amortize the cost of data
movement of an mc×kc block of A from the L3 cache to the
L2 cache. Thus, we have an analogue of (15) and (17) for nc:

kc × nc × element size ≤
(assoc3− k3)× L3

assoc3

mc × kc × element size ≤
k3× L3
assoc3

(18)

where mc = 56 and kc = 512 as obtained earlier, L3 = 8M is
the size of the L3 cache in bytes, assoc3 = 16 is the number
of ways in the L3 cache and k3 is an integer satisfying 0 <
k3 < assoc3. It is easy to obtain that k3 = 1 and nc = 1920,
meaning that a kc × nc panel of B (an mc × kc sliver of A)
occupies 15/16 (under 1/16) of the L3 cache.
C. Cache blocking for Parallelism

We discuss how to adjust the block sizes mc and nc in a
multi-threaded setting, based on the block sizes mr, nr and
kc found earlier. As illustrated in Figure 9, the loop at layer
3 is parallelized, as this achieves better locality for the shared
L3 cache, in which all the kc×nc row panels of B are stored.
In this case, each thread will be assigned a different mc × kc
block of A, and all threads share the same kc×nc row panel of
B. Then each thread will multiply its own block of A with the
shared row panel of B. Such a strategy for parallelizing this
particular loop at layer 3 is discussed extensively in [15]. It is
also adopted here for the 64-bit ARMv8 multi-core processor.

M

nc

M

nc

+=

mc
kc

kc

mc

Parallel Parallel

Fig. 9. Parallelization of the loop at layer 3.

Consider again the 64-bit ARMv8 architecture in Figure 1.
Without loss of generality, we consider a parallel implementa-
tion of DGEMM with eight threads, with one thread per core.
Since two cores in one module share a 256 KB L2 cache, the
corresponding two threads will have their own block of A at
the same L2 cache. Hence, (17) need to be modified to:

2×mc × kc × element size ≤
(assoc2− k2)× L2

assoc2

2× kc × nr × element size ≤
k2× L2
assoc2

(19)

Given nr = 6 and kc = 512, solving both yields mc = 24 and
k2 = 4. Similarly, the multi-threaded version of (18) is:

kc × nc × element size ≤
(assoc3− k3)× L3

assoc3

8×mc × kc × element size ≤
k3× L3
assoc3

(20)
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Fig. 10. 4× 4 and 8× 4 register blocking for the register kernel.

By solving these constraints, we obtain nc = 1792 and k3 = 2.
As a result, eight blocks of A will reside in the L3 cache
together with a shared row panel of B.

V. EXPERIMENTAL RESULTS

We have conducted our evaluation on a 64-bit ARMv8
eight-core computing platform described in Table II. We show
that our DGEMM implementation realized in terms of our
highly-optimized GEBP in OpenBLAS is the fastest available
for this architecture. Our serial implementation achieves a
peak performance (efficiency) that is close to a theoretical
upper bound obtained from micro-benchmarking. Our parallel
implementation achieves good scalability across a range of dif-
ferent matrix sizes. In addition, our DGEMM implementation
(in OpenBLAS) outperforms a DGEMM implementation in
ATLAS [11] by 7.79% on one core and 7.70% on eight cores.
Note that the DGEMM implementation in ATLAS is also
accelerated by a highly-optimized GEBP in assembly (with
its register block size being 5× 5 only), representing the only
one previously available for the 64-bit ARMv8 architecture.

TABLE II. THE EXPERIMENTAL PLATFORM.

CPU 64-bit ARMv8 eight-core processor
OS Linux mustang-3.8.0

Compiler gcc-4.8.2 -O2 -march=armv8-a
OpenBLAS OpenBLAS develop-r0.2.9

ATLAS ATLAS 3.11.31

Based on our performance model, we have optimized
DGEMM by producing a highly-optimized 8× 6 GEBP with
its compute-memory access ratio being maximized. To validate
our performance model, we have also developed two more
GEBP implementations, as illustrated in Figure 10: (a) 4 × 4
GEBP, with its register block size being 4× 4, and (b) 8× 4
GEBP, with its register block size being 8 × 4. In the 4 × 4
kernel, a product of a 4 × 2 matrix A and a 2 × 4 matrix B
is performed. The 8× 4 kernel can be viewed as a simplified
version of our 8 × 6 kernel. By proceeding as described in
Sections IV-B and IV-C, the block sizes for single- and multi-
threaded settings can be found, as given in Table III.

A. Microbenchmarking for Register Block Sizes

We have done some micro-benchmarking to demonstrate
that our register block size 8×6 gives rise to good performance
and that our instruction scheduling optimization is effective.

TABLE III. BLOCK SIZES FOR THREE DIFFERENT IMPLEMENTATIONS
OF GEBP WITH ONE THREAD OR EIGHT THREADS.

