
Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar
VU Amsterdam

Radhesh Krishnan
VU Amsterdam

Elias Athanasopoulos
University of Cyprus

Cristiano Giuffrida
VU Amsterdam

Herbert Bos
VU Amsterdam

Kaveh Razavi
VU Amsterdam

Abstract
Increasingly sophisticated Rowhammer exploits allow an
attacker that can execute code on a vulnerable system
to escalate privileges and compromise browsers, clouds,
and mobile systems. In all these attacks, the common
assumption is that attackers first need to obtain code
execution on the victim machine to be able to exploit
Rowhammer either by having (unprivileged) code exe-
cution on the victim machine or by luring the victim to
a website that employs a malicious JavaScript applica-
tions. In this paper, we revisit this assumption and show
that an attacker can trigger and exploit Rowhammer bit
flips directly from a remote machine by only sending
network packets. This is made possible by increasingly
fast, RDMA-enabled networks, which are in wide use in
clouds and data centers. To demonstrate the new threat,
we show how a malicious client can exploit Rowhammer
bit flips to gain code execution on a remote key-value
server application. To counter this threat, we propose
protecting unmodified applications with a new buffer al-
locator that is capable of fine-grained memory isolation
in the DRAM address space. Using two real-world ap-
plications, we show that this defense is practical, self-
contained, and can efficiently stop remote Rowhammer
attacks by surgically isolating memory buffers that are
exposed to untrusted network input.

1 Introduction

A string of recent papers demonstrated that the Rowham-
mer hardware vulnerability poses a growing threat to sys-
tem security. From a potential security hole in 2014 [33],
it grew into an attack vector to mount end-to-end exploits
in browsers [14, 26, 48], cloud environments [47, 55],
and smartphones [54]. Recent work even generated
Rowhammer-like bit flips on flash storage [16, 35]. Even
so, however advanced the attacks have become and how-
ever worrying for the research community, these attacks

never progressed beyond local privilege escalations or
sandbox escapes. The attacker needs the ability to run
code on the victim machine in order to flip bits in sen-
sitive data. Hence, Rowhammer posed little threat from
attackers without code execution on the victim machines.
In this paper, we show that this is no longer true and at-
tackers can flip bits only by sending network packets to
a victim machine connected to RDMA-enabled networks
commonly used in clouds and data centers [1, 19, 42, 57].

Rowhammer exploits today Rowhammer allows at-
tackers to flip a bit in one physical memory location
by aggressively reading (or writing) other locations (i.e.,
hammering). As bit flips occur at the physical level, they
are beyond the control of the operating system and may
well cross security domains. A Rowhammer attack re-
quires the ability to hammer memory sufficiently fast to
trigger bit flips in the victim. Doing so is not always triv-
ial as several levels of caches in the memory hierarchy
often absorb most of the memory requests. To address
this hurdle, attackers resort to accessing cache eviction
buffers [11] or using direct memory access (DMA) [54]
for hammering. But even with these techniques in place,
triggering a bit flip still requires hundreds of thousands
of memory accesses to specific DRAM locations within
tens milliseconds. As a result, the current assumption is
that Rowhammer may only serve local privilege escala-
tion, but not to launch attacks from over the network.

Remote Rowhammer attacks In this paper, we revisit
this assumption. While it is true that millions of DRAM
accesses per second is harder to accomplish from across
the network than from code executing locally, today’s
networks are becoming very fast. Modern NICs are able
to transfer large amounts of network traffic to remote
memory. In our experimental setup, we observed bit flips
when accessing memory 560,000 times in 64 ms, which
translates to 9 million accesses per second. Even regular
10 Gbps Ethernet cards can easily send 9 million packets
per second to a remote host that end up being stored on

the host’s memory. Might this be enough for an attacker
to effect a Rowhammer attack from across the network?
In the remainder of this paper, we demonstrate that this
is the case and attackers can use these bit flips induced
by network traffic to compromise a remote server appli-
cation. To our knowledge, this is the first reported case
of a Rowhammer attack over the network. Specifically,
we managed to flip bits remotely using a commodity
10 Gbps network. We rely on the commonly-deployed
RDMA technology in clouds and data centers for reading
from remote DMA buffers quickly to cause Rowhammer
corruptions outside these untrusted buffers. These cor-
ruptions allow us to compromise a remote memcached
server without relying on any software bug.

Mitigating remote Rowhammer attacks It is un-
clear whether existing hardware mitigations can protect
against these dangerous network attacks. For instance,
while clouds and data centers may (and sometimes do)
use ECC memory to guard against bit flips, researchers
have, from the first paper on Rowhammer [33], warned
that ECC may not be sufficient to protect against such
attacks. Targeted Row Refresh, specifically designed
to address Rowhammer is also shown not to be always
effective [38, 54]. Unfortunately, existing software de-
fenses are also unprepared to deal with network attacks:
ANVIL [11] relies on performance counters that are not
available for DMA, and CATT [15] can only protect the
kernel from user-space attacks.

We make the observation that compared to attackers
with local code execution, remote attackers can only tar-
get memory that is allocated for DMA buffers. Hence,
instead of protecting the entire memory, we only need
to make sure that these buffers cannot cause bit flips in
the rest of the system. Specifically, we show that we can
isolate the buffers for fast network communication us-
ing a new memory allocation strategy that places CATT-
like guard zones around them. These guard zones absorb
any attacker-generated bit flips, protecting the rest of the
system. Properly implementing this allocation strategy
is not trivial: the guard zones need to be placed in the
DRAM address space to effectively absorb the bit flips.
Unfortunately, the DRAM address space is not mapped
consecutively in the physical address-space, unlike what
is assumed in all the existing defenses [15, 11]. Memory
controllers use complex functions to translate a physi-
cal address into a DRAM address. We therefore present
a new allocator, called ALIS (ALlocations ISolated),
which uses a novel approach to translate between phys-
ical address-space and DRAM address-space and safely
allocates the DMA buffers and their guard zones. Since
we need only protect a limited number of DMA buffers,
doing so is cheap in terms of performance and memory
overhead as we show using microbenchmarks and two
real-world applications.

Contributions We make the following contributions:

• We describe Throwhammer, the first Rowhammer
profiling tool that scans a host over the network for
bit flips. We evaluate Throwhammer using differ-
ent configurations (i.e., different link speeds and
DIMMs). We then show how an attacker can use
these bit flips to exploit a remote memcached server.

• We design and implement ALIS, a new allocator
for safe allocation of network buffers. We show
that ALIS correctly finds guard rows at the DRAM
address space level, provided an address mapping
that satisfies certain prerequisites. Furthermore, we
show that ALIS is compatible with existing soft-
ware. We further evaluate ALIS using microbench-
marks and real-world applications to show that it in-
curs negligible performance and memory overhead.

Outline We provide background information about our
work in §2 and describe our threat model in §3. In §4, we
report on the first Rowhammer bit flips induced over the
network and we discuss how an attacker can exploit them
using a real-world application in §5. We then discuss the
design and implementation of ALIS in §6, showcase two
applications that use it in §7, and evaluate it in §8. We
then discuss related work in §9 and conclude in §10.

