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Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped
mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use
of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health
sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we
present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each
of these components, we explain how mobility data science differs from general data science, we survey the current state of the art,
and describe open challenges for the research community in the coming years.
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Fig. 1. The Mobility Data Science Pipeline

1 INTRODUCTION

The volume of mobility data being collected has been steadily increasing since the advent of affordable personal location-
enabled mobile devices. Examples of mobility data continuously generated and collected in huge volumes include:
(a) individual sporadic locations obtained from mobile app data and location-based social networks, (b) individual
pedestrians, biking, or driving trajectories constrained by underlying side walks, biking trails, and road network,
respectively, (c) indoor individual or asset tracking data obtained from RFID and bluetooth devices, (d) athletes
movement data in various sports obtained from wearable devices, (e) public transportation, taxis, ride sharing, and
delivery logistics trajectories obtained by location-tracking devices and specially designed app services, (f) aircraft and
vessels trajectories moving in an unconstrained environment (i.e., no underlying road network) obtained by air and sea
traffic monitoring services, and (g) animal tracking data moving freely in the space obtained from physically tagged and
remotely sensed animals. Generally speaking, for each moving object, mobility data is typically available in the form of
a sequence of (location, timestamp) pairs. The location attribute could be as simple as a point, represented by either
latitude and longitude coordinates or as relative coordinates with respect to the underlying space. The location attribute
could also be an area, which can represent the mobility of objects with spatial extents, e.g., flocks or group movement.

The ability of understanding and analyzing mobility data is crucial for various widely used important sectors
and applications. In transportation and traffic management, analyzing traffic data through vehicle mobility helps in
predicting accidents [159], traffic congestions [260], and better route planning [51]. In ride sharing and delivery logistics
application, analyzing trip mobility data help in data-driven eco route planning, which results in huge cost and energy
savings [97]. In location-based services, analyzing people movements around the city significantly helps in trip planning
activities [219], finding popular tourists sites and restaurants [119], and data-driven routing and querying [220]. In
indoor navigation, understanding how people move indoors helps in understanding the traffic for various stores inside
a mall, which is needed in various market research studies [115]. In urban planning, driving data can significantly
Manuscript submitted to ACM
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help in building highly accurate, reliable, and annotated maps [160] as well as deciding on good location for various
facilities, e.g., restaurants, retail stores, and clinics [208]. In social computing, analyzing how people move in cities and
regions helps in understanding the demand for infrastructure and energy as a means of reducing inequalities [202]. In
disaster response, analyzing crowd movement helps in preparing for natural disasters through rescuing and evacuation
efforts [106]. In health informatics, connected wearables can monitor and analyze the movement of elderly people,
allowing for timely, and potentially life-saving, interventions [135]. In pandemic prevention, the ability of privacy-
preserving individual tracking allows for contact tracing, which was deemed as cornerstone in limiting pandemic
spread [156, 279].

Despite the common goal of acquiring, managing, and generating insights from mobility data, the mobility data
science community is largely fragmented, developing solutions in silos. It stems from a range of disciplines with
expertise in moving object data storage and management [100], geographic information science [89], spatiotemporal
data mining [212], human mobility modelling [27], ubiquitous computing, computational geometry and more. The
sheer volumes of mobility data along with the immense need of mobility data analysis in various applications call
for employing a complete Data Science pipeline [192] over mobility data. This includes the whole pipeline of Data
Science applications, starting from the data storage and management infrastructure and going through data collection,
data cleaning and preprocessing, and data analysis. Unfortunately, this is not straightforward as current Data Science
systems, tools, and algorithms are not directly applicable to mobility data. This is mainly due to the fact that these
systems, tools, and algorithms, are designed in a generic way to support any data type, and hence they do not lend
themselves to the distinguishing characteristics of mobility data. Examples of such characteristics include the spatial
and temporal dimensions of the data, the rate of updates, and the privacy requirements. In particular, mobility data is
always spatial, where nearby objects are more related to each other. This is unlike traditional data, where the concept
of nearby and locality is not taken into account. Also, similar to time series data, mobility data is temporal, where one
object may have hundreds of updates to its location, and all updates are related to each other (e.g., one trajectory). This
is again unlike traditional data, where temporal updates of a single object are not frequent and older updates would be
of less importance. Similar to streaming data, mobility data has a high frequency of updates, which is not supported
in typical data science applications. Finally, mobility data is more sensitive to privacy. While privacy-preserving in
traditional data can be achieved by removing (quasi-)identifier attributes, in mobility data, locations by themselves are
considered private information that can reveal not only the users’ identities, but also their behavior, life style, medical
conditions, and work places.

Motivated by ubiquity and sheer volumes of mobility data, the importance of mobility applications, and the lack
of support from current data science pipelines, this paper presents a pipeline for Mobility Data Science. We define
Mobility Data Science as an interdisciplinary field that uses scientific methods, processes, algorithms and systems to
extract or extrapolate knowledge and insights from potentially noisy, structured and unstructured mobility data, and
apply knowledge from mobility data across a broad range of application domains. While currently, the community
of developers, practitioners, and researchers, dealing with mobility data use off-the-shelf data science techniques
and systems to collect, clean, manage, and analyze their mobility data, we firmly believe that this ends up to sub-bar
performance. We urge such community to build its own mobility data science pipeline to better serve its own purpose.
This paper makes the case for the need for a mobility data science pipeline along with the challenges that need to be
addressed to realize it.
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2 MOBILITY DATA COLLECTION

The abundance availability of real data is a cornerstone to any data science application, and mobility data science
applications are of no exception. However, it is much easier to collect and find tons of data for data science applications
than it is the case for mobility data science. In particular, for data science applications, well-established research in
anonymizing personal data allows wide data sharing. This is to the extent that governments have released various
datasets for public (e.g., Data.gov). In addition, companies already collect their own inventory data that does not include
any personal identifiers, and hence it is suitable to be fed to data science applications. On the other side, data-driven
mobility data science research has been in a constant struggle with the need for available mobility data. A main reason
is that non-aggregated individual human location data is considered personal identifiable information as it may lead
to tracing an individual’s identity. For example, it has been shown that only a few spatial locations are sufficient to
uniquely identify individuals even among a large population of people [204]. As a result, most datasets are collected in
aggregated form, which hinders the deployment of various mobility data science applications. This sections discuss
current efforts and challenges of mobility data collection.

2.1 Efforts in Mobility Data Collection

Before the wide availability of personal digital devices, human mobility data collection was expensive and therefore
datasets were very sparse. With the advent of personal location-enabled devices, many people’s movements have started
leaving digital traces that are being collected either by industry as a means of providing location-based services [198]
or by governmental entries as a means of data analysis, e.g., traffic-related studies [234]. However, this did not result in
a similar explosion of publicly available mobility data, mainly due to privacy and data sharing concerns.