One Thread Eight Threads
Register

mr × nr × kc ×mc × nc mr × nr × kc ×mc × ncBlock Size

8× 6 8× 6× 512× 56× 1920 8× 6× 512× 24× 1792
8× 4 8× 4× 768× 32× 1280 8× 4× 768× 16× 1192
4× 4 4× 4× 768× 32× 1280 4× 4× 768× 16× 1192

The register kernel at layer 7, which is the innermost loop
shown in Figure 2, dominates the entire execution time. In each
iteration, represented by #i in Table I, there are (mr +nr)/2
128-bit memory instructions on loading data into registers and
mrnr/2 128-bit NEON floating-point FMA instructions, as
depicted in Figure 8. The percentage of arithmetic instructions
over the total is given by (mrnr/2)/(mrnr/2+(mr+nr)/2).

It is interesting to analyze the efficiencies achieved with
different ratios of loads over FMA instructions, denoted
LDR : FMLA. We have written a micro-benchmark, in
which the instructions are independent and evenly distributed,
to avoid any effect of instruction latency on our experi-
ments. This micro-benchmark can always keep the data in
the L1 cache. We report our findings in Table IV. Note that
1 : 2, 6 : 16 and 7 : 24 are the LDR : FMLA ratios
roughly corresponding to the 4 × 4, 8 × 4 and 8 × 6 GEBP
implementations, respectively. One key observation is that
increasing the percentage of arithmetic instructions over the
total, i.e., (mrnr/2)/(mrnr/2 + (mr + nr)/2), can improve
performance. The percentages for the 4× 4, 8× 4 and 8× 6
GEBP implementations are 66.7%, 72.7% and 77.4%. Thus,
8× 6 GEBP is expected to be the best performer.

TABLE IV. EFFICIENCIES UNDER VARYING LDR : FMLA RATIOS.

LDR : FMLA 1:1 1:2 6:16 1:3 7:24 1:4 1:5

Efficiency (%) 63.0 80.9 87.7 88.7 91.5 94.2 95.2

In a DGEMM implementation, there are two types of
memory latencies: WAR and RAW. We have modified our
micro-benchmark by letting a memory instruction on loading
data to a register to follow a FMA instruction on reading from
the same register. The same efficiencies remain. Therefore,
there does not appear to be a need to consider the WAR latency,
due to possibly the register renaming mechanism used.

We have also tried different instruction execution orders
to observe the efficiencies affected by the RAW latency. We
find that registers used in load instructions can be free after at
least 4 fmla instructions have been executed. Our instruction
scheduling in Figure 7 satisfies this constraint. Therefore, in
the presence of data dependency, it is possible to hide memory
latency by applying instruction scheduling optimizations and
to obtain the same efficiencies given in Table IV.

In addition, the results obtained in these micro-
benchmarking experiments indicate that the larger the register
block size is, the higher the efficiency can be achieved. Due
to the absence of L1 cache misses in our experiments, the
efficiencies presented in Table IV can be seen as the upper
bounds for our DGEMM implementations.
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Fig. 11. Performance of four DGEMM implementations (one thread).
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Fig. 12. Performance of four DGEMM implementations (eight threads).

B. Performance Analysis

We consider four DGEMM implementations: OpenBLAS-
8×6, OpenBLAS-8×4, OpenBLAS-4×4 and ATLAS-5×5. The
former three are developed by us in OpenBLAS with 8 × 6,
8 × 4 and 4 × 4 GEBP kernels, respectively. ATLAS-5×5 is
developed with a 5 × 5 GEBP kernel in ATLAS [11]. In our
experiments, square matrices are used with their sizes ranging
from 256 to 6400, with a step of 128. For each matrix size,
the execution time is measured as the average of five runs.

We present our performance results in Figure 11 (with one
thread) and Figure 12 (with eight threads). OpenBLAS-8×6
stands out as the best performer in nearly all the input sizes
tested. In particular, OpenBLAS-8×6 outperforms ATLAS-5×5
across all the input sizes, demonstrating that OpenBLAS-8×6
is the fastest DGEMM for the 64-bit ARMv8 architecture.

Table V summarizes these results in terms of peak and
average efficiencies in both the serial and multi-threaded
settings. OpenBLAS-8×6 is the best performer among all the
four metrics evaluated. In particular, the single-thread peak
efficiency of OpenBLAS-8×6 is 87.2%, which is very close
to the theoretical upper efficiency 91.5% obtained from our
micro-benchmarking experiment (Table IV). Compared with
ATLAS-5×5, OpenBLAS-8×6 improves its peak performance
(efficiency) from 3.88 Gflops (80.9%) to 4.19 Gflops (87.2%)
on one core and from 30.4 Gflops (79.2%) to 32.7 Gflops
(85.3%) on eight cores. These translate into peak performance
(efficiency) improvements by 7.79% on one core and 7.70%
on eight cores. In addition, OpenBLAS-8×6 also improves
ATLAS-5×5’s average efficiency by 8.55% on one core and
10.79% on eight cores.

For OpenBLAS-8×6, OpenBLAS-8×4, OpenBLAS-4×4 and
ATLAS-5×5, the compute-to-memory-ratios of their register
kernels are estimated by (8) as 6.86, 5.33, 4 and 5, respectively.

TABLE V. EFFICIENCIES OF FOUR DGEMM IMPLEMENTATIONS.