2 Background

With software becoming increasingly more difficult due
to a variety of defenses deployed in practice [36, 51,
52, 10, 27, 23], security researchers have started ex-
ploring new directions for exploitation. For example,
CPU caches can be abused to leak information [56,
18, 44, 24, 34, 39] or wide-spread reliability issues in
hardware [33, 17] can be abused to compromise soft-
ware [26, 48, 54]. These attacks require code execution
on the victim machine. In this paper, we show for the
first time that this requirement is not strictly necessary,
and it is possible to trigger reliability issues in DRAM
by merely sending network packets. We provide nec-
essary background on DRAM and its unreliabilities and
high-speed networks that expose them remotely.

2.1 Unreliable DRAM
DRAM Organization The basic unit of storage in
DRAM is cell made out of a capacitor used to hold the
value of a single bit of information. Since capacitors
leak charge over time, the memory controller should fre-
quently (typically every 64 ms) recharge them in order to
maintain the stored values, a process known as refresh-
ing. DRAM cells are ganged together to form what is

2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1
9

9
9

 2
0

0
0

 2
0

0
1

 2
0

0
2

 2
0

0
3

 2
0

0
4

 2
0

0
5

 2
0

0
6

 2
0

0
7

 2
0

0
8

 2
0

0
9

 2
0

1
0

 2
0

1
1

 2
0

1
2

 2
0

1
3

 2
0

1
4

 2
0

1
5

 2
0

1
6

G
b

p
s

Year

Vulnerable DIMMs

Discovered Flips

Infiniband
Ethernet

Figure 1: Trends in network performance and Rowhammer.

known as a row (typically 1024 columns wide). When-
ever a row is accessed the contents of that particular row
are put on a special buffer, called row buffer, and the
row is said to be activated. Once access is finished, the
activated row is written (i.e., recharged) with the con-
tents of the row buffer. Multiple rows along with a row
buffer are stacked together to form a bank. There are
multiple banks on a DRAM integrated circuit (IC). Mu-
tiple DRAM ICs are laid out to for a DRAM rank. The
DRAM chips are accessed in parallel when reading a
memory word. For example, with a DIMM that has 8
bit wide ICs, eight ICs are accessed in parallel to form a
64 bit memory word.

DRAM addressing Addressing a memory word
within a DRAM rank is done by the system memory
controller using three addresses: bank, row and column.
Further parallelism can be added by having two ranks
on a single memory module (DIMM), adding multiple
DIMMs on the same memory bus (also known as chan-
nel), and providing multiple independent memory chan-
nels. Hence, to address a specific word of memory,
the memory controller uses a <channel, DIMM, rank,
bank, row, column> hextuple. This hextuple, which
we call a DRAM address is constructed from the phys-
ical memory address bits using formulas which are ei-
ther documented [9] or have been (partially) reverse en-
gineered [45]. An important take-away here is that con-
tiguous physical address space is not necessarily contigu-
ous in the DRAM address space where Rowhammer bit
flips happen. This information is important when devel-
oping our defense discussed in §6.

Rowhammer As DRAM chips become denser, the
charge used for each capacitor to denote the two bit states
is reduced. A reduced charge level increases the pos-
sibility of errors. Kim et al. [33] show that intention-
ally activating a row many times in a short duration (i.e.,
Rowhammering) can cause the charge in the capacitors
to leak in close-by rows. If this happens fast enough,
before the memory controller can refresh the adjacent
rows, this charge leakage passes a certain threshold and
as a result bits in these adjacent, or victim, rows will flip.

To exploit these flips, the attackers need to first find bit
flips in interesting offsets within a memory page and then
force the system to store sensitive information on that
memory page. For instance, the first known exploit by
Seaborn [48] finds a memory page with a bit flip that can
affect page table entries. It then frees that memory page
and sprays the system with page table pages. The hope
is that the page that is now freed is used by a page table
page and the bit flip causes the page table entry to point
to another page table page, effectively giving the attacker
control over all of physical memory. Similarly, Rowham-
mer.js [26], Drammer [54] and Xiao et al. [55] target
page table pages but focus on browser, mobile and cloud
environments respectively. Other attacks target crypto-
graphic keys [47] or JavaScript objects [14].

2.2 Fast Networks

Figure 1 shows the evolution of network performance
over time. Since 2010, the trend follows an exponen-
tial increase in the amount of available network band-
width. This is putting a lot of pressure on other compo-
nents of the system, namely the CPU and the memory
subsystem, and has forced systems engineers to rethink
their software stack in order to make use of all this band-
width [21, 22, 30, 31, 40, 41].

Figure 1 also shows that DIMMs with the Rowhammer
vulnerability have been produced since 2010 and their
production continues to date [54, 37]. As we will show
in §4, we observed bit flips with capacities available in
10 Gbps or faster networks, suggesting that already back
in 2010, Rowhammer was exploitable over the network.

While faster than 10 Gbps networks are very com-
mon natively in data centers [42, 57, 49], even today’s
clouds offer high-speed networking. Amazon EC2 pro-
vides VMs with 20 Gbps connectivity [2] and Microsoft
Azure provides VMs with 56 Gbps [1]. As we will soon
show 10 Gbps networks already make remote bit flips a
dangerous threat to regular users today.

Remote DMA To achieve high-performance network-
ing, some systems entirely remove the interruptions and
expensive privilege switching from the fast path and de-
liver network packets directly to the applications [12, 28,
46]. Such approaches often resort to polling in order
to guarantee high-performance, wasting CPU cycles that
are becoming more precious as Moore’s law stagnates
and the available network bandwidth per core increases.

To reduce the load on the CPU, networking equip-
ments include the possibility for Remote Direct Mem-
ory Access (RDMA). Figure 2 compares what happens
when a client application sends a packet in a normal net-
work compared to one with RDMA support. Without
RDMA, the client machine’s CPU first needs to copy the

3

User

Kernel

Server
App

Net BufferServer
App

Net Buffer

DMA Buffer NIC

CPU

User

Kernel

Client
App

Net Buffer Client
App

Net Buffer

NIC

CPU

DMA BufferDMA Buffer

Non-RDMA Networks

User

Kernel

Server
App

Net BufferServer
App

Net Buffer

NIC

CPU

User

Kernel

Client
App

Net Buffer Client
App

Net Buffer

NIC

CPU

RDMA-enabled Networks

Figure 2: RDMA allows zero-copy network communication.

packet’s content (e.g., an HTTP request) from an applica-
tion buffer to a DMA buffer. The client machine’s oper-
ating system then signals the NIC that the packet is ready
for network transfer. The NIC then reads the packet us-
ing DMA and sends it over the wire. On the server side,
the server’s NIC receives the packet from the wire and
copies it to a DMA buffer that is pre-configured to the
NIC. It then signals the server’s CPU that a packet has
arrived. The CPU then copies the packet’s content to the
server application’s buffer.

