
DSC516/EPL602: Cloud Computing

Part I: Basic Concepts and Models

Module1: Distributed
Computing Concepts and

Models

Lecture 2a

Distributed Computing:
Concepts, Models, Middleware

M. D. Dikaiakos

•Review and explain key
concepts: Architecture, System
Architecture, Resource,
Middleware, Client, Server, COD,
REV, Middleware, End-to-End
Arguments in Systems Design.

•Review, explain and apply
distributed computing models,
client-server computing, etc.

•Understand and explain
function decomposition
concerns in the design of
distributed systems.

Learning
Objectives

M. D. Dikaiakos

•Aiken, B., Strassner, J., Carpenter, B., Foster, I.,
Lynch, C., Mambretti, J., Moore, R., and
Teitelbaum, B. “Network Policy and Services:
A Report of a Workshop on Middleware”,
RFC 2768.,” 2000.

•Gazis, A., Katsiri, E., Middleware 101,
Communications of the ACM, Volume 65,
Issue 9, September 2022, pp. 38-42.

• J. H. Saltzer, D. P. Reed, and D. D. Clark,
“End-to-end arguments in system design”
ACM Trans. Comput. Syst., vol. 2, no. 4, pp.
277–288, Nov. 1984.

•A. Carzaniga, G. Pietro Picco and G. Vigna,
"Designing distributed applications with
mobile code paradigms" Proceeding ICSE
'97 Proceedings of the 19th international
conference on Software engineering, 1997.

•Client-Server Model (Wikipedia).

Readings

M. D. Dikaiakos M. D. Dikaiakos

Distributed Systems
•Hardware and software components located on networked
computers that communicate on message passing

•Aspects:

‣ Concurrent access

‣ Coordination (no global clock)

‣ Failures

•Examples

‣ The ‘Internet’

‣ Intranets

‣ Mobile and ad-hoc networks

‣ P2P

‣ Cloud

M. D. Dikaiakos

Distributed Systems Challenges
•Heterogeneity

‣ See middleware

•Openness

‣ See APIs

• Security

‣ Encryption, types of attacks

• Scalability

‣ In adding new nodes/users and service access

• Failure Handling

‣ Deal with multiple types of failures

•Concurrency

‣ Safe concurrent access

• Transparency

Key concepts and Abstractions

Distributed Computing: Concepts, Models,
Middleware

M. D. Dikaiakos

Descriptive Models
•Models are intended to provide an abstract,
simplified and consistent description of a relevant
aspect of Distributed System design.

•Architectural models of D/S define the way in
which components of systems:

‣ Interact with one another

‣ Are mapped onto an underlying network of
computers

•Represent (abstract) key principles used to design
and build systems.

M. D. Dikaiakos

Architectural Models

M. D. Dikaiakos

Architecture of D/S
•Architecture of a system: its structure in terms of
separately specified components.

•Goal: to ensure that the structure will meet present
and likely future demands on it.

• Several Concerns:

‣ Reliability

‣ Manageability

‣ Adaptability

‣ Cost-effectiveness

M. D. Dikaiakos

Why Discuss Architecture?
•Descriptive

‣ Provide a common vocabulary for use when
describing systems

•Guidance

‣ Identify key areas in which services are required

•Prescriptive

‣ Define standard protocols and APIs to facilitate
creation of interoperable systems and portable
applications

M. D. Dikaiakos

Architectural Models
• Simplify and abstract the functions of the
individual components of a D/S.

•Represent the placement of the components
across a network of computers, seeking to
define useful patterns for distribution of data
and workload.

•Capture the interrelationships between the
components – that is, their functional roles
and the patterns of communication between
them.

M. D. Dikaiakos

Can you identify and name
components of a distributed
system we presented in the

previous lecture and identify
their functions?