Current efforts in releasing public non-aggregated mobility data is mainly limited to small datasets, small regions,
while removing locations that can lead to one’s whereabouts. This mostly include trips obtained from taxis, ride sharing
services, or public transportation. Some of these datasets include detailed trajectory data for the following cities (ordered
alphabetically): (1) Athens [28]. 500K trajectories collected over 5 days in downtown Athens, Greece, (2) Beijing 1 [273].
17+K trajectories with 26 Million GPS points over three years in Beijing, China, (3) Beijing 2 [261]. 10+K trajectories
with 15 Million GPS points over one week in Beijing, China, (4) Rio [70]. 12+K Buses with detailed trajectories of 118+
Million GPS points over 30 days in Rio de Janeiro, Brazil, (5) Rome [41]. 320 Taxis with detailed trajectories of 21+
Million GPS points over 30 days in Rome, Italy, (6) San Francisco 1 [180]. 536 Taxis with detailed trajectories of 11+
Million GPS points over 30 days in San Francisco, CA, USA, (7) San Francisco 2 [1]. 20+K detailed trajectories with 5+
Million GPS points in San Francisco, CA, USA. (8) Shenzhen [240]. 664 Taxis with detailed trajectories of 1.1+ Millions
GPS points over one day in Shenzhen, China, (9) Singapore [108]. 84K trajectories with 80+ Million GPS points over a
month in Singapore. Other datasets only include the origin and destination of each trajectory. Examples include the
following cities: (1) Austin [194]. 1.5 Million trips for a period of 10 months in Austin, TX, USA, (2) Guangdong [258].
2.5 Million trips over one day in Guangdong Province, China, (3) NYC [169]. 1.5 Million Taxi trips over a period of 6
months in New York City, NY, USA, (4) Porto [181]. 426K Taxi trips over three months in Porto, Portugal,

Other than trip and trajectory road network data, there are tons of available biking data across the world, including
tens of millions trips in Bay Area [140], Boston [139], Chicago [71], Columbus [62]. London [136], Los Angeles [38],
Madrid [142], Minneapolis [165], New York City [60], Philadelphia [112], Portland [39], and Washington D.C. [44].
There are also available public marine traffic that include detailed vessel trajectories (e.g. [177]), sport data sets for
basketball and soccer that include a variety of events took place in major leagues within one season [175], and indoor
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data about the behaviors of nearly 30 Year-10 students and their teachers collected over four weeks in Australia, with
spatial reference (associations to rooms) and highly granular wearable data [84].

However, there are some large-scale aggregated datasets on a coarse granularity that can help in high level analysis,
but not to get insight details of mobility data. Examples of such aggregate data include origin-destination employment
statistics in the USA that contains home-to-work commuting flows aggregated to census tract level [91], cell phone trace
datasets capturing the locations of individuals aggregated to their nearest cell tower [237], foot traffic data of check-ins
of 35 million anonymized mobile devices in USA are aggregated to census block groups [199], and a global database
about aggregate indoor occupant behavior, composed of 34 datasets from 15 countries and 39 institutions, collected
by occupancy sensors that measure the occupancy count of each space being monitored [73]. An additional source
of human mobility data is location-based social network (LBSN) data. LBSN data captures both 1) discrete check-ins
between users and locations, and 2) a social network between users. This dimension of location bridges the gap between
the physical world and online social networking services [271]. However, it has been shown existing LBSN data sets are
too small to broadly understand, analyze, and predict human behavior [127].

The lack of available mobility data, combined with the need to stress test various research ideas have motivated
various research groups to either develop their own data simulators or develop publicly available simulators that can also
be used by other researchers for benchmark datasets. However, such simulators were mainly designed to test specific
aspects of research, but not meant to be representative of real mobility data. For example, various simulators were
mainly designed to test new index structures for mobility data, query processing algorithms, and system infrastructure
scalability for managing spatiotemporal data (e.g., [154]). Within the transportation community, more fine granularity
simulators (e.g., [34]) were proposed to study traffic infrastructure, but none of them is meant to provide comprehensive
mobility study.

2.2 Challenges in Mobility Data Collection

This section presents some of the challenges in mobility data collection that the community needs to address towards
realizing the pipeline of mobility data science.

Challenge 1. Mobility Data Privacy. In most cases, (human) mobility data is sensitive and considered as personal
identifiable information. This puts major privacy concerns on data sharing. Hence, any attempt to collect fine granularity
detailed trajectory or human mobility data must first address the privacy challenge. Though the general topic of data
privacy has been well studied in literature with practical solutions, such solutions are not directly applicable to the case
of mobility data. In particular, mobility data gives rise to the TUL (Trajectory-User Linking) problem [86]. To protect
users’ actual locations, while preserving meaningful mobility information for various learning tasks, one may wish to
generate realistic motions based on real-world mobility datasets [274]. Since privacy is a core problem in mobility data
that does not only impact data collection, but also impacts all other components of the mobility data science pipeline,
we dedicate Section 6 to discuss mobility data privacy in details.

Challenge 2. Mobility Data Bias. Mobility data collection procedures suffer from all kinds of bias. For example,
mobile applications data and mobile phone network data are biased against people who do not use smart phones
or use prepaid plans. Most traffic counting sensors are installed to count cars but do not count pedestrians, cyclists,
wheelchairs, or similar. Cells in mobile phone networks vary widely in size. The data traces that are usually collected in
cellular networks are cellular themselves. This affects rural areas with larger cells more than urban areas. Volunteered
tracking data is biased towards technically savvy people. Sports tracking data is biased towards health conscious middle
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and upper class. It is important to understand, measure, and mitigate data bias in mobility datasets to ensure that actions
and policies that are based on mobility data science results are equitable, fair, and include vulnerable populations [207].

Challenge 3. Incentives for Data Sharing. Users need to have good incentives to share their locations. To some
degree, users kind of agree to share their locations with commercial entities to get location-based services, ride sharing,
cell phone coverage, delivery, among other services. However, it is understood that users would be reluctant to publicly
share their mobility traces. Meanwhile, the biking community have shown a great example for sharing their biking
trails. A main reason is that, in many places of the world, most of these trails are not really home-to-work commuting,
but it is more of an outdoor activities. Hence, sharing biking trails helps fellow bikers in knowing the conditions of
biking trails, which is a great incentive for sharing. More incentives need to be given for drivers to share their mobility
traces, even for sporadic trips that do not lead to identifiable locations. Sharing could be for part of the trajectory
where rewards are given back based on the sharing length and resolution. A gamification concept may be exploited to
encourage more participants to share.

Challenge 4. Simulated Mobility Data. The dire need to mobility data along with the difficulty of obtaining them
made it apparent that simulated synthetic data is immensely needed to enrich and train mobility data science applications.
However, the challenge is to go beyond earlier attempts of simulating data for testing very specific techniques to
simulating data for the general purpose of having realistic life scenarios. Empowered by modern computational
capabilities that make it possible to simulate large populations, the mobility community should work with social
scientists to create realistic individual-level human mobility data. Lessons have been learned from the experience of
the deep learning community, by applying generative adversarial networks (GANs) for trajectory generation [264].
However, it is unclear as of yet, how to measure the realism of mobility data. If synthetic mobility data is too realistic,
for example, due to training on real human trajectories, it may invade someone’s privacy if, for instance, it shows
where members of a given household actually visit. On the flipside, benchmark data that is too disconnected from the
real-world and does not represent realistic human behavior would not allow to generalize to the real-world.
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3 MOBILITY DATA CLEANING

Until the early 21st century, location data and mobility data available for geographic information science (GIS) was
mainly collected, curated, standardized [79, 80], and published by authoritative sources such as the United States
Geological Survey (USGS) [233]. Now, data used for mobility data science is often obtained from sources of volunteered
geographic information (VGI) [218]. Such data is contributed by millions of individual users (more than ten million
contributors in the case of OpenStreetMap [171]) and is rarely curated. Mobility data collected from such sources is
highly uncertain due to physical limitations of sensing devices, due to obsoleteness of observations, and in many cases
plain incorrect due to deliberate misinformation [158]. Consequentially, our ability to unearth valuable knowledge
from large sets of mobility data is often impaired by the uncertainty of the data which geography has been named the
“the Achilles heel of GIS” [90].