With RDMA, there is no need to involve the CPU on
both client and server for packet transfer. The server
and client applications both configure DMA buffers to
the NIC through interfaces that are provided by the oper-
ating system. When the client application wants to send
a packet to a server application, it directly writes it to its
buffer. It then signals its NIC that the packet is ready for
transfer. The NIC then sends the packet over the wire.
On the server side, the NIC receives the packet and di-
rectly writes it to the buffer that has previously been con-
figured by the server application. The server application
can then be notified that a new packet has arrived or it
can poll its own buffer. RDMA can boost existing pro-
tocols such as NFS [43] and new applications can use
its functionalities to achieve better performance. Exam-
ples include databases [40], distributed hash tables and
in-memory key-value stores [21, 22, 30, 31, 41].

RDMA’s prevalence Data centers and cloud providers
such as Google [42] and Microsoft [1, 57, 19] use RDMA
to improve the performance of their clusters. Microsoft
very recently announced RDMA support for SMB file
sharing in the workstation edition of Windows [4], sug-
gesting RDMA-enabled networks are spreading into the
workstation market. Cloud providers are already selling
virtual machines with RDMA support. For example, Mi-
crosoft Azure [3] and ProfitBricks [7] provide offerings
with high-speed RDMA networks.

3 Threat Model

We consider attackers that generate and send legitimate
traffic through a high-speed network to a target server.

A common example is a client that sends requests to a
cloud or data center machine that runs a server appli-
cation. We assume that the target machine is vulnera-
ble to Rowhammer bit flips [55, 47]. We further assume
that the target system benefits from IOMMU protection.
With IOMMU, the server’s NIC is not allowed to write
to memory pages that are not part of the pre-configured
DMA areas by the server application. The end goal of the
attacker is to bypass RDMA’s security model by modify-
ing bits outside of memory areas that are registered for
DMA in order to compromise the system.

4 Bit Flipping with Network Packets

To investigate the possibility of triggering bit flips over
the network, we built the first Rowhammer test tool that
scans for bit flips by repeatedly sending or receiving
packets to/from a remote machine, called Throwham-
mer. Throwhammer is implemented using 1831 lines of
C code and runs entirely in user-space without requiring
any special privileges. We will make this tool available
so that interested parties can check for remote bit flips.

4.1 Throwhammer’s Implementation
Throwhammer makes use of RDMA capabilities for
transferring packets efficiently. Throwhammer has two
components: a server and a client process running on two
nodes connected via an RDMA network. On the server
side, we allocate a large virtually-contiguous buffer and
configure it as a DMA buffer to the NIC. We set all bits
to one when checking for one-to-zero bit flips and do the
reverse when checking for zero-to-one bit flips.

On the client side, we repeatedly ask the server’s NIC
to send us packets with data from various offsets within
this buffer. Given the remote nature of our attack, we
cannot make any assumption on the physical addresses
that map our target DMA buffers and cannot rely on side
channels for inferring this information [25]. Fortunately,
on the server side, the Linux kernel automatically turns
the memory backing our RDMA buffer into huge pages
with its khugepaged daemon. This allows us to perform
double-sided Rowhammer similar to Rowhammer.js [26]
and Flip Feng Shui [47]. Periodically, we check the en-
tire buffer at the server for bit flips.

To make the best possible use of the network capacity,
we spawn multiple threads in Throwhammer. At each
round, two aggressor addresses are chosen and all the
threads send/receive packets that read from these two ad-
dresses for a pre-defined number of times. We make no
effort in synchronization between these threads, so mul-
tiple network packets may hit the row buffer. While we
leave potential optimizations for selecting aggressor ad-
dresses more carefully and better synchronization to fu-

4

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30

U
n
iq

u
e
 fl

ip
s

Minutes

Hynix

Corsair

Figure 3: Number of unique Rowhammer bit flips over time
using two sets of DIMMs over a 40 Gbps Ethernet network.

ture work, we show that Throwhammer already can trig-
ger bit flips in 10 Gbps networks and above.

4.2 Results
Testbed We use two machines each with 8-core
Haswell i7-4790 processors connected using Mellanox
ConnectX-4 single port NICs as our evaluation testbed.
Note that these cards are already old: at the time of
this paper’s submission, two newer generations of these
cards (ConnectX-5 and ConnectX-6) are available, but
we show that it is already possible to trigger bit flips with
our older generation cards. We experiment with different
DIMMs and varying network performance.

DIMMs We chose two pairs of DDR3 DIMMs con-
figured in dual-channel mode, one from Hynix and one
from Corsair. These DIMMs already show bit flips when
we run the open source Rowhammer test [5]. We config-
ured our NICs in 40 Gbps mode and ran Throwhammer
for 30 minutes. Figure 3 shows the number of unique bit
flips as a function of time over these two sets of DIMMs
on the server triggered by transmitting packets. We could
flip 464 unique bits on the Hynix DIMMs and 185 unique
bits on the Corsair DIMMs in 30 minutes. While these
bit flips are already enough for exploitation, we believe
that it is possible to trigger many more bit flips with a
more optimized version of Throwhammer.

Network performance To understand how the net-
work performance affects bit flips, we used the Hynix
modules. We first configured our NICs in 10 Gbps Ether-
net which can be saturateed with 2 threads. We then con-
figured our NICs in 40 Gbps Ethernet which can be satu-
rated with 10 threads. The number of bit flips depends on
the number of packets that we can send over the network
(i.e., how many times we force a row to open) rather than
the available bandwidth. For example, to trigger a bit
flip that happens by reading 300,000 times from each ag-
gressor address in the refresh window of 64 ms locally, in
perfect conditions (e.g., proper synchronization) we need
to be able to transmit 1000

64 ×300,000×2= 9.375 million
packets per second (pps). Unfortunately our NICs do not

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30

U
n
iq

u
e
 fl

ip
s

Minutes

40 Gbps - 52 mio pps

33 Gbps - 42 mio pps

26 Gbps - 33 mio pps

19 Gbps - 23 mio pps

10 Gbps - 11 mio pps

Figure 4: Number of unique Rowhammer bit flips on Hynix
DIMMs over time using different network configurations.

provide an option to reduce the bandwidth (or pps for
that matter) in between 40 Gbps and 10 Gbps. We can
however use fewer threads to emulate what the number
of bit flips in networks that provide a bandwidth between
10 Gbps and 40 Gbps (e.g., Amazon EC2 [2]). We mea-
sure the pps for each configuration and use it to extrapo-
late the network bandwidth. Figure 4 shows the number
of unique bit flips in different configurations as a function
of time. With 10 Gbps, we managed to trigger one bit flip
after 700.7 seconds, showing that commodity networks
found in companies or university LANs are fast enough
for triggering bit flips by transmitting network packets.
Starting with faster networks than 10 Gbps, Throwham-
mer can trigger many more bit flips during the 30 minutes
window. Again, we believe a more optimized version of
Throwhammer can potentially generate more bit flips, es-
pecially on 10 Gbps networks.