M. D. Dikaiakos

Resource components
•Components: composing elements of an architecture

•Resource components:

‣ Embody architectural elements representing passive data or physical devices

‣ Code components - contain the implementation of an algorithm necessary to
execute a particular task

•Entities meant to be shared

‣ E.g., computers, storage, data, software

‣ Not necessarily physical

• E.g., Task pool, distributed file system, …

‣ Can be defined in terms of interfaces, not devices

• E.g. scheduler such as LSF and PBS define a compute resource

• Open/close/read/write define access to a distributed file system, e.g. NFS, AFS,
DFS

M. D. Dikaiakos

Computational components
•Embody a flow of control

‣ E.g. process, thread

•Characterized by state, which includes:

‣ Private data

‣ State of execution

‣ Bindings to other components (code and resource)

•Examples:

‣ Client processes (διεργασίες πελάτη)

‣ Server processes (διεργασίες εξυπηρετητή) : a process accepting
requests from other processes.

‣ Peer processes (οµότιµες διεργασίες)

M. D. Dikaiakos

Interactions & sites
• Interactions: Events that involve 2 or more
components

‣ E.g. a message exchanged between 2
computational components

• Sites embody the intuitive notion of location

‣ Execution environments: they host components
and provide support for the execution of
computational components.

‣ Local vs. remote interactions.

M. D. Dikaiakos

Network Enabled Services
• Implementation of a protocol that defines a set of
capabilities

‣ Protocol defines interaction with service

‣ All services require protocols

‣ Not all protocols are used to provide services (e.g. IP)

•Examples: FTP and Web servers
Web Server

IP Protocol

TCP Protocol

TLS Protocol

HTTP Protocol

FTP Server

IP Protocol

TCP Protocol

FTP
Protocol

Telnet
Protocol

M. D. Dikaiakos

Network Protocol
•A formal description of message formats and a set
of rules for message exchange

‣ Rules may define sequence of message exchanges

‣ Protocol may define state-change in endpoint,
e.g., file system state change

•Good protocols designed to do one thing

‣ Protocols can be layered

•Examples of protocols

‣ IP, TCP, TLS (was SSL), HTTP, Kerberos

M. D. Dikaiakos

Application Programming Interface
(API)

•A specification for a set of routines to facilitate
application development

‣ Refers to definition, not implementation

‣ E.g., there are many implementations of MPI

• Specification is often language-specific (or IDL)

‣ Routine name; number, order and type of arguments;
mapping to language constructs

‣ Behavior or function of routine

•Examples

‣ GSS API (security), MPI (message passing)

M. D. Dikaiakos

Software Development Kit
•A particular instantiation of an API

• SDK consists of libraries and tools

‣ Provides implementation of API
specification

•Can have multiple SDKs for an API

•Examples of SDKs

‣ MPICH, Motif Widgets

M. D. Dikaiakos

Syntax
•Rules for encoding information, e.g.

‣ XML, Condor ClassAds, Globus RSL, TOSCA

‣ X.509 certificate format (RFC 2459)

‣ Cryptographic Message Syntax (RFC 2630)

•Distinct from protocols

‣ One syntax may be used by many protocols (e.g., XML, JSON);
& useful for other purposes

• Syntaxes may be layered

‣ E.g., Condor ClassAds -> XML -> ASCII

‣ Important to understand layerings when comparing or
evaluating syntaxes

M. D. Dikaiakos

A Protocol can have Multiple APIs

• TCP/IP APIs include BSD sockets, Winsock,
System V streams, …

• The protocol provides interoperability: programs
using different APIs can exchange information

• I don’t need to know remote user’s API

TCP/IP Protocol: Reliable byte streams

WinSock API Berkeley Sockets API

Application Application

M. D. Dikaiakos

An API can have Multiple Protocols

•MPI provides portability: any correct program
compiles & runs on a platform

•Does not provide interoperability: all processes
must link against same SDK

‣ E.g., MPICH and LAM versions of MPI
ApplicationApplication

MPI API MPI API

LAM SDK

LAM protocol

MPICH-P4 SDK

MPICH-P4 protocol

TCP/IP TCP/IP
Different message
formats, exchange

sequences, etc.

M. D. Dikaiakos

APIs & Protocols: both Important
• Standard APIs/SDKs are important

‣ They enable application portability

‣ But w/o standard protocols, interoperability is hard
(every SDK speaks every protocol?)