Data cleaning and preprocessing is a milestone to all data science. In fact, it has been reported that data scientists
spend more than 80% of their time in data cleaning and preparations [163]. As a result, there are huge efforts in the
data science community dedicated to developing various data cleaning algorithms [57] and full-fledged systems [68].
Mobility data is of no exception in terms of its need for data cleaning and preparation procedures. But for numerous
reasons, data cleaning and preparation yields unique challenges. This section discusses current efforts and challenges of
mobility data cleaning.

3.1 Efforts in Mobility Data Cleaning

A recent survey [126] and data quality assessment tool [92] have discussed various sorts of errors that negatively impact
data quality in spatial and mobile environments. Motivated by the inaccuracy of location tracking devices, several
efforts were dedicated to address: (a) the spatial inherent inaccuracy of GPS devices and (b) the uncertainty of moving
objects whereabouts between each two known locations, which is a result of low sampling rates due to bandwidth and
battery limitations.

As the spatial inaccuracy indicates erroneous GPS coordinates, the efforts to identify and correct such coordinates
have focused on either finding and eliminating outliers or map matching all coordinates to an underlying fixed and
trusted infrastructure (e.g., road network map). For the case of map matching, existing efforts aim to match/snap all
GPS traces to an underlying road network [42, 46]. Proposed techniques vary from as simple as snapping each point
to its nearest road to applying Markov Chain to identify the most probable road segment that each point should be
snapped to. In case there is no underlying road infrastructure (e.g., marine transportation or animal movement), outlier
detection techniques are used to identify and remove erroneous points [226].

Irrespective of the collection method and device settings, there is also indispensable uncertainty in movement data
caused by their discreteness. Since time is continuous, the data cannot refer to every possible instant. For any two
successive instants, there is a temporal gap where the whereabouts of the moving objects are unknown. To overcome
such location uncertainty, several efforts were dedicated to modeling the uncertainty of mobility data surveyed in [280].
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3.2 Challenges in Mobility Data Cleaning

This section delves into some challenges linked to cleaning mobility data that the community need to tackle.

Challenge 5. Inaccuracy in the Movement Space Infrastructure. A unique challenge in mobility data is that in
many cases, its reference points are the ones that are inaccurate. In particular, mobility data that represent movement
on a road network may be more accurate than the road network itself. Road networks, like any other type of data,
suffer from all sorts of inaccuracy, and may not be even available in many places [161]. In fact, Microsoft has recently
announced that it has found more than one million kilometers of roads missing from current maps [149]. This is why
there is a whole area of industrial and academic research about map inference, which aims to infer (all or missing parts)
of the road network from either satellite images [29] or trajectory data [37]. However, almost all of these techniques
focus on making accurate maps in terms of topology. There need to be more efforts on map inference algorithms that
go beyond inferring the map topology to inferring map metadata (e.g., road speed, traffic lights, number of lanes, and
turns), without which, mobility data would not be accurate as its road network reference itself is missing important
data. A major step towards cleaning mobility data would be to first clean its reference map.

Challenge 6. Filling in Temporal Mobility Gaps. As mentioned earlier, there are lots of efforts dedicated to
modeling the uncertainty of moving objects whereabouts between each two consecutive time instances. However,
uncertainty poses different challenges to down stream functions and applications, including the need to develop new
techniques for indexing, query processing, and data analysis for various uncertainty models. One way to overcome this
is to try to infer the actual whereabouts of a moving objects between any two time instances with known locations.
There are already several efforts to insert artificial points between each two consecutive trajectory points, with the
promise that these points act as if the trajectory was collected in a very high sampling rate. This process has various
names, e.g., trajectory interpolation [137, 270], trajectory completion [131], trajectory data cleaning [263], trajectory
restoration [125], trajectory map matching [42], trajectory recovery [245], and trajectory imputation [77]. However, the
large majority of such work rely onmatching the trajectory points on the underlying road network, where the imputation
becomes finding the road network shortest path between each two consecutive trajectory points. Unfortunately, this is
not applicable to the case where the road network is unknown, untrusted, or inaccurate. Hence, more recent attempts
try to do data-driven trajectory imputation without relying on the underlying road network [77, 81]. However, these
techniques are either not scalable to city-scale trajectory datasets, or require dense historical data that derives its
imputation process. There is an immense need to develop a scalable, accurate, and fine-grained imputation that almost
mimics a continuous data stream of trajectory locations.
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4 MOBILITY DATA ANALYTICS

Spatial data is special. Unlike non-spatial features, location attributes (e.g., longitude and latitude) rarely exhibit linear or
other simple functional relationships to variables of interest. It rarely makes sense to model a variable of interest directly
in relation to spatial attributes. Instead, it is distances that matter. According to ToblerâĂŹs first rule of Geography,
“everything is related to everything else, but closer things are more related than things that are far apart” [223]. For
mobility data, proximity is further extended with time, i.e., objects that are close in space and time. In addition to this
concept of spatiotemporal autocorrelation, what makes mobility data even more challenging to handle is that it is
often observed from humans whose behavior can often be irrational and difficult to explain. As Nobel Prize laureate
Murray Gell-Mann famously said, “Think how hard physics would be if particles could think” [173]. But unlike in
physics, the “particles” of interest are often humans who can think. Data collection sensors have the capability to
capture the spatiotemporal locations of the moving objects, but not their behavioral aspects. These difficulties require
new paradigms, techniques, and algorithms to analyze and learn from the spatiotemporal data, and that can explain
and predict the associated behavior. This section discusses current efforts and challenges of mobility data analysis.

4.1 Efforts in Mobility Data Analytics

Mobility data analytics has already gained momentum in research in the recent years. Dedicated workshops have existed
in major conferences; including the ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data
(BigSpatial) since 2011 [211], the Big Mobility Data Analytics (BMDA) workshop in EDBT since 2018 [178], and the ACM
SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility (HANIMOB)@SIGSPATIAL
since 2021 [172]. Surveys on the status of research exist [20, 200].

Mobility data analytics encompasses various application domains and involves analyzing data from different –
sources such as urban [267], maritime [61], aviation [59], animal movement [172], and indoor movement [115]. Among
these different themes urban mobility stands out with a fairly large body of research including green routing [10],
traffic anomaly detection [174], hot spot and hot path analysis [167], road traffic prediction [162], and travel time
estimation [242]. Trajectories of moving objects have been used as means to create and continuously update the road
network [160]. Public transport systems also collect ticketing data in the form of passenger check-ins, sometimes also
associated with check-outs. This data has been shown very useful to transit planners in understanding passenger
demand and movement patterns in daily operations as well as in the strategic long-term planning of the network [229].
Personal mobility of individuals is also a subject of analysis that includes analyses, e.g., activity recognition [50, 176],
personalized routing [67], matching with ride-sharing services [19], and crowd-sourcing [179].