Efficiencies OpenBLAS ATLAS
8× 6 8× 4 4× 4 5× 5

Peak 1 Thread 87.2% 84.6% 78.2% 80.9%
8 Threads 85.3% 81.0% 73.7% 79.2%

Average 1 Thread 86.3% 83.6% 77.6% 79.5%
8 Threads 83.2% 77.7% 72.3% 75.1%

These results show that our performance model is reasonable.
The larger this compute-to-memory access ratio is, the higher
the efficiency of a DGEMM implementation will be.
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Fig. 13. Effectiveness of software-implemented register rotation.

For the 64-bit ARMv8 architecture with fewer physical reg-
isters than x86 for register renaming, Figure 13 demonstrates
clearly the effectiveness of our register rotation scheme.

Figure 14 demonstrates the performance and scalability of
OpenBLAS-8×4 under four thread configurations (with 1, 2, 4
and 8 threads), with their block sizes mr×nr×kc×mc×nc
also shown. In all the cases, mr, nr and kc are the same,
obtained in Sections IV-A and IV-B. In the case of 1 and
8 threads, mc and nc are found in Sections IV-B and IV-C,
respectively. For 2 threads, we find mc by solving (17) and
nc by solving (20) with 8 replaced by 2. For 4 threads, we
find mc and nc similarly as for 2 threads. In the case of 2 and
4 threads, different threads always run on different modules
(Figure 1), so that a thread running in one module can use
the entire L2 cache alone. For each thread configuration, all
the threads share the same L3 cache. These results show that
OpenBLAS-8×6 is not only efficient but also scalable.
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Fig. 14. Performance of OpenBLAS-8×6 under four thread counts.

Table VI compares the performance results of OpenBLAS-
8×6 with a few different block sizes selected for kc×mc×nc.
According to [5], these block sizes are often used so that one
mc × kc block of A occupies about half of the L2 cache and



TABLE VI. PERFORMANCE OF OPENBLAS-8×6 UNDER DIFFERENT
BLOCK SIZES (WITH THE ONES IN BOLD DETERMINED IN THIS PAPER).

OpenBLAS-8×6 kc ×mc × nc Peak efficiency (%) Average efficiency (%)

Serial 512× 56× 1920 87.2 86.3
320× 96× 1536 86.4 85.4

512× 24× 1792 85.3 83.2
Parallel 512× 24× 1920 85.2 82.9

(8 Threads) 512× 56× 1792 80.4 75.5
512× 56× 1920 80.1 75.4

one kc×nr sliver of B occupies about half of the L1 cache. In
the serial setting, we have used kc×mc×nc = 320×96×1536
obtained according to [5]. As we consider the set-associativity
and replacement policy of a cache in selecting block sizes, our
choices lead to higher efficiencies in both settings.
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Fig. 15. The number of L1-dcache-loads performed by OpenBLAS-8×6,
OpenBLAS-8×4 and OpenBLAS-4×4 under on one core and eight cores.

Finally, Figure 15 compares the number of L1-dcache-loads
of OpenBLAS-8×6, OpenBLAS-8×4 and OpenBLAS-4×4. In
both the serial and parallel settings, OpenBLAS-8×6 has the
smallest number of L1-dcache-loads. It is reasonable to assume
that all these DGEMM implementations exhibit the same num-
ber of floating-point operations. Therefore, OpenBLAS-8×6 is
superior to the other two, since it can overlap the computation
with the data movement (especially data loading from the
L1 data cache to registers) more effectively. According to
Table V, OpenBLAS-8×6 achieves slightly better peak and
average efficiencies serially than in paralle, because the parallel
execution suffers from more L1-dcache-loads.

TABLE VII. THE L1 CACHE MISS RATES OF OPENBLAS-8×6,
OPENBLAS-8×4 AND OPENBLAS-4×4 ON ONE AND EIGHT CORES.

OpenBLAS-8×6 OpenBLAS-8×4 OpenBLAS-4×4

One Thread 5.2% 4.3% 5.7%
Eight Threads 3.6% 3.2% 5.0%

Table VII compares the L1-dcache-load-miss rates of
OpenBLAS-8×6, OpenBLAS-8×4 and OpenBLAS-4×4 in the
serial and parallel settings. Note that OpenBLAS-8×6 does
not yield the lowest L1 data cache miss rate in either case
However, it ultimately attains the highest efficiency due to the
smallest number of L1-dcache-loads performed. This shows
that the L1 cache miss rate is not as performance-critical in
the ARMv8 architecture as in the others [7].

VI. CONCLUSION

We have presented the design and implementation of a
highly efficient DGEMM for the 64-bit ARMv8 multi-core

processor, guided by a performance model. Our sequential im-
plementation attains a peak performance that is very close to a
theoretical upper bound established from micro-benchmarking.
Our parallel implementation achieves good scalability across
a range of different matrix sizes evaluated. In addition, our
implementation outperforms the one in ATLAS quite substan-
tially, making ours the fastest available for this architecture.

In this paper, we do not consider any issues related to the
Translation Look-aside Buffer (TLB). In future work, we will
analyze the TLB misses and improve our selection of block
sizes [16], [17]. We also plan to apply auto-tuning [18] to
generate a highly optimized GEBP in assembly language.
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