• Standard protocols are important

‣ Enable cross-site interoperability

‣ Enable shared infrastructure

‣ But w/o standard APIs/SDKs, application portability is
hard (different platforms access protocols in different
ways)

M. D. Dikaiakos

Programming & Systems Problems
• The programming problem

‣ Facilitate development of sophisticated apps

‣ Facilitate code sharing

‣ Requires programming environments: APIs, SDKs, tools

• The systems problem

‣ Facilitate coordinated use of diverse resources

‣ Facilitate infrastructure sharing

• e.g., certificate authorities, information services

‣ Requires systems: protocols, services

M. D. Dikaiakos

In the Grid architecture below,
can you identify resource

components, computational
components, sites, services,

interrelationships?

M. D. Dikaiakos

In the Grid architecture
below, where would you

place a scheduler?

Architecture Models

Distributed Computing: Concepts, Models,
Middleware

M. D. Dikaiakos

System Architecture
• The structuring of software as layers or modules in a single
site or in terms of services offered and requested between
processes located in the same or different sites.

‣ Client-server

‣ Alternatives:

• Client-proxy-server

• Push model

• Remote evaluation

• Code on demand

• Mobile agent: running program+data migrating

• Peer to Peer

M. D. Dikaiakos

System Architecture Elements
•Client processes (διεργασίες πελάτη)

• Server processes (διεργασίες εξυπηρετητή) : a
process accepting requests from other processes.

•Peer processes (οµότιµες διεργασίες)

• Software architecture: the structuring of software
as layers or modules in a single computer or in
terms of services offered and requested between
processes located in the same or different
computers.

M. D. Dikaiakos

System Architecture: Client/Server
•Client-server model: a distributed application structure that partitions tasks or
workloads between the providers of a resource or service (servers), and service
requesters (clients).

•Often clients and servers communicate over a computer network on separate
hardware, but both client and server may reside in the same system.

•A server host runs one or more server programs, which share their resources
with clients.

• Services: can be provided by multiple servers in separate hosts. Examples:

‣ Partitioned data: Web server example.

‣ Replicated data: Network Information Service (NIS) example.

•Replication is used to increase performance and availability and to improve
fault tolerance – provides multiple consistent copies of data in processes
running in different computers.

‣ At what cost?

M. D. Dikaiakos

Variations of Client-Server
•Mobile code, e.g., applets, Javascript
(Code-on-demand).

•Push model: the server instead of the
client initiates interactions.

•Mobile agents: running program+data
migrating.

•Network computers or thin clients
A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997.

M. D. Dikaiakos

Implementing a service
•A computational component A located at a site SA needs the
result of the computation of a service.

•Assume the existence of another site SB, which will be involved in
the delivery of the service.

• To obtain service results, A starts an interaction pattern that
leads to service delivery.

• Service execution involves:

‣ A set of resources

‣ Know-how about the service (its code)

‣ A computational component responsible for the execution of the
code

These need to be located at one site at the same site.

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997.

M. D. Dikaiakos

Louise and Christine make a cake

• Cake -- result of the service

• Recipe -- know-how / code

• Ingredients -- resource components / data

• Louise -- computational component A (process)

• Christine -- computational component B
(process)

• Louise’s home -- Site A

• Christine’s home -- Site B

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997. M. D. Dikaiakos

Traditional Client and Server Model

Request of cake

Read the recipe
Bake the cake
Deliver the cake

ServerX Windows System

Site B: Christine

Client

Site A: Louise

Wants to
Eat cake

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997.

M. D. Dikaiakos

Remote Evaluation Model: (REV)

Site B: ChristineSite A: Louise

Wants to
Eat cake

Recipe

Get the recipe
Bake the cake
Deliver the cake

Unix: rsh command
PostScript printer

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997. M. D. Dikaiakos

Code on Demand (COD)

Site A: Louise
Wants to
Eat cake

Request for
Recipe

Recipe

Terminal gets a new type of document. Document header may contain a reference (URL
address) to the code that is needed to interpret the document. Then the principle will go

to the reference and download the necessary code and execute it afterwards.

Site B: Christine

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms" Proceeding ICSE '97
Proceedings of the 19th international conference on Software engineering, 1997.