While a significant portion of research focuses on understanding and analyzing data through analytics, there are
also important efforts dedicated to developing generic analysis tools for spatiotemporal data that are agnostic to the
application domain. Efforts on generic methods for mobility data analysis include, among many others, trajectory
clustering [246], trajectory similarity measures [226], outlier detection [102], transportation mode classification [40],
spatiotemporal pattern detection [201], and trajectory completion [122]. However, and despite these many research
efforts towards analyzing mobility data, there is lack of common data analysis tools and systems. The scientific software
environment for mobility data analysis is rather fragmented. For example, [118] lists 58 packages in their review of R
packages for movement and [93] reviews Python libraries for movement data analysis and visualization.

Recent years have seen a notable increase on research on deep learning for mobility data analysis [138, 252]. This
brought an increased adoption of various paradigms and (adapted versions of) architectures used in other areas
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where deep learning has brought improvements in tasks, e.g., clustering/classification [150], prediction [123] and
recommendation [30], information propagation [276], etc. For example, Generative Adversarial Network (GAN) based
architectures have been used recently to learn representations of trajectories and generate synthetic trajectories
techniques [85]. Given the introduction of Transformers [235], transformed-based approaches have also been used
for mobility modelling and trajectory prediction [256], given the sequential properties of mobility data. Other deep
learning approaches such as contrastive learning [275] have also been exploited in mobile data settings, along with
investigation of the impact/benefits of representation learning [87].

4.2 Challenges in Mobility Data Analysis

This section highlights open problems related to mobility data analysis, that needs consideration from the community.

Challenge 7. ML for Mobility Data. The state-of-the-art deep learning (DL) models, such as Transformers [235]
were not developed initially for mobility data science in mind. They were derived from NLP and computer vision
domains. The community needs to provide best-case practices for doing ML (and DL) for mobility data.

A major hurdle, and a research opportunity as well, is that existing ML and analytics tools, e.g., TensorFlow, or
PyTorch, do not support location and mobility as base data types to reason about. So, even the basic analysis, such as
clustering, classification, similarity, etc, need to be extended when mobility data is involved. These tasks, as well as
higher-level analysis, can not be totally independent. Instead, common basic building blocks could have an impact on
all or some of them. For example, exploring the effectiveness of embedding for mobility data analysis is a basic block
that could impact different ML-based analysis tasks. This raises a challenge to build analysis primitives and common
building blocks for applications that could shape a framework of ML-based mobility data analysis.

Another major hurdle is the robustness in data-driven mobility models. It is widely known that data-driven models (as
in the case ofML or DL) are only as good as the data that it is used to be trained on. However, given the changes of mobility
behaviors, such as the COVID-19 pandemic and the associated lockdowns, and environmental events and disasters,
traditional ML based, and even recent DL based, methods are no longer robust. The models’ performance deteriorate
in unseen events, especially as new behaviors emerge and then persist. Recent effort includes the incorporation of
‘contextual-awareness’ and ‘memory’ in an enhanced event-aware spatiotemporal network [247] for predicting mobility
in multiple modes of transportation including taxi, cycling, subway during the unprecedented events like COVID
lockdowns, or snowstorms, as it emerged and up to 30 days post the event. However, more work to be done on modelling
and understanding mobility behavior, that are robust to changes due to societal events.

Challenge 8. Progressing from Next Location Prediction to Movement Behavior Understanding. Due to the
wide availability of aggregated check-in and foot-traffic data, many researchers focus on the problem of location
prediction, e.g., [255]. Leveraging predictions such as “User X will visit Coffee Shop A next” or “32 ± 4 users will
visit Coffee Shop A in the next hour” has some direct applications. It could be useful for providing information about
parking “parking at location X appears to be a problem today, so consider ...”, for battery charging opportunities, or
for providing information about collective transportation status “Metro station X that you are expected to visit is
closed for repairs, so instead ...”. One could provide a new transportation schedule and departure time in response to
problems at an anticipated future location of a user, just like airlines at times update your itinerary in case of issues.
Earlier work has been based on data mining techniques to detect periodic behavior, e.g., [36, 76, 117]. Beyond predicting
locations, if we understand the underlying behavior, at the individual-, group-, or population-scales, that leads to these
predictions, we could understand why one coffee shop chain has increasing visitor rates (e.g., due to a movement
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towards organic coffee sold by the coffee shop). Through inferring from the data about such behaviors, only then we
can take corresponding actions not only to predict locations, but also to prescribe actions (e.g., offering more organic
coffee) to improve visitor rates. This understanding of (human) behavior will broadly affect applications using mobility
data. Traditional spatiotemporal data science allows for predictive analytics to predict the future. In contrast, mobility
data science enables prescriptive analytics by understanding the underlying human behavior to devise actions and
policies that aim to achieve desirable targets.

An open problem for understanding mobility behaviour data is the lack of labels or human annotation to provide
insights on the actual observations. There are several other tricks that have been proposed, including cross-domain
data fusion as well as developing interpretability mechanisms for machine learning or deep learning models. When
geographical information is fused together with contextual features and social behaviours, not only location prediction
can be improved, but also insights can be provided about the underlying visitor behavior [255], even if no human-labelled
data are provided about the mobility behaviors.

Therefore, explainability of AI and machine learning models that have underpinned many of such predictive behavior
models remain an open challenge, especially since deep learning models are black boxes. One such approach for deep-
learning-based models is disentangled representation learning, and a recent work [268] shows that the disentanglement
of latent spatiotemporal factors can assist the explainability of how the underlying latent factors learned by deep
learning models are correlated. It can also be used for dimensionality reduction, and assist in few-shot learning cases.

Challenge 9. Visual Analytics. Visualization and exploratory analysis of mobility data has long been a hot topic
in visual analytics [15]. More recently, the trend turned to combining visualization with modeling and simulation to
support decision making [124]. This kind of research is by necessity application-oriented, while much less is done on
developing more general ideas and approaches.

One general research problem that has only been slightly touched in visual analytics but not systematically addressed
is human involvement in real-time analysis of big mobility data. Is it possible to define realistic scenarios for involving
human intelligence in big data analytics taking into account the cognitive limitations of human analysts with regard to
the amount of information that can be perceived, speed of processing, and time required for analytical reasoning and
contributing to the analysis process? Also how to combine computational methods of analysis, such as ML, with human
expert knowledge and reasoning? The involvement of human intelligence is limited to thoughtful data preparation,
feature selection, parameter setting, and so on. It would be great to find ways to make more direct and effective use of
human-possessed concepts and, particularly, knowledge of causal relationships. Hence, a grand research challenge for
visual mobility analytics is to develop approaches to understanding and modeling mobility behaviors from low-level
movement data, such as trajectories of moving entities.