5 Exploiting Bit Flips over the Network

We now discuss how one can exploit remote bit flips
caused by accessing RDMA buffers quickly. The ex-
ploitation is similar to local Rowhammer exploits: the at-
tacker needs to force the system to store sensitive data in
vulnerable memory locations before triggering Rowham-
mer to corrupt the data in order to compromise the sys-
tem. We exemplify this by building an end-to-end ex-
ploit against RDMA-memcached, a key-value store with
RDMA support [29].

5.1 Memcached architecture
Memcached, a key-value store, implements its own
memory pool to improve performance and to reduce
memory fragmentation. It uses memory slabs of various
sizes; the smallest slab class size is of 96 bytes which is
the smallest unit of allocation for memcached. Memory
allocated to memcached is broken up (by default) into
1 MB sized pages and then assigned into slab classes as
necessary.

Memcached supports various operations: GET, SET,
UPDATE, DELETE, etc. To store a key-value item on the

5

54

(a)
*
h
_
n
e
x
t
 

(
b
i
t

f
l
i
p
p
e
d
)

a"acker		
controlled	

.
.
.
 

.
.
.
 

*
h
_
n
e
x
t

.
.
.
 

.
.
.
 

*
h
_
n
e
x
t

.
.
.
 

.
.
.
 

*
h
_
n
e
x
t

.
.
.
 

.
.
.
 

*
h
_
n
e
x
t

.
.
.
 

.
.
.
 

*
h
_
n
e
x
t

.
.
.
 

.
.
.
 

counterfeit	
item	

(b)

Figure 5: Memcached Exploit.

memcached server, the client sends a SET request pro-
viding a key/value pair. Upon receiving the SET com-
mand, the server generates the hash of the key. The
hash is used in a hashtable for fast lookups during a
GET command (among others). In case of a hash col-
lision, memcached uses a linked list to find the correct
item. The main data structure used for storing key/value
items is called struct_stritem. Figure 5a shows the
struct_stritem which is 96 bytes long, the smallest
unit of allocation in memcached. The first 54 bytes are
used to store some pointers about the object and the re-
maining space is used to store the key, the flag, and the
data. The struct_stritem elements are chained to-
gether using two linked lists. A first doubly linked list
(LRU, identified by the next and prev pointers) is tra-
versed when freeing unused items in a least-recently-
used fashion. A second singly linked list (hash chain,
identified by the h_next pointer) is traversed when look-
ing up items which happen to have the same key hash.
Another field of interest is the size of the value which is
also stored in the item header (nbytes).

5.2 Exploiting memcached

The attack progresses in three steps. In the first step, we
search for bit flips using GET requests. Once we find an
exploitable bit flip, we perform memory massaging [47]
to land a target struct_stritem on the memory loca-
tion with a bit flip. In the last step, we corrupt the hash
chain to make our target object point to a counterfeit ob-
ject that we encode inside a valid object. Our counterfeit
object provides us with arbitrary read/write through GET

and UPDATE requests. We describe each of the steps in
more detail next.

Finding exploitable bit flips We spray the entire avail-
able memory with 1 MB sized key-value items with val-
ues made out of binary value one (when looking for 1 to
0 bit flips). Filling up all the available memory makes
sure that some key-value items eventually border on the
initial 16 MB RDMA buffers. Our experiments show that

this is always the case. The attacker now remotely ham-
mers the initial 16 MB RDMA buffers to trigger bit flips
in the pages that belong to the adjacent rows where some
of the 1 MB objects are now stored. After that, the at-
tacker reads back the items with GET requests to find out
which bit offsets have been corrupted. The question we
need to answer is: what offsets are exploitable?

We target to corrupt the hash chain of the
struct_stritem item (i.e., the h_next pointer). As
shown in Figure 5b, this allows us to pivot the h_next

pointer to a counterfeit object that we encode inside a
legitimate object — similar to Dedup Est Machina [14].
Assuming we can reuse a 1 MB object for smaller ob-
jects, we have to see which size class we should pick for
our target objects so that one the objects’ h_next pointer
lands on a memory location with a bit flip. We do this
analysis for every bit flip to see whether we can find a
suitable size class for exploitation.

There are two challenges that we need to overcome for
this strategy to work: first, we need to be able to chain
many struct_stritem objects together and second,
we need to force memcached to reuse memory backing
the 1 MB object with an exploitable bit flip for smaller
objects with the right size for corrupting their h_next
pointer. We discuss how we overcome these challenges
next.

Memory massaging To craft many memcached items,
in such a way that the hash of the key is always the same.
Items with colliding keys make sure that the h_next

pointer always points to the next object that we store.
Memcached uses 32 bit version of the Murmur3 hash
function on the key to find the slot in hashtable. This hash
function is not cryptographically secure and we could
easily generate millions of keys that generate the same
hash. This addresses the first challenge.

The simplest way to address the second challenge, is
to issue a DELETE request on the target 1 MB object. We
previously calculated the exact size class that would al-
low us to land an h_next pointer on a location with bit
flip. We can reassign the memory used by the deleted
1 MB object to the slab cache of the target object’s size
class using the slabs reassign command from the
memcached client. Note that even if memcached were
to disable slabs reassign, we can easily trigger the
reuse by just creating many objects of the target size. The
LRU juggler component in the memcached watches for
free chunks in a slab class and upon finding a free 1 MB
chunk, it reassigns it into the global page pool that will
be reused for our target objects.

While it is possible to deterministically reuse 1 MB
objects after an exploitable bit flip in a complete im-
plementation of RDMA-memcached, the current ver-
sion of RDMA-memcached does not support DELETE or

6

slabs reassign. In these cases, we can simply spray
the memory with objects with a size that maximizes the
of probability of corrupting the h_next pointer. We later
report on the success rate of both attacks.

Corrupting the target object Once we land our target
object on the desired location in memory, we re-trigger
the bit flip by transmitting packets to the RDMA buffers.
This causes the corruption of the target object’s h_next
pointer. With the right corruption, the pointer will now
point inside another object that we control. By encoding
a counterfeit header inside that object and controlling its
size, we can achieve an arbitrary read/write primitive.

Results For the deterministic attack, we can success-
fully exploit 1.17% of 0 to 1 and 1.15% of 1 to 0 all
possible bit flips. On the Hynix DIMMs, it takes us 5.1
minutes to find an exploitable bit flip and on the Corsair
DIMMs it takes us 19.2 minutes to find an exploitable bit
flip. With the non-deterministic attack, the best size class
for spraying is objects of size 384 bytes with 0.2% of the
0 to 1 bit flips resulting in a successful exploitation and
0.5% of them resulting in a crash. The results are similar
with 1 to 0 bit flips.

6 Isolated Memory Allocation with ALIS

We now present an effective technique for defending
against remote Rowhammer attacks using DRAM-aware
allocation of network buffers. We first briefly discuss
the main intuition behind our allocator, ALIS, before de-
scribing the associated challenges. We then show how
ALIS overcomes these challenges for arbitrary physical-
to-DRAM address mappings.