M. D. Dikaiakos

Mobile Agent Model: (MA)

Site A: Louise Site B: Christine
Louise moves
to Site B along
with recipe and
ingredients

Cake

A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms"
Proceeding ICSE '97 Proceedings of the 19th international conference on Software engineering, 1997. M. D. Dikaiakos

Paradigm Recap
Before After

A and B are already in execution
A. Carzaniga, G. Pietro Picco and G. Vigna, "Designing distributed applications with mobile code paradigms" Proceeding ICSE '97
Proceedings of the 19th international conference on Software engineering, 1997.

M. D. Dikaiakos

Choosing the Right Paradigm
• No paradigm is absolutely better than

others.

• The choice of paradigm must be
performed on a case-by-case basis,
taking into account issues such as the
cost of network communication,
availability and performance of
resources, etc.

Middleware

Distributed Computing: Concepts, Models,
Middleware

M. D. Dikaiakos

Platforms and Middleware
•Platforms for D/S and applications: the lowest-
level hardware and software layers. Provide
services to layers above them.

•Middleware (µεσολογισµικό;) a layer of software
whose purpose is to mask heterogeneity and
provide a convenient programming model to
application programmers.

•Middleware is represented by processes or objects
in a set of computers that interact with each other
to achieve communication and resource sharing.

M. D. Dikaiakos

Definitions of Middleware
• Software & DevOps engineer perspective: the
layer that “glues” together software by different
system components

•Network engineer: the fault-tolerant and error-
checking integration of network connections -
communication management software.

•Data engineer: the technology responsible for
coordinating, triggering, and orchestrating
actions to process and publish data from various
sources, harnessing big data and the IoT.

Gazis, A., Katsiri, E., Middleware 101, Communications of the ACM, Volume 65, Issue
9, September 2022, pp. 38-42.

M. D. Dikaiakos

Middleware (ctd)
•Middleware is concerned with providing useful building
blocks for the construction of software components that
can work with one another in a D/S.

• It enables communication at higher levels of abstraction by
providing things like:

‣ remote method invocation

‣ group communication

‣ event notification

‣ data replication

‣ real-time transmission of data.

Aiken, B., Strassner, J., Carpenter, B., Foster, I., Lynch, C., Mambretti, J., Moore, R., and Teitelbaum, B.
“Network Policy and Services: A Report of a Workshop on Middleware”, RFC 2768.,” 2000. M. D. Dikaiakos

Middleware (ctd)
•Middleware can also provide infrastructural
services for use by application programs:

‣ Naming

‣ Security

‣ Transactions

‣ Persistent storage

‣ Event notification

M. D. Dikaiakos

Categories of Middleware
Based on architecture operating principles:

• Transactional. Processing of multiple synchronous/asynchronous transactions

‣ Serving as a cluster of associated requests from distributed systems such as bank
transactions or credit card payments.

•Message-oriented. Message queue and message passing architectures, which support
synchronous/asynchronous communication.

‣ The first operates based on the principle that a queue is used to process information,
whereas the second typically operates on a publish/subscribe pattern where an
intermediate broker facilitates the communication.

•Procedural. Remote and local architectures to connect, pass, and retrieve software
responses of asynchronous communications (e.g. a call operation).

‣ Remote architecture calls a predetermined service of another computer in a network;
local architecture interacts solely with a local software component.

•Object-oriented. Similar to procedural, however, this type incorporates OO programming
design principles: object references, exceptions, and inheritance of properties via
distributed object requests. Typically used synchronously, but can support asynchronous
communication via the use of threads and concurrent programming.

Gazis, A., Katsiri, E., Middleware 101, Communications of the ACM, Volume 65, Issue 9,
September 2022, pp. 38-42. M. D. Dikaiakos

Categories of Middleware
Application-driven:

•Reflective middleware: designed to “easily operate with other
components and applications.”

•Agent middleware: has multiple components that operate on complex
domain-specific languages and laws.

•Database middleware: focuses on DB-to-DB or DB-to-apps
communication—either natively or via call-level interfaces (CLIs).

•Embedded middleware: acts as the intermediary for embedded
integration apps and operating-system communication.

•Portal middleware creates a context-management tool in a
composite, single-screen application.

•Device (or robotics) middleware simplifies the integration of specific
device operating systems or robotic hardware and firmware.