The following research problem is how to analyze behaviors after they have been extracted from elementary
movement data and represented by appropriate data structures. A conceptual framework should be developed to
enable defining the types of conceivable patterns of movement behavior. This will provide orientation for developing
visualization techniques facilitating visual discovery of behavioral patterns, as well as algorithmic methods for detection
of specified types of patterns. These techniques and methods should be incorporated in systems and workflows for
analyzing the contexts in which various patterns take place and developing models for describing and predicting
mobility behaviors depending on the context.
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5 MOBILITY DATA MANAGEMENT INFRASTRUCTURE

Classical data management systems have been designed for generic data types, where spatial and temporal data can be
supported as new additional types. Yet, the core functionality of the data management engine does not acknowledge
the spatial and temporal properties of mobility data. For example, mobility data calls for storing and querying locations
of objects that evolve over time. The evolution can be in the location, the extent, and/or the properties of the object.
The evolution can happen in discrete steps, e.g., check-ins, or in a continuous form. Thus, it is desired that the data
management platform is able to represent the history, the current location, and possibly the near future of the moving
object. Another example is classical index structures that are built with the assumption that the read workload is
significantly higher than the write workload, and hence the index structure does not change often. Meanwhile, mobility
data exhibits a different workload where the write workload (e.g., object location update) is significantly higher than
the read workload, which makes all classical index structures simply not applicable to mobility data. A third example is
that simple queries over mobility data, e.g., nearest neighbor search can be supported by classical data management
systems by finding the distance between the user location and all other objects, sorting all objects based on that
distance, and getting the closest one. This cumbersome approach is mainly due to the lack of having a specialized
nearest-neighbor operator. Should we have one, that operator can seamlessly integrate with the query executor and
optimize of a data management engine to efficiently support a pretty important query in most data mobility applications.
Finally, a last example is that classical methods for scaling up data management in distributed environments rely on
data distribution, mostly based on the data keys. This does not work well in scaling up mobility data as it is always
desired to distribute mobility data in a way that spatially and temporally nearby objects are grouped together in the
same cluster or computing node. This sections discusses current efforts and challenges of mobility data management.

5.1 Efforts in Mobility Data Management

There has already been extensive research in all layers of mobility data management infrastructure. On the data
modeling aspect, early models based on the constraint databases model aim to support simple moving objects (i.e.,
points), e.g., [94]. More complex data types (e.g., moving regions) have been supported by later models based on abstract
data types, e.g., [101] that is still being used in recent systems, e.g., [278]. More recent efforts have been introduced
to capture the semantics of trajectories of moving objects. Other models were also proposed to capture specialized
modes of movement, including indoor environments, e.g., [114], network constrained, e.g., [99], fuzzy trajectories,
e.g., [227], and detecting periodic moving patterns, e.g., [33, 36, 76, 117]. In terms of indexing, tens of index structures
have been proposed to support efficient indexing, storage, and retrieval for spatiotemporal data as either historical data,
current locations, or continuously updated locations, e.g., [144, 147, 155, 164]. This forms the infrastructure support
for various spatiotemporal query processing techniques for various query operators over moving objects, including
spatiotemporal range queries [157], spatiotemporal nearest-neighbor queries, e.g., [11–13, 216, 254], reverse nearest
neighbor queries [35], skyline queries [109], and scalable spatial and spatiotemporal joins, e.g., [249, 253].

In terms of academic full-fledged systems, the SECONDO system has been introduced in the early 2000 as a
comprehensive testbed for distributed moving object databases covering all aspects of data modeling, indexing, and
querying [98]. More recently, MobilityDB, implemented on PostGIS, has been introduced as a scalable system with a
wider functionality on moving object databases [230, 278]. In terms of Big Data systems, ST-Hadoop [8], SUMMIT [7]
and HadoopTrajectory [22] systems extend the Hadoop system to support spatial-temporal data, and trajectories,
respectively, while other systems, e.g., [66, 145, 146], extend the Twitter Storm distributed data streaming system to
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support streamed location data. TrajSpark [266], Dita [209], and TrajMesa [128] extend the Spark system to support
various index structures and query operations over trajectory data. SharkDB [244] extends in-memory column-oriented
storage engines to support trajectories. In the open-source community and in industry, PostGIS [182] supports very basic
trajectory functions, Oracle spatial supports streaming point data to capture real time mobility [170], while Microsoft
Azure [25] supports storing trajectory data in Azure table and utilizing Azure Redis for indexing. Distributed-MobilityDB
[23] integrates in the one hand the trajectory data management of MobilityDB with a distributed PostgreSQL database
to provide a distributed moving object database.

5.2 Challenges in Mobility Data Management Infrastructure

Though there is already a lot of work in various components of mobility data management infrastructure, there is an
apparent lack of integrated systems that offer comprehensive functionality to end users, encapsulated in full-fledged
systems that support mobility data science. Hence, the challenges in this section mainly focus on the system building
aspect.

Challenge 10. Building Systems with Mobility Data in Mind. Location data has almost always been supported
in data systems as an afterthought problem. Many systems, e.g., Postgres, Storm, Spark, and Hadoop, have not been
originally designed with location data support in mind. What typically happens is that spatial data types get augmented
into tuple-oriented systems to support the location data type. For example, a restaurant tuple that describes various
attributes of a restaurant is augmented with the latitude and longitude of the location attribute of the restaurant to
support location services. Spatial indexes are provided to speedup the access to these attributes, and some accompanying
spatial operators are provided to operate on the location attributes to provide location services, e.g., range or k-nearest-
neighbor searches. While this approach works to some extent, systems coming out of such approach end up with sub
par performance for spatial data, and hence for mobility data. Given the myriad of applications that rely on mobility
data, it is important that systems are extended with native support for locations and mobility data. So, mobility data
types and operations should be integrated in the core of these systems, and not to be considered as an afterthought
problem. This can go through all kinds of systems, starting from database management systems that need to be spatially-
and temporally-aware to support mobility data to scalable big data and NoSQL systems, where injecting spatial- and
temporal-awareness into their core functionality will inherit their scalability to support scalable mobility data science.

Challenge 11. Location Data as First-class Citizens. Having locations as core of mobility data calls for treating
location data as a first-class citizen in a location data system that at the same time can be extended to support other
data types [16]. These location data systems can be presented as Location+X systems, e.g., as in [16], where the data
types âĂĲXâĂİ can be keywords (e.g., to support spatial-keywords and tweets), graphs (e.g., to support road-network
data), relational data (e.g., to support descriptions of spatial data objects), click streams (e.g., to support check-in
data), document data (e.g., to support points of interest and documents that describe them), annotated trajectories
(e.g., location + time + textual annotations), among others. In many location services, more than one data type X may
need to be supported, e.g., a graph data type combined with a document or keyword data types, which calls for a
multi-model-like data system. This gives rise to an eco-system where location is at the core with some form of an
extensible multi-model data system that supports the multitude of data types âĂĲXâĂİ. However, current multi-model
data system technology is lacking in several aspects. First, they do not support data streaming that is a cornerstone in
mobility data due to the online streamed locations of moving objects. Second, we do not want to fall into the trap of
adopting existing multi-model technologies that may affect location being a first-class citizen. However, the need for
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supporting multi-models in one seamlessly integrated location+X system remains a necessity. In addition to supporting
location data via a native location+X engine, an ecosystem for mobility data would also include many important
utilities to facilitate a broad spectrum of location service applications. From the input data side, to help navigate the
vast amounts of available location datasets, and discover the right data sets for a given task, a location dataset lake
infrastructure and location dataset discovery, cleaning, and integration facilities are needed. From the presentation side,
a comprehensive visualization suite is envisioned to support visualizations for combinations of spatial and temporal
data analytics on top of location data.