6.1 Challenges of Finding Adjacent Rows
The main idea behind ALIS is simple: given that
Rowhammer bit flips happen in victim rows adjacent to
aggressor rows, we need to make sure that all accessible
rows in an isolated buffer are separated from the rest of
system memory by at least one guard row used to absorb
said bit flips. The implementation of this idea, however,
is not simple because finding all possible victim rows
along with their neighbors is not straightforward.

Given that Rowhammer bit flips happen on the DRAM
ICs, ALIS should isolate rows in the DRAM address
space. Remember from §2.1 that the DRAM address
space is defined using the <channel, DIMM, rank, bank,
row, column> hextuple. We use the term row to re-
fer to memory locations addressed by <channel, DIMM,
rank, bank, row, *>, where channel, DIMM, rank, bank
and row are all fixed values. Given a singular row R at
DRAM address <C, D, Ra, B, R, *> to be isolated, our
aim is to allocate all DRAM addresses <C, D, Ra, B, R -

1, *> and <C, D, Ra, B, R + 1, *> (i.e., rows R - 1 and
R + 1) as guard.

A common assumption made by both Rowhammer at-
tacks [11, 54, 47, 55, 14] and defenses [11, 15] is that
rows sharing the same row address (i.e., <*, *, *, *, row,
*> memory locations) are contiguously mapped in phys-
ical memory. That is to say, while accessing physical
memory addresses in an ascending order, the memory
controller would activate the same numbered row across
all its available banks, ranks, DIMMs and channels be-
fore moving on to the next. This assumption, however,
does not hold for most real-world settings, since mem-
ory controllers have considerable freedom in translating
physical addresses to DRAM addresses. One such exam-
ple is presented in Figure 6a, which shows physical-to-
DRAM address translation on an AMD CPU with 4 GB
of single-rank memory [9]. Another example is shown
in Figure 6b, with a non-linear physical address space
to DRAM address space translation on an Intel Haswell
CPU with dual-channel, dual-ranked memory with rank-
mirroring enabled [50]. As a result, existing attacks can
become much more effective in finding bit flips if they
take the translation between physical and DRAM ad-
dress spaces into account. Similarly, current defenses
only protect against bit flips caused by existing attacks
that do not take this translation into account.

A correct solution must therefore be conservative in
its assumptions about physical to DRAM address trans-
lation. In particular, we cannot assume that the contents
of a DRAM row will be mapped to a contiguous area
of physical memory. Similarly, we cannot assume that a
physical page frame will be mapped to a single DRAM
row. As an example of the latter, Figure 6c shows the
physical to DRAM address space translation on an AMD
CPU with channel interleaving enabled [9] (each block
representing 256 bytes).

6.2 Design

We now discuss how ALIS addresses these challenges.
We define the row group of a page to be the set of rows
that page maps onto. Similarly, the page group of a row
is the set of pages with portions mapped to that row. In
addition, in the context of a user-space process, we say
a page is allocated if it is mapped by the system’s MMU
into its virtual address space. Likewise, we say a row is
full if all pages in its page group are allocated, and partial
if only a strict subset of these are allocated. If no page is
allocated we call a row empty.

ALIS requires a physical to DRAM address mapping
that satisfies the following condition: any two pages of
an arbitrary row’s page group have identical row groups
themselves. If this condition holds, we can prove the
following two properties:

7

1

Physical Address Space

+ +0

2
+64K

3
+128K

4
+192K

5
+256K

6
+320K

7
+384K

8
+448K

+512K

Buffer

DRAM Address Space

2
6

3
7

1
5

4
8

...

...

...

16K rows

16K rows

16K rows

Bank 0

(a)

1

Physical Address Space

+0

2
++2M

3
++4M

4
++6M

5
++8M

6
+10M

7
+12M

8
+14M

+16M

Buffer

DRAM Address Space

1
2
3
4
5
6
7
8

RANK 0

1
2
3
4
8
7
6
5

RANK 1

(b)

1

Physical Address Space

+ +0

2
++256

3
++512

4
++768

5
++1K

6
+1.25K

7
+1.5K

8
+1.75K

+2K

Buffer

DRAM Address Space

1

CHAN 0

CHAN 1

3 5 7 ...

2 4 6 8 ...

Row X

Row X

(c)

Figure 6: Examples of nonlinear DRAM address mappings taken from real systems [9, 45, 50].

(1) Enumeration property: To list all rows accessible
by owning pages in a page group, it is sufficient to list
any such page’s row group.

(2) Fullness property: Rows that share page groups
have the same allocation status — a row is full, partial or
empty if and only if all rows in its pages’ row group are
respectively full, partial or empty.

For the interested reader we present a formal descrip-
tion of these properties, along with sufficiency criteria
and proof that they hold for common architectures in [6].

Assuming a mapping where these properties hold,
we now discuss how ALIS security allocates isolated
RDMA buffers.

6.3 Allocation Algorithm

Preparatory Steps. Initially, ALIS reserves a buffer and
locks it in memory, so that any virtual memory map-
pings are not changed through the course of allocation
or usage. Subsequently, ALIS translates the physical
pages that back the reserved buffer into to their respective
DRAM addresses. Translating from physical addresses
to DRAM addresses is performed using mapping func-
tions available through manufacturer documentation [9]
or previously reverse-engineered [45].At the end of this
step we have a complete view of the allocated buffer in
DRAM address space.

Pass 1: Marking. ALIS iterates through the rows of
the buffer in DRAM address order and marks all (allo-
cated) pages of a row as follows: Partially allocated rows
have their pages marked as UNSAFE. Completely allo-
cated (i.e. full) rows preceded or followed by a partially
allocated or empty row are marked EDGE. Due to the
fullness property we can be certain that any partial row
groups have their pages marked UNSAFE at the first oc-
currence of one of its members in the enumeration. We
can therefore be certain that a row, once concluded safe,
will not be marked otherwise later. In addition, the enu-
meration property guarantees that if an edge row is found
later in the pass, such as block 4 in Figure 6b, previous

rows containing the same pages will be correctly “back-
marked” as EDGE.

Pass 2: Gathering. ALIS now makes a second pass
over the DRAM rows, searching for contiguous row
blocks of unmarked pages, bordered on each side by rows
with marked EDGE. We add each of these row blocks
to a list while marking all their pages as USED. At the
end of this step we have a complete list of all guard-
able memory areas immediately available for allocation.
Note these row blocks are isolated from each other and
all other system memory by a padding of at least one
guard row.

Pass 3: Pruning. In this final cleanup pass, ALIS iter-
ates through allocated pages, unmapping and returning to
the OS pages that aren’t marked as USED, freeing up any
non-essential memory reserved and locked by the previ-
ous steps.

Reservation and Mapping. ALIS can now use the data
structure obtained in the previous steps to allocate iso-
lated buffers using one or more row blocks. Applications
can map the (physical) pages in these buffers into the
virtual address space at desired locations to satisfy the
allocation request.