Gazis, A., Katsiri, E., Middleware 101, Communications of the ACM, Volume 65, Issue 9,
September 2022, pp. 38-42.

M. D. Dikaiakos

Modern Middleware Capabilities
• Supports an approach for developing a
single application as a suite of small
services, each running in its own process
and communicating with lightweight
mechanisms, often an HTTP resource API.

•Closely connected to APIs (application
protocol interfaces), serving as the tier or a
software bundle for different APIs used by a
programmer.

• Simplifies sophisticated applications so that
the developer focuses on not only the
communication of components but also the
business logic and the systems’ interaction.

Gazis, A., Katsiri, E., Middleware 101, Communications of the ACM, Volume 65, Issue 9,
September 2022, pp. 38-42.

Lecture 2b

End-to-end Arguments in
System Design

M. D. Dikaiakos

Discussed and explained some basic
concepts:

•Abstraction

•Architecture

• System Architecture

•Resource, Physical and Logical

•Process

•Distributed Computing Models:
Client-Server, REV, COD

•Middleware

•Middleware services and
categories

In previous
lecture

M. D. Dikaiakos

•What information constitutes the state of a
resource component?

•What is an execution environment? Give an
example.

•What is a socket?

•Explain the difference between Remote
Evaluation and Client Server models. Explain
one problem that REV has for the security of
systems.

•Describe and explain a scenario where a
Mobile Agent model may be preferable
over Client Server.

•Explain the differences between
synchronous and asynchronous
communication.

•Give a definition of middleware and 3
examples of middleware services.

Knowledge
Check

End-to-end Arguments in System Design

Distributed Computing: Concepts, Models,
Middleware

M. D. Dikaiakos

J. H. Saltzer, D. P. Reed, and D. D. Clark,
“End-to-end arguments in system design”
ACM Trans. Comput. Syst., vol. 2, no. 4, pp.
277–288, Nov. 1984.

Readings

M. D. Dikaiakos

Managing Complexity
•Despite their incredible complexity, computer
systems exist and continue to evolve because
they are designed as hierarchies with well-defined
interfaces that separate levels of abstraction.

•Using well-defined interfaces facilitates
independent subsystem development by both
hardware and software design teams.

• The simplifying abstractions hide lower level
implementation details, thereby reducing the
complexity of the design process.

M. D. Dikaiakos

How do we decide where
we place the functionalities

required for a system/
application we wish to

develop?

M. D. Dikaiakos

How do you call this
problem?

M. D. Dikaiakos

Functional Decomposition

M. D. Dikaiakos

Example 1: “Three-tier”
Client Server

JSON/XML

HTML

Javascript

SQL

PHP

HTTP

M. D. Dikaiakos

Example 2: “Monolithic”
Architecture

https://www.infoq.com/articles/microservices-intro/

M. D. Dikaiakos

Example 3: Microservices

More on this later
M. D. Dikaiakos

Where are you going to look
for solutions to this problem?

M. D. Dikaiakos

System Design
•Choosing the proper boundaries between functions is
a primary activity of the computer system designer.

•Design principles that provide guidance in this
choice of function placement are among the most
important tools of a system designer.

• In systems involving communication a designer
usually:

‣ Draws a modular boundary around comm. subsystem

‣ Firm interface between comm. subsystem and the rest
of the system.

M. D. Dikaiakos

Where do we implement a
system’s functionality?

• In the communication
subsystem?

• In the clients of the comm.
subsystem?

• As a joint venture

• Redundantly?

Key
Question

M. D. Dikaiakos

End-to-end argument
“The function in question can be completely
and correctly be implemented only with the
knowledge and help of the application standing
at the endpoints of the communication system”

• Therefore, providing that questioned function
as a feature of the communication subsystem
itself is not possible.

‣ Sometimes, an incomplete version of the
function be provided by the comm. subsystem
may be useful as a performance enhancement.

M. D. Dikaiakos

• Suppose you are asked to
write a program called
ftprog that can move a file
from one computer to
another, over the network.

•What do you do?

Careful File
Transfer

M. D. Dikaiakos

Careful File Transfer
•Move file from computer A to computer B without damage.