Challenge 12. Streaming, Batch, and Hybrid Workloads. Motivated by the application needs, mobility data
management need to support both batch and real-time data through all systems layers from digesting the data to
analyzing and visualizing it. For example, a common requirement is to visualize the positions of a fleet of vehicles
in real time, which only requires access to the most recent positions of the vehicles. Yet, at the same time, there is a
need to perform batch analytics on the full trajectory of these vehicles (e.g., to assess whether the trajectories exhibit
some unexpected behavior). Generally speaking, the need to have both real-time and historical data has led to the
development of the data warehouse domain, where operational databases cover the real-time Online Transaction
processing (OLTP) while data warehouses cover the historical Online Analytical Processing (OLAP). Since having two
different systems for the two kinds of workloads is very costly, a new approach referred to as Hybrid Transactional and
Analytical Processing (HTAP) has been recently proposed. However, mobility data exhibits pretty different workloads
from other data, where streaming data is kind of dominant in terms of objects continuously streaming their new
locations. Meanwhile, historical data is not of less importance and are continuously appended. While some efforts have
been spend in the direction of write-optimized indexing for location data, e.g., as in [213], more research efforts need to
be spent to adopt the concepts behind HTAP systems to support the nature of mobility data.

6 MOBILITY DATA PRIVACY

As we discussed in Challenge 1, mobility data privacy is a core problem in the mobility data science pipeline. Studies
have shown that location data could reveal sensitive personal information such as home and workplace, religious and
sexual inclinations [185]. As localization technology advances and extremely fine-grained location tracking is being
enabled, it may even reveal products of interest in the stores we have visited, doctors we saw at a hospital, book shelves
of interest in a library, artifacts observed in a museum, and generally anything that might publicize our preferences,
beliefs and habits. Recent survey has shown that 78% smartphone users among 180 participants believe that Apps
accessing their location pose privacy threats [47].

While there are many privacy-preserving data collection and data analysis techniques developed for personal data,
mobility data introduces unique challenges due to 1) spatiotemporal correlations in the mobility data which often
results in increased privacy cost due to privacy composition for correlated data or downgraded utility for downstream
applications, 2) complex location semantics (e.g., corresponding POIs of locations) and mobility behaviors (e.g., regular
vs. one-time visit of a location) which existing privacy definitions may not be able to capture, and 3) diverse and
emerging application scenarios such as contact tracing using mobility data for which existing privacy algorithms
designed for aggregate data analytics are not suitable. In this section, we briefly review existing privacy notions and
techniques developed for location and mobility data and discuss several open challenges.
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6.1 Efforts in Mobility Data Privacy

We categorize existing techniques in mobility data privacy into two main settings corresponding to our data pipeline:
1) local setting (data collection stage), and 2) central setting (data analysis stage). In the local setting, the mobility
service provider that collects mobility data is assumed to be untrusted, hence each mobile user or entity can apply
privacy-preserving mechanisms before the data is collected by the service provider. In the central or global setting,
the mobility service provider is assumed to be trusted and collects the raw mobility data. The provider can apply
privacy-preserving mechanisms for statistical analysis, and share aggregated data, machine learning models trained
from the data, or synthetic data mimicing the original data to untrusted third parties.
Local Setting. In recent years, local differential privacy (LDP), the local variant of differential privacy, [63, 95] has
become the de facto standard for preserving privacy at data collection stage. Each user can perturb her raw data using
an LDP mechanism before uploading it to an untrusted server. Most existing mechanisms are designed to ensure utility
for aggregate queries or analytics (e.g., frequency or density estimation) and requires the aggregation of the perturbed
values from a large group of users, while the individual perturbed value may not provide much utility. Several works
applied existing LDP schemes to location data but the utility is poor [120, 269]. Other works relaxed LDP to personalized
LDP [52]. Recent works developed improved LDP mechanisms for location data with better utility [241].

In addition to support aggregate data analytics, location based services (LBS) including range queries, spatial
crowdsourcing, and the emerging contact tracing for pandemic control, require the precision of the perturbed locations
themselves. Geo-indistinguishability (GeoInd) [14] relaxes LDP for location data which requires the locations to be
indistinguishable only within a radius and the indistinguishabilty is scaled by their distances, providing better privacy
utility tradeoff for LBS. Later works extended GeoInd to account for temporal correlations between consecutive locations
of mobile users [251] and protection of customizable spatiotemporal activities instead of raw locations or trajectories
[43]. Other works applied the GeoInd mechanisms and variants for privacy-enhanced spatial crowdsourcing and contact
tracing [64, 222]. Besides statistical privacy techniques, Private Information Retrieval (PIR) and secure multiparty
computation (MPC) techniques have also been developed to allow LBS queries such as range queries and contact tracing
without revealing individual locations [6, 56, 88, 188], but are generally more computationally expensive and need to be
designed for each different query.
Global Setting. Many works have applied differential privacy (DP) for computing and publishing aggregate mobility
data. Compared to DP algorithms for tabular data, they typically exploit the hierarchical structure of locations and
sequential patterns of trajectories to improve utility [2, 49, 151, 186, 206]. Some works also utilized the DP aggregates
for task assignment in spatial crowdsourcing [221]. In practice, mobility data providers have started sharing aggregated
mobility datasets with DP, esp. in response to the pandemic, such as Meta’s population density maps and Movement
Range maps, Google’s COVID-19 Community Mobility Reports, and SafeGraph’s Patterns [24]. Other works have
applied DP for training machine learning models using mobility data, for example, for location prediction [5]. Another
line of work attempts to generate synthetic trajectories or mobility data based on raw trajectories with formal DP
guarantees [104, 243]. From the privacy attack side, recent works demonstrated the possibility of membership inference
attacks on aggregate location data and linking attacks, and the defense power of DP against some of these attacks,
reinforcing the need for ensuring rigorous privacy even for seemingly anonymous aggregate mobility data and machine
learning models trained from mobility data [116, 184].
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6.2 Challenges in Mobility Data Privacy

This section highlights open problems related to mobility data privacy, that needs consideration from the community.

Challenge 12. Threat Models and Privacy Definitions. The first challenge for mobility data privacy is the need
to understand the threat models and adopt or define proper criteria by which to enforce privacy. We need to define first
what needs to be protected (i.e., the sensitive information). This may vary for different mobile users and applications. It
may be the exact location coordinates of a user at a given time (most existing efforts focus on this). It may also be the
association of a user with a sensitive place, co-location of two users (while it’s okay for the users to reveal the exact
location coordinates), or spatiotemporal activities of a user (e.g., stay at a place, or a trajectory). When defining privacy
models and designing subsequent privacy mechanisms, there will (almost always) be attacks based on side channel
information exploitation. While privacy notions like DP typically assumes the worst case which also means sacrificed
utility, relaxed versions may be needed given specific threat models to enhance the privacy and utility tradeoff.

Besides developing rigorous privacy enhancing mechanisms, it is equally important to understand the privacy risks
and the empirical defense power of the privacy enhancing technology (PETs). While there have been some work
on privacy attacks on aggregate mobility data [183], more work is needed to understand what sensitive information
may be revealed and reconstructed from mobility data based models, e.g., if membership inference attacks or feature
reconstruction attacks [82, 214] can be carried out, and potentially build benchmark attacks which can be used to audit
the privacy risk of mobility data science systems and privacy mechanisms.