6.4 Implementation

We have implemented ALIS on top of Linux as a user-
space library using 2518 lines of C code. ALIS reserves
memory by mapping a file descriptor associated with
anonymous shared memory (i.e., a memfd on Linux).
The reserved area is locked using the mlock system call.
ALIS uses the /proc/self/pagemap interface [32], to
translate the buffer’s virtual addresses to physical ad-
dresses. Finally, ALIS maps particular page frames into
the process’ virtual address space using the mmap system
call by providing specific offsets into the memfd to spe-
cific virtual addresses using the MAP FIXED flag. These
mechanisms allow ALIS to seamlessly replace memory
allocation routines used by applications with an isolated
version. ALIS supports translation between the physical
address space to the DRAM address space for the mem-

8

ory controller of all major CPU architectures.

7 Protecting Applications with ALIS

In this section, we show how we used ALIS to protect
two popular applications that provide distributed key-
value services, namely memcached [29] and HERD [31]
against remote Rowhammer attacks. One key observa-
tion is that there are a few different ways to allocate
space for the RDMA buffer. Since we are interested in
isolating the memory used as the RDMA buffer for con-
taining RDMA bit flips, it is crucial to understand the
way each application manages memory for its RDMA
buffers. Our allocator is capable of handling common
cases such as when the memory is allocated with mmap

or posix_memalign while it can be extended to support
additional constructs. We now discuss the specifics of
the applications which we tried with our custom alloca-
tor. We evaluate the performance of both systems when
deployed using our custom allocator in §8.2.

7.1 Memcached
Many large-scale Internet services use DRAM-based
key-value caches like memcached. In principle, mem-
cached serves as a cache in front of a regular database
which implements the back-end of the application.
Memcached with RDMA support [29] provides lower
latency and higher throughput compared to the origi-
nal memcached. This is done by introducing traditional
RDMA-enabled set and get APIs. Given that memcached
is a popular application, exploitable bit flips caused over
the network as we discussed in §5 can affect many users.

RDMA-memcahced is not open-source. We hence
reverse engineered its binary to discover that it uses
posix_memalign for allocating the RDMA buffers.
Total size of these RDMA-buffers is approximately
5 MB. Unfortunately, instead of using the standard libc-
provided posix_memalign, memcached-rdma uses its
own statically-linked implementation. We hence needed
to perform a simple binary instrumentation to instead
jump to our implementation of posix_memalign which
allocates isolated buffers.

7.2 HERD

HERD [31] is a key-value store that leverages RDMA
to deliver low latency and high throughput. Unlike sim-
ilar systems, HERD has been designed with RDMA in
mind. The system offers clean RDMA primitives, and
heavily relies on RDMA to reduce round-trip times, re-
duce latency, and maximize throughput. As a case-study,
HERD is ideal, since simply turning RDMA off is not an

option; the system is primarily designed around the con-
cept of RDMA. Thus, if anyone needs to take advantage
of the performance of HERD, they additionally need to
secure its RDMA buffer, otherwise its users run the se-
curity risks of remote Rowhammer attacks.

HERD initially allocates a shared-memory area using
shmget. This area is initialized and prepared to be even-
tually used as an RDMA buffer and is hence registered
to an RDMA-capable NIC. The size of this area is 6 MB.
This area is mapped to the multi-threaded worker pro-
cess, using POSIX shmget mechanism. Each worker
thread periodically polls the shared region for a new re-
quest in a round-robin fashion. HERD clients utilize a
GET/PUT interface to place requests in the allocated area
using one-sided RDMA writes. Upon receiving a new re-
quest the worker thread updates local data structures and
sends back the result using RDMA two-sided send.

As mentioned, HERD’s initializer process uses
shmget to allocate the RDMA buffer and share it with its
worker process. While we could extend ALIS to support
shmget, instead we opted to declare a global variable in
HERD’s initializer process to store allocated the RDMA
buffer address and pass it to the worker process. This
required modifying 10 lines of code in HERD.

8 Evaluation

We use the same testbed that we used in §4 for our evalu-
ation. Firstly we made sure ALIS was indeed protecting
our system from bit flips. We modified Throwhammer’s
client to allocate isolated RDMA buffers using ALIS.
Hammering remotely for extended periods of time with
different strategies did not generate any bit flips outside
the RDMA buffers unlike previously, thus enforcing the
RDMA security model as discussed in §2.2.

We now evaluate in detail the memory overhead and
performance impact of protecting applications.

8.1 Allocation Overhead
To calculate the overhead of ALIS, we wrote a simple
test application that allocates an isolated buffer of a given
size and reports how long it took for the allocation to suc-
ceed. Note that in most cases, we only pay this (modest)
overhead once at initialization of the target application.
Given that ALIS pools these allocations, in cases where
an application re-allocates these buffers (e.g., [43, 8]),
the subsequent allocations of the same size will be fast.
We also collected statistics from our allocator in terms of
the number of extra pages that we needed to allocate for
guard rows.

Configurations We experimented with all possible
configurations including multiple DRAM modules,

9

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(a) Two 4 GB (single rank, dual channel).

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(b) Single 8 GB (two ranks).

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(c) Four 4 GB (single rank, dual channel).

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(d) Two 8 GB (two ranks, single channel).

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(e) Two 8 GB (two ranks, dual channel).

 0

 20

 40

 60

 80

 100

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

 0

 20

 40

 60

 80

 100

T
im

e
 (

s)

M
e
m

o
ry

 o
v
e
rh

e
a
d

 (
M

B
)

MB

Time
Memory

(f) Four 8 GB (two ranks, dual channel).

Figure 7: The allocation time and memory overhead of isolating RDMA buffers of various sizes in different configurations.

channels, and ranks. We assume that up to half of the
memory can be used for RDMA buffers, but nothing
stops us from increasing this limit (e.g., 80%). We run
each measurement 5 times and report the mean value.

Figure 7 shows two general expected trends in all con-
figurations: 1. the allocation time increases as we request
a larger allocation due to the required extra computation,
2. the amount of extra memory that our allocator needs
for guard rows increases only modestly as we allocate
larger safe buffers. In fact, the relative overhead becomes
much smaller as we allocate larger buffers.

We also make a number of other observations: 1. the
size of installed memory does not affect the allocation
performance (Figure 7a vs. Figure 7c), 2. increasing the
number of ranks and channels increases the allocation
time. 3. The number of ranks increases the allocation
time more than the number of channels (Figure 7a vs.
Figure 7b and Figure 7c vs. Figure 7d). Given that col-
umn address bits splice the DRAM address space into
finer chunks than the channel bits, our allocator requires
more computation to find safe memory pages when rank
mirroring is active.

In general, allocating larger buffers slightly increases
the amount of memory required for isolating the buffers
given that our allocator stitches multiple safe blocks to-
gether to satisfy the requested size. Interestingly, as we
allocate more memory, the allocator requires fewer areas
and in some cases, this reduces the amount of memory
required for guard rows (Figure 7a and Figure 7b).