• Steps taken:

1. At host A, the file transfer program calls the file system to read the file from
disk. The f/s passes the file to the file transfer program in fixed-sized blocks
chosen to be disk format independent.

2. At host A, the ftprog asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into
packets. The packet size is typically different from the file block size and the
disk track size.

3. The data communication network moves packets from A to B.

4. At host B, the data communication program removes packets from the
protocol and hands the contained data to a second part of the data
transfer application operating on B.

5. At host B the file transfer program asks the file system to write the received
data on the disk of host B.

M. D. Dikaiakos

Careful File Transfer

ftprog ftprog

F/S-O/S F/S-O/S

D
a

ta
C

om
m

D
a

ta
C

om
m

Site A Site B

M. D. Dikaiakos

Threats to transaction
1. Hardware faults in the disk storage result to reading incorrect

data.

2. File system software or file transfer program or data
communication system make a mistake in buffering and
copying the data of the file either at A or B.

3. Hardware processor or local memory have transient error
while doing buffering and copying at A or B.

4. Communication system drops or changes bits in a packet or
deliver a packet more than once.

5. Either of the hosts may crash part way through the
transaction after performing an unknown amount of the
transaction.

M. D. Dikaiakos

How can we deal
with errors?

M. D. Dikaiakos

Errors:
1. Hardware faults in the disk storage result to reading incorrect

data.

2. File system software or file transfer program or data
communication system make a mistake in buffering and
copying the data of the file either at A or B.

3. Hardware processor or local memory have transient error
while doing buffering and copying at A or B.

4. Communication system drops or changes bits in a packet or
deliver a packet more than once.

5. Either of the hosts may crash part way through the
transaction after performing an unknown amount of the
transaction.

M. D. Dikaiakos

Dealing with threats
•Reinforce each of the steps along the way using
duplicate copies, time-out and retry, carefully
located redundancy for error detection, crash
recovery, etc.

• Systematic countering of threat (2) requires
writing correct programs…

‣ Not all programs are written by the file-transfer
programmer.

•Using tri-modular redundancy for the whole
process…

M. D. Dikaiakos

End-to-end Check and Retry
• Suppose that a checksum is stored with
each file, reducing the possibility of error
to an acceptably negligible value.

• Then, transfer file from A to B.

• FT Application at B reads the file back to
its memory, computes the checksum and
sends the value back to A for comparison.

• If comparison fails, retry…

M. D. Dikaiakos

• Some extra cost (where?)

• If failures are fairly rare, this
technique will normally work
on the first try;

‣ occasionally a second or
even third try might be
required;

•One would probably consider
two or more failures on the
same file transfer attempt as
indicating that some part of
the system is in need of repair.

Effect

M. D. Dikaiakos

What if?
• The communication subsystem provides internally a guarantee for
reliable data transmission, through:

‣ Selective redundancy in the form of packet checksums

‣ Sequence number checking

‣ Internal retry mechanisms

•We can lower the probability of dropped bits to a very small
number, and eliminate threat (4).

•Henceforth, we achieve a reduction of the frequency of retries by
the file transfer application.

•What is the effect on the correctness of the file-transfer outcome?

‣ Still in need to counter the other threats at the end-level

M. D. Dikaiakos

•Extra effort expended in the
communication system to
provide a guarantee of reliable
data transmission is only
reducing the frequency of retries
by the file transfer application;

•No effect on inevitability or
correctness of the outcome:

‣ Correct file transmission is
assured by the end-to-end
checksum and retry whether or
not the data transmission system
is especially reliable.

Achievement

M. D. Dikaiakos

Conclusion
• To achieve careful file transfer, the
application program that performs the
transfer must supply a file-transfer-specific,
end-to-end reliability guarantee.

• For the communication subsystem to go
out of its way to be extraordinarily reliable
does not reduce the burden on the
application program to ensure reliability.

M. D. Dikaiakos

Performance Aspects
• So, should lower levels play no part in obtaining reliability?

•Consider a somewhat unreliable network, dropping a
message in each hundred messages sent.

•What is the effect of this, as we transmit files of increasing
size?

‣ The probability that all packets of a file arrive correctly
decreases exponentially with the file length (prove this).