Challenge 13. Privacy andUtility Tradeoff andOther Factors. When designing privacymechanisms for mobility
data collection and analysis, it is important to consider the utility of the privacy protected data for the downstream
applications. For LBS (as typical in the local setting), the utility needs to be measured by the precision or accuracy of
range queries for POI search, or contact detection for contact tracing (instead of how accurate the perturbed location is
from the original location for which most algorithms following geoInd are focused on). Hybrid methods that combine
DP and cryptographic techniques may be needed esp. for critical applications like contact tracing and public health [56].
For aggregate data analytics and machine learning applications using mobility data (in both local and global setting),
the utility need to be measured by the accuracy of the statistics (e.g., frequency or density estimation for which most
existing work focus on), the trained model, or the fidelity of the synthetic data. As a result, the algorithms need to be
designed to optimize the corresponding utility and many remain an open challenge. For example, existing methods for
DP trajectory synthesization are mainly based on statistical models or low-order Markov models and perform well on
some utility metrics [104, 243]. While there are more powerful generative adversarial network (GAN) based models or
diffusion models for generating more realistic synthetic trajectories [138, 277], ensuring formal DP for these models
would result in deteriorated utility due to the complexity of the models. Designing methods for optimal privacy utility
tradeoff remains an open challenge.

In addition to the privacy and utility tradeoff, privacy enhancing technology may exacerbate bias in the data or
learning algorithms. Mobility data may have inherent bias as we discussed in Challenge 2. Data analysis algorithms
may also have unfair performance for groups that are underrepresented in training data. It has been demonstrated
that learning with DP could exacerbate such unfairness, i.e. underrepresented groups suffer from worse privacy/utility
trade-offs [21]. Research is needed to understand such impact on mobility data and design privacy algorithms to
optimize privacy utility tradeoff while ensuring the fairness.
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Challenge 14. Explainability and Societal Education. Another important challenge of mobility data privacy
is to improve the explainability of privacy definitions and mechanisms and communicate them to the stakeholders
including mobile users (data contributors), mobility service providers, and data analysts. This is a general challenge
for privacy enhancing technology, but more so for mobility data given the complex semantics of location information
and diverse applications as we mentioned. DP-compliant algorithms and location privacy models (such as Geo-Ind)
as described earlier use privacy parameters to control the trade-off between privacy guarantee and the utility of the
private outputs. However, there is a significant gap between the theory and practice of DP: we lack principles and
guidelines for choosing privacy parameters when collecting or processing mobility data using DP techniques in the
real world. While the technology companies have employed DP in releasing the mobility datasets as we discussed
earlier, the choice of the privacy parameter and the associated noise and uncertainty are often not precisely specified or
uniform across companies. This makes it difficult for the downstream applications to quantify the uncertainty of the
analysis result.

The parameter ϵ of DP is mathematically defined but not well-aligned with the stakeholders’ interests. Even for
the same ϵ , the privacy guarantees could be different based on the different variants of DP and algorithms at hand. In
addition, the ϵ is not always linked to a specific privacy risk for the users (such as "the probability that an attacker can
correctly infer my data") or a precise utility level for data analysts (such as "the accuracy of the DP-ML model"). To
promote the adoption of mobility data privacy technology such as those based on DP, we should establish principles,
design guidelines, and provide tools for explaining DP’s protection and limitation from stakeholders’ practical interests.
For example, we can help data contributors understand the privacy risk (such as membership inference attacks or
reconstruction attacks) under different privacy parameters given a concrete DP algorithm; we can also design efficient
methods to visualize how data analyzers’ utility metrics (such as MSE or model accuracy) may change along with
different privacy parameters for specific mobility applications.

7 MOBILITY DATA SCIENCE APPLICATIONS

Mobility data science used to be limited in the domain of transportation but recent technological inventions have created
an abundance of mobility data, resulting in applications in many other domains of interest for society. Such applications
leverage mobility data to understand, explain, and predict where moving entities such as humans, animals, or infectious
diseases go, why they go where they go, and where they will go next. This section outlines broad applications of
mobility data science to illustrate the recent landscape of mobility data science.

7.1 Traffic

Traffic is a problem of global scale, as recognized by transportation science over a decade ago. Drivers in the United
States spend 6.9 billion of driving-hours stuck in traffic and waste more than 11 billion liters of fuel per year according
to INRIX [113]. Measured per-capita, people in Russia and Thailand spend even more time in traffic, while Brazil,
South Africa, the UK, and Germany are only slightly behind the United States. Leveraging mobility data science and
understanding the underlying behavior of human participants concomitantly with different transportation modes,
can enable more effective solutions to multiple problems at the heart of improving traffic management. Two main
lines of research focus on: (1) traffic monitoring at an aggregate level, e.g., to help city administration, and (2) services
that road users are getting. Existing work towards traffic monitoring include monitoring congestion [129], assessing
the safety of roads and intersections [143], traffic prediction [132], evacuation routing [265], optimizing the public
transportation schedules [193]. Efforts on the services provided to road users include routing queries that balance

Manuscript submitted to ACM



18 Mokbel, Sakr, Xiong, Züfle et al.

the traffic across roads [69], help find drivers finding nearest facilities [121], personalized routing [130], eco-routing
for minimizing greenhouse emissions [134], and enabling multi-modal trip planning [225]. But there are many open
opportunities and challenges in using mobility data to improve traffic conditions. One example is devising accurate
models for the dynamic scheduling of public transportation. Another example is the context-aware optimization of
traffic signals – e.g., incorporating the impact of additional flux of pedestrians in bus/train stations, to minimize the
stop-and-go impacts for vehicles. A challenge of using mobility data science in the transportation domain is monitoring
and reduction of emissions. Being able to quantify emissions (e.g., from transportation) is essential to accountability and
reduction of emissions. Using data on emissions collected from in-situ sensors but also sensed remotely through earth
observation (satellite) data will allow us to better understand the effects of e-mobility, better collective transportation,
and infrastructure improvements.

7.2 Urban Areas

In 2018, 55% of the worldâĂŹs population (4.2 billion people) resided in urban areas, and this proportion is projected
to increase to 68% by 2050 [232]. Urban areas are a focal point for mobility application as they introduce a variety of
mobility modalities such as electrical vehicles [236] and bicycles and scooters with respective sharing programs [133].
But by understanding how, where, and why people move in cities, outer suburban and regional areas, the demand for
infrastructure and energy can be better understood [272]. Improving this understanding helps reduces urban inequalities
in cities [166] such as access to high quality food [238] and healthcare [96]. Mobility data also helps improve urban
safety by improving crime prediction [83] and helping to recommend safe routes [205].

A specific Urban mobility data science supports urban areas is through data-driven map construction [3] and
updating of existing maps to account for blocked or new road segments [48] which is paramount in autonomous driving
applications [141].

The real-time monitoring of urban mobility could result in situational awareness, initially a term coined in defense
applications, involving perception of the environmental states using the surrounding data, comprehension of the ingested
data to understand the emerging situations, and projection of future states and/or events that require predictive analytics.
Mobility data provides critical components and insights into situational awareness in cities. When achieved, this applies
not only to enabling robust critical infrastructures in cities but also to protecting them from harm, e.g., forest fires,
earthquakes, and terrorist attacks. Many researchers use mobility data as input to enable situational awareness in cities
as well as in airports [210].