8.2 RDMA Performance

We now report on the performance implications of using
ALIS on RDMA-memcached and HERD (§7). We use
the same testbed that we used in our remote bit flip study

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

La
te

n
cy

 (
u
s)

Object Size (bytes)

memcached SET
memcached secured SET

memcached GET
memcached secured GET

Figure 8: Secured memcached performance.

(§4) and use the benchmarks provided by the applica-
tions. The benchmark included in RDMA-memcached
measures the latency of SET and GET requests with
varying value sizes. Figure 8 shows that our custom allo-
cator only introduces negligible performance overhead in
memcached-rdma. This is expected because ALIS only
introduces a small overhead during initialization.

The benchmark included with HERD reports the
throughput of HERD in terms of number of requests
per second. Our measurements show that isolating
RDMA buffers in HERD reduces the performance by
0.4% which is negligible. The original HERD paper [31]
achieves the throughput of 26 million requests per sec-
ond by using multiple client machines and a server ma-
chine with two processors. The authors of HERD ver-
ified that our throughput baseline is expected with our
testbed. Hence, we conclude that ALIS does not incur
any runtime overhead while isolating RDMA buffers.

10

9 Related work

9.1 Attacks

Rowhammer was initially conceived in 2014 when re-
searchers experimentally demonstrated that flipping bits
in DDR3 for x86 processors by just accessing other parts
of memory is possible [33]. Since then, many researchers
have delivered techniques for reliably flipping bits that
affect critical information. For instance, researchers have
managed to flip bits that affect page tables for privilege
escalation [48]. Later it became clear that adversaries can
flip bits through the browser in JavaScript [14, 26] and
across virtual machine boundaries [13, 47, 55] for tar-
geting page tables or cryptographic keys. Rowhammer
attacks can further target other architectures than x86,
such as ARM in mobile devices [54]. There have also
been reports of bit flips on DDR4 modules [54, 38].

In all of these instances, the key concept is to orches-
trate an attack that promotes hammering to an actual ex-
ploit. For this, the attacker needs to find a way to trigger
the right bit flips that can alter the critical information
(page tables, cryptographic keys, etc.), and thus affect
the security of the system. All these cases assume that
the attacker has local code execution. In this paper, we
showed how an adversary can induce bit flips by merely
sending network packets.

9.2 Defenses

Although we have plenty of advanced attacks exploiting
bit flips, defenses are still behind. We stress here that
for some of the aforementioned attacks that affect real
products, vendors often disable software features. Linux
kernel disabled unprivileged access to pagemap [32] in
response to Seaborn’s attack [48], Microsoft disabled
deduplication [20] in response to the Dedup Est Machina
attack [14] and Google disabled the ION contiguous
heap [53] in response to the Drammer attack [54]. A
similar reaction to the attack outlined in this paper could
be potentially disabling RDMA, which (a) in not realis-
tic, and (b) does not solve the problem entirely. There-
fore, we presented ALIS, a custom allocator that iso-
lates a vulnerable RDMA buffer (and can in principle
isolate any vulnerable to hammering buffer in memory).
ALIS is quite practical, since, compared to other pro-
posals [11, 15], is completely implemented in user-space
without modification to the software that ALIS protects
and without requiring special hardware features.

More precisely, concurrent work, CATT [15] can only
protect kernel memory against Rowhammer attacks. We
showed, however, that it is possible to target user ap-
plications with Rowhammer over the network. Further-
more, CATT requires kernel modification which intro-

duce deployment issues (especially in the case of data
centers). In particular, it applies a static partitioning be-
tween memory used by the kernel and the user-space.
The kernel, however, often needs to move physical mem-
ory between different zones depending on the currently
executing workload. In comparison, our proposed al-
locator is flexible, does not require modification to the
kernel, and unlike CATT, can safely allocate memory by
taking the physical to DRAM address space translation
into account.

Another software-based solution, ANVIL [11] also
lacks the translation information for implementing a
proper protection. It relies on Intel’s performance moni-
toring unit (PMU) that can capture precisely which phys-
ical addresses cause many cache misses. By access-
ing the neighboring rows of these physical addresses,
ANVIL manually recharges victim rows to avoid bits
to flip. An improved version of ANVIL with proper
physical to DRAM translation can be an ideal software
defense against remote Rowhammer attacks. Unfortu-
nately, Intel’s PMU (or AMD’s) does not capture pre-
cise address information when memory accesses bypass
the cache through DMA. Hence, our allocator can pro-
vide the necessary protection for remote DMA attacks
(or even local DMA attacks [54]) while processor ven-
dors extend the capabilities of their PMUs.

10 Conclusion

Thus far, Rowhammer has been commonly perceived as
a dangerous hardware bug that allows attackers capable
of executing code on a machine to escalate their privi-
leges. In this paper, we have shown that Rowhammer is
much more dangerous and also allows for remote attacks
in practical settings. We show that even at relatively
modest network speeds of 10 Gbps, it is possible to flip
bits in a victim machine from across the network. In our
experiments, we used RDMA-enabled NICs, but it is not
unlikely that the same can be achieved without RDMA,
since the rate at which such NICs can access memory is
sufficiently fast for Rowhammer. Moreover, history has
shown that attacks only gets better. Remote Rowham-
mer attacks place different demands on both the attack-
ers and the defenders. Specifically, attackers should look
for new ways to massage memory in a remote system.
Meanwhile, defenders can no longer prevent Rowham-
mer by banning local execution of untrusted code. We
showed how an attacker can exploit remote bit flips in
memcached to exemplify a remote Rowhammer attack.
We further presented a novel defense mechanism that
physically isolates the RDMA buffers from the rest of the
system. Thus, while it may be hard to prevent Rowham-
mer bit flips altogether without wide-scale hardware up-
grades, it is possible to contain their damage in software.

11

References
[1] About H-series and compute-intensive A-series VMs for

Windows. https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/a8-a9-a10-a11-specs, Re-
trieved 27.11.2017.

[2] Amazon EC2 Instance Types. https://aws.amazon.com/

ec2/instance-types, Retrieved 27.11.2017.

[3] Compute Intensive Instances. https://docs.microsoft.

com/en-us/azure/virtual-machines/windows/

sizes-hpc, Retrieved 27.11.2017.

[4] Microsoft announces Windows 10 Pro for Workstations.
https://blogs.windows.com/business/2017/08/10/

microsoft-announces-windows-10-pro-workstations/,
Retrieved 27.11.2017.

[5] Program for testing for the DRAM “rowhammer” problem.
https://github.com/google/rowhammer-test, Retrieved
27.11.2017.

[6] Properties of a Physical-to-DRAM Address Mapping. https://
www.vusec.net/download/?t=papers/dram-formal.pdf.

[7] Technical Info: A Deep Dive Into ProfitBricks. https://www.

profitbricks.com/technical-info Retrieved 27.11.2017.

[8] MPI One-Sided Communication, 2014. https:

//software.intel.com/en-us/blogs/2014/08/06/

one-sided-communication, Retrieved 27.11.2017.