‣ So, the expected time to transmit the file grows
exponentially with the file length.

•Performance of the file transfer application hurts!

M. D. Dikaiakos

Performance Trade offs
• The amount of effort to be put into reliability measures within the
data communication system is an engineering trade-off based
on performance, rather than a requirement for correctness.

• If comm subsystem is too unreliable, the file transfer application
performance suffers.

• If comm subsystem is beefed up with internal reliability measures,
those measures have a performance cost:

‣ Lost bandwidth to redundant data

‣ Added delay from waiting for internal consistency checks to
complete

‣ And, after all, the end-to-end consistency check is still required,
no matter how reliable the communication system becomes.

M. D. Dikaiakos

Performance Trade offs
•Using performance to justify placing functions in a low-level
subsystem must be done carefully.

• Sometimes, the same or better performance can be achieved
at the high level.

•Performing the function at the low level may:

‣ Be more efficient if the function can be performed with minimum
perturbation of the machinery already included in the low-level.

‣ Cost more because:

• Most applications using the low-level subsystem do not need the
function.

• The low-level subsystem does not have adequate information, like
the higher levels, to do the job efficiently.

M. D. Dikaiakos

Other Examples of the e2e Argument

•Acknowledgment of message delivery:

‣ The comm network can easily return an ack
to the sender, whenever a message is
delivered to a recipient.

‣ This is not very helpful for applications, since:

• The application wants to know if the target
host acted on the message (receipt does not
directly translate to action).

• So, the appl. needs end-to-end ack.

M. D. Dikaiakos

Other Examples of the e2e Argument

• Secure transmission of data: if the data
communication system performs encryption-
decryption:

‣ It must be trusted to manage securely the encryption
keys.

‣ Data will be in the clear and vulnerable while passing
from the communication system to the application.

‣ Authenticity of the message must still be checked by
the application: if the application performs the
encryption, it can also do the authentication checks
and keeps its keys.

M. D. Dikaiakos

Is the encryption of data by
the communication

subsystem necessary?

M. D. Dikaiakos

Secure Data Transmission
• If the application performs end-to-end
encryption:

‣ It obtains its required authentication check,

‣ Can handle key management to its satisfaction

‣ The data is never exposed outside the application

• Thus, to satisfy the requirements of the
application, there is no need for the
communication subsystem to provide for
automatic encryption of all traffic.

M. D. Dikaiakos

Yet, some network
encryption may be useful.

Why?

M. D. Dikaiakos

Secure Data Transmission
•Automatic encryption of all traffic by the communication
subsystem can ensure that a misbehaving user or application
program does not deliberately transmit information that should
not be exposed.

• The automatic encryption of all data as it is put into the network
is one more firewall the system designer can use to ensure that
information does not escape outside the system.

•Note that:

‣ This is a different requirement from authenticating access rights of
a system user to specific parts of the data.

‣ Network-level encryption can be quite unsophisticated – the
same key can be used by all hosts, with frequent changes of the
key.

M. D. Dikaiakos

Self-study

Apply the end-to-end
arguments to think how to

manage the suppression of
duplicate messages that are

erroneously sent by an
application

M. D. Dikaiakos

• The end-to-end argument is not
an absolute rule but rather a
guideline:

• Suppose we use a
communication subsystem to
send voice packets:

‣ To support two people carrying
a real-time conversation.

‣ To transport a speech message
(to be listened to later).

•What are the choices we
have?

Identifying
the ends

M. D. Dikaiakos

End-to-end arguments now
• The end-to-end argument provided:

‣ Innovation

‣ reliability

‣ In the end, we have a “transparent” network

• This is threatened nowadays by:

‣ Loss of trust (e.g., firewalls)

‣ ISP control desires

‣ 3rd parties wish to observe data flow

‣ Caching, mirroring

‣ Regulation

• Improve performance of today’s apps in favor of new ones?

M. D. Dikaiakos

Future of end-to-end argument (2)

• The end-to-end argument is still valid:

‣ But needs redefinition in today’s world…

•Evolution of existing apps is inevitable

•Keep the net open and transparent for
new apps

•Cope with the loss of transparency