7.3 Health Informatics

The spread of infectious diseases is a highly complex spatiotemporal process that is strongly tied to humanmobility [107]
and human behavior [75]. Many recent works have used human mobility data for data-driven epidemic forecasting
as surveyed in [197]. A specific example of leveraging mobility data for public health is contact tracing, which
refers to the process of tracking persons who may have come into spatial contact with an infected person, and
subsequently collecting further information about these contacts [152]. The feature-rich interaction, processing and
localization/communicationmodalities of smartphone devices, have brought these to battle on the technological forefront
and have curbed the fast spread of pandemics, like COVID-19. To this date, the community has proposed a wide range
of contact tracing approaches, including opportunistic [187] and participatory approaches [65] approaches as well as
privacy-sensitive [262], decentralized [228], proximity-based (e.g., BLE, sound) [189], and location-based approaches
(e.g., Wi-Fi, GPS) [65] approaches. However, a wide range of challenges remain unanswered, including methodologies to
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improve the penetration and adoption rates, alleviate privacy or expectation skepticism [32], ubiquitous availability on
low-end terminals as well as technological/psychological adoption barriers [31], achieving cross-country interoperability
with standard formations beyond recommendations, scalability/reliability and accuracy verification of engaged spatial
technologies as well as lessons about effectiveness from real large-scale deployments.

Another specific health application for mobility data is elderly health monitoring. GPS-enabled smart-watch technol-
ogy can be used to monitor the movement of elderly users [217]. In particular, if the monitored user is showing early
signs of dementia, her/his trajectories could show an abrupt change from her/his movement history [224]. For instance,
a user who normally walks in a park then goes to a restaurant is found to only stay in the park for a substantial amount
of time. Indoor sensors installed in the room can also be used to track whether an elderly person or a patient falls from
the bed. Trajectory outlier analysis methods, together with gerontology knowledge, can be very useful for this kind of
applications.

7.4 Indoor Environments

Indoor mobility data management has been described as a new frontier in data management [115]. But in addition to
data management, large-scale indoor localization data also raises challenges in data collection, data analysis and data
privacy. Indoor data collection is an open research problem due to the non-existence of the indoor equivalent of GPS: a
system that can provide the user location in any building worldwide. This is particularly important in applications
related to emergency management and infectious disease contact tracing. Systems have been developed over the years
to address this problem based on different data sources including WiFi signal strength and time of arrival [257], cellular
signal [196], Ultra-wideband [9], ultrasonic [111], magnetic tracking [215], inertial sensors [103], among others. These
novel data sources enable new applications in indoor navigation, contact tracing, indoor analytics, and evacuation
management.

Indoor data analytics allows to improve understanding of indoor behaviorwhich hasmultiple benefits and applications,
including for crowd management [4], retail and POI recommendation systems [191], and for optimizing energy use
and improving sustainability in the long term [202]. For example, by utilizing WiFi logs, Ren et al. [190] find strong
correlations between behaviors and user demography (e.g., age, gender and visitor types), indicating that both indoor
mobility behavior, in conjunction with online behavior, can be used to predict the underlying demography of the
visitors.

Occupancy behaviors are also highly linked with building management systems and controls [45]. By having a more
accurate energy use estimation using indoor spatial and mobility data, in addition to historical energy consumption
data, the performance of the buildings can be better optimized, towards achieving a more sustainable operations [72].
The responsible use of mobility behavior analytics, including indoor and outdoor mobility behaviors, strongly points
towards the increased capacity for improving sustainable operations of buildings [202], enabling net zero goals to be
achieved.

7.5 Marine Transportation

According to UNCTAD, Over 80% of the volume of international trade in goods is carried by sea, and the percentage is
even higher for most developing countries [231]. Estimates say that the global shipping activity emits 3% of the global
emissions worldwide in 2022 [110]. These significant numbers, as well as the availability of large-scale ship trajectory
data obtained from the automatic identification system (AIS) [18] motivated a lot of research efforts on mobility data
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analysis for maritime. The stakeholders who seek benefit of such analyses include the maritime authorities, environment
officers, ship owners, port and canal managers, and the transport and logistic sector.

One major challenge is to ensure the safety at sea, which splits down to the technical challenges of identifying
positional anomalies[195], locating dark vessels (vessels that switch off their AIS devices) [148], and cleaning location
and identity spoofing [74]. Additionally, an essential aspect is the detection of fishing activities to ensure the sustainable
fishing practices [58]. Since vessels do not have fixed routes in the sea, research has also investigated the density of
ship routes [250].

Multi-criteria routing using multiple optimization criteria including estimated time of arrival, fuel consumption,
safety, and comfort has been increasingly recognised as an important path planning problem [105]. An optimization
of ship routes could effectively lead to significant reductions of GHG emissions and contribute to the actions against
anthropogenic global warming. The influence of ocean currents, waves, and wind on the course and speed of ships have
been known for centuries. Used optimally, ocean currents lead to more efficient paths between two given ports. Ship
route computation approaches that exploit the potentials of wind, wave and weather models aiming at minimize fuel
consumption have been addressed by the marine science, maritime engineering and transportation community [78].

Since green mobility is currently gaining huge attention, CO2 emission aware ship routing is expecting to get
an enormous impact in economy, politics and society and provides very promising opportunities for the spatial and
spatiotemporal database and mobility community. Marine transportation becomes particularly important in the scope
of climate change (e.g., the advent of hydrogen/battery/fossil/atom hybrid vessels) as well as digitization for new
infrastructure-free localization technologies on-board.

7.6 Social Connections

Location-based social networks (LBSNs) bridge the gap between the physical world and online social networking
services [271]. LBSN data capture both human mobility (in the form of check-ins to discrete points of interest) and
a social network between individual humans. Combining mobility data and social networks, LBSN data finds many
applications. A first application found in the literature was on modeling and describing human mobility patterns (e.g.,
[55, 168]), analyzing these patterns (e.g.,[54]), and explaining why individual user choose locations and how social
ties affect this choice (e.g., [239]). Another application is that of location recommendation, which leverages check-ins
of users and their ratings in the user-location network to recommend new locations to users [26]. A closely related
application area is that of location prediction (e.g., [53]), which predicts the future check-ins of users. Another active
research field in LBSNs analysis is friend recommendation or social link prediction (e.g., [203]), which suggests new
friends to users based on similar interests at similar locations, while also having similar social connections. Other
research topics concerning LBSNs include efficient query processing (e.g., [17]) finding user communities (e.g., [259]),
and estimating the social influence of users (e.g., [248]).

This plethora of applications and research shows how mobility data in connection with social network data can be
used to understand the social fabric that ties us together. A potential future application is using human mobility data to
reinforce this social fabric by recommending social events and meetings to groups of people to help people find new
friends, collaborators, sports mates, teachers, mentors, and family members.

8 CONCLUSIONS

This paper presented the current state of mobility data science pipeline in addressing the specific challenges of mobility
data. A main question that this paper answered is how mobility data science is different from data science. The
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space and time dimensions in mobility data call for different methods of data acquisition, management, analysis, and
privacy preservation which are not addressed by the common data science tools. Accordingly we surveyed the main
problems that are currently being researched, we identified major research questions for the coming years, and described
applications that lead to broader impacts of mobility data science. Co-authored by a diversity of academics and industry
professionals, this paper also conferred a community effort to sketch the boundary of mobility data science as an
interdisciplinary field and bring together a dedicated research community around the identified research challenges.
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