[9] ADVANCED MICRO DEVICES. BIOS and Kernel Developers
Guide (BKDG) for AMD Family 15h Models 60h-6Fh Proces-
sors. May 2016.

[10] ANDERSEN, S., AND ABELLA, V. Data execution prevention.
changes to functionality in microsoft windows xp service pack 2,
part 3: Memory protection technologies, 2004.

[11] AWEKE, Z. B., YITBAREK, S. F., QIAO, R., DAS, R., HICKS,
M., OREN, Y., AND AUSTIN, T. ANVIL: Software-Based Pro-
tection Against Next-Generation Rowhammer Attacks. ASP-
LOS’16.

[12] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A Protected Data-
plane Operating System for High Throughput and Low Latency.
OSDI’14.

[13] BHATTACHARYA, S., AND MUKHOPADHYAY, D. Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using Timing
Analysis. CHESS’16.

[14] BOSMAN, E., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector. SP’16.

[15] BRASSER, F., DAVI, L., GENS, D., LIEBCHEN, C., AND
SADEGHI, A.-R. CAn’t Touch This: Software-only Mitigation
against Rowhammer Attacks targeting Kernel Memory. SEC’17.

[16] CAI, Y., GHOSE, S., LUO, Y., MAI, K., MUTLU, O., AND
HARATSCH, E. F. Vulnerabilities in MLC NAND flash mem-
ory programming: experimental analysis, exploits, and mitiga-
tion techniques. HPCA’17.

[17] CAI, Y., GHOSE, S., LUO, Y., MAI, K., MUTLU, O., AND
HARATSCH, E. F. Vulnerabilities in MLC NAND Flash Memory
Programming: Experimental Analysis, Exploits, and Mitigation
Techniques. HPCA’17.

[18] COCK, D., GE, Q., MURRAY, T., AND HEISER, G. The Last
Mile: An Empirical Study of Timing Channels on seL4. CCS’14.

[19] COSTA, P., BALLANI, H., RAZAVI, K., AND KASH, I. R2C2:
A Network Stack for Rack-scale Computers. SIGCOMM’15.

[20] CVE-2016-3272. Microsoft Security Bulletin MS16-092
- Important. https: // technet. microsoft. com/ en-us/

library/ security/ ms16-092. aspx (2016).

[21] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. FaRM: Fast Remote Memory. NSDI’14.

[22] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. SOSP’15.

[23] GEORGE, V., PIAZZA, T., AND JIANG, H. Technology insight:
Intel R© next generation microarchitecture codename ivy bridge.
In Intel Developer Forum (2011).

[24] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the Line: Practical Cache Attacks on the
MMU. NDSS’17.

[25] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR. CCS’16.

[26] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.
DIMVA’16.

[27] INTEL, I. Intel-64 and ia-32 architectures software developer’s
manual. Volume 3A: System Programming Guide, Part 1, 64
(2013).

[28] JEONG, E. Y., WOO, S., JAMSHED, M., JEONG, H., IHM, S.,
HAN, D., AND PARK, K. mTCP: A Highly Scalable User-level
TCP Stack for Multicore Systems. NSDI’14.

[29] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J.,
WASI-UR RAHMAN, M., ISLAM, N. S., OUYANG, X., WANG,
H., SUR, S., AND PANDA, D. K. Memcached Design on High
Performance RDMA Capable Interconnects. ICPP’11.

[30] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-
sided (RDMA) Datagram RPCs. OSDI’16.

[31] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA Efficiently for Key-value Services. SIGCOMM’14.

[32] KERNEL, L. https://www.kernel.org/doc/

Documentation/vm/pagemap.txt, Retrieved 27.11.2017.

[33] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE, D.,
WILKERSON, C., LAI, K., AND MUTLU, O. Flipping Bits in
Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. ISCA’14.

[34] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203 (2018).

[35] KURMUS, A., IOANNOU, N., PAPANDREOU, N., AND PAR-
NELL, T. From random block corruption to privilege esca-
lation: A filesystem attack vector for rowhammer-like attacks.
WOOT’17.

[36] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer Integrity. OSDI’14.

[37] LANTEIGNE, M. A Tale of Two Hammers: A Brief Rowham-
mer Analysis of AMD vs. Intel. http://www.thirdio.com/

rowhammera1.pdf, May 2016.

[38] LANTEIGNE, M. How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware. http://www.thirdio.

com/rowhammer.pdf, March 2016.

[39] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.,
HAAS, W., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown. arXiv preprint
arXiv:1801.01207 (2018).

12

[40] LIU, F., YIN, L., AND BLANAS, S. Design and Evaluation of
an RDMA-aware Data Shuffling Operator for Parallel Database
Systems. EuroSys’17.

[41] MITCHELL, C., GENG, Y., AND LI, J. Using One-sided RDMA
Reads to Build a Fast, CPU-efficient Key-value Store. USENIX
ATC’13.

[42] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL,
H., GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D.,
AND ZATS, D. TIMELY: RTT-based Congestion Control for the
Datacenter. SIGCOMM’15.

[43] NORONHA, R., CHAI, L., TALPEY, T., AND PANDA, D. K. De-
signing NFS with RDMA for Security, Performance and Scala-
bility. ICPP’07.

[44] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. CCS’15.

[45] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. SEC’16.

[46] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D.,
KRISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Ar-
rakis: The Operating System is the Control Plane. OSDI’14.

[47] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUF-
FRIDA, C., AND BOS, H. Flip Feng Shui: Hammering a Needle
in the Software Stack. SEC’16.

[48] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges. BHUS’15.

[49] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDER-
MAN, B., GERMANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HÖLZLE, U., STUART,
S., AND VAHDAT, A. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network.
SIGCOMM’15.

[50] STANDARD, J. DDR3 SDRAM. JESD79-3C, Nov 2008.

[51] TANG, J., AND TEAM, T. M. T. S. Exploring con-
trol flow guard in windows 10. http: // blog.

trendmicro. com/ trendlabs-security-intelligence/

exploring-control-flow-guard-in-windows-10 , Re-
trieved 27.11.2017.

[52] TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY,
S., ERLINGSSON, U., LOZANO, L., AND PIKE, G. Enforc-
ing Forward-edge Control-flow Integrity in GCC and LLVM.
SEC’14.

[53] TJIN, P. android-7.1.0 r7 (Disable ION HEAP TYPE SYSTEM
CONTIG). https: // android. googlesource. com/

device/ google/ marlin-kernel/ +/ android-7. 1. 0\

_r7 (2016).

[54] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M.,
GRUSS, D., MAURICE, C., VIGNA, G., BOS, H., RAZAVI, K.,
AND GIUFFRIDA, C. Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms. CCS’16.

[55] XIAO, Y., ZHANG, X., ZHANG, Y., AND TEODORESCU, R.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer At-
tacks and Privilege Escalation. SEC’16.

[56] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-channel Attack. SEC’14.

[57] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN,
M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H.,
AND ZHANG, M. Congestion Control for Large-Scale RDMA
Deployments. SIGCOMM’15.

13

