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ABSTRACT

The presence of shadows in an image helps viewers to better understand the spatial
relationships between objects, is vital for interactive applications such as Virtual Real-
ity, and, in general increases the appearance of reality that a picture provides. Many
shadow algorithms have been devised that adequately solve the problem, ranging from
the very simple (point light sources and local illumination) to the very detailed and
realistic (Radiosity and Ray-tracing). None of these existing algorithms, however, is
suitable for interaction, at least on the standard hardware, because they require a total
recalculation of the shadows for any change in the scene geometry.

In this thesis various methods are proposed for providing shadows in dynamic scenes,
illuminated by point or area light sources. These methods exploit the temporal and
spatial coherence present in interactive environments to provide incremental updates
to the shadow information in a fraction of the time required by other algorithms.

A data structure used by all shadow algorithms in this thesis, because it provides
an eÆcient space partitioning and searching tool, is the BSP tree. One of the perceived
problems of the BSP trees is that they are only suitable for static scenes. An investi-
gation is made into the use of BSP trees for representing dynamic scenes and practical
solutions are suggested.

Using the results of the above study, two methods are presented for shadows in
dynamic scenes illuminated by point light sources. The �rst uses a regular space sub-
division by means of a tiled cube placed around the source. The second uses a Shadow
Volume BSP tree built from the set of unsorted polygons.

For area light sources an algorithm is presented which is a combination of a tiling
cube similar to that used for the point sources and the discontinuity meshing (DM)
method used in Radiosity. The shadow boundaries as well as other irregularities in the
illumination function of each surface in the scene are found and built into a mesh using
BSP tree merging. The combination of the space subdivision provided by the tiling and
the structured mesh building provided by the merging lead to a signi�cantly faster DM
algorithm compared the previous methods, which in addition allows for incremental
updates after a change in the scene geometry.

Experimental results have shown that near real-time frame rates can be achieved
using the above methods on commonly used workstations which do not have specialised
3-D graphics hardware.
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Chapter 1

Introduction

There are two strands to modern Computer Graphics research: photorealism and real-
time. Ideally one would like to have both at the same time but in general a trade o� is
essential. With graphics hardware becoming common and Virtual Reality interactive
applications demanding real-time realistic images, the need to bring the two together
is ever more apparent.

One of the key components of photorealism is the correct simulation of illumination.
A very important characteristic of light is that it can be blocked and produce shadows.
The computation of shadows requires determination of the relative positions of the
modeled objects and the sources of light. This can be an expensive operation and in
general is omitted from interactive applications. At best some shadows are rendered as
crude approximations.

The absence of shadows is one of the burdens of modern interactive graphics appli-
cations. This is not only because it makes images stand out as \computer generated",
immediately dispersing any sense of realism or \being there", but it also makes the
task of interaction much harder. Shadows can give vital clues for the spatial relations
of the objects which are essential for tasks like object placement. Relevant research in
the �eld of Virtual Reality [93] supports this statement.

The major purpose of this thesis is to show that interactive 3-D graphics including
shadows is feasible, without special hardware, on standard workstations. We take the
Sun SPARCstation2 as our standard here.

1.1 Viewing Pipeline in Computer Graphics

To put the reader in the context of the work in this thesis, we give a brief description
of the process for producing an image. This is summarised in Figure 1.1.

First a model is created by giving a mathematical description of its primitives,
where by primitives we mean the polygons or curved surfaces that make up the model.
The algorithms studied in this thesis work only on convex polygons so we will restrict
our models to them. This is not a real limitation as everything else can be reduced to or
be approximated by them and also they form the standard basic unit of most graphics
hardware and software platforms. Polygons are assumed to have a front and back side
which are conventionally speci�ed by the order of their vertices. When viewed from the
front the vertices of a polygon are arranged in a counter-clockwise order. The back side
of a polygon is not visible to an observer but one should never need to see the back as

13
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Figure 1.1: The graphics pipeline

we assume the polygons to be in groups forming closed polyhedra, with the polygons
facing outside, away, from the volume they enclose. So when viewed from the outside,
a back facing polygon is blocked by a front facing polygon of the same polyhedron. An
object is made up of one or more polyhedra and the model is a collection of objects.

The objects are de�ned in a coordinate system particular to the model, we call this
the object space.

In object space we also de�ne the light sources, if any, by specifying their geometry
and intensity. In the �rst graphics images created and in some of the simpler ones used
today there are no light sources, the scenes are illuminated by an ambient light.

The virtual camera is de�ned by giving its position, direction and orientation. This
represents the viewer in world coordinates and at the same time de�nes a new coordinate
system (viewing space) with origin at the camera position and axis orientation de�ned
by the camera orientation.

As a viewer in real life has a limited �eld of view, so in our camera model we add
some clipping planes that de�ne the limits of what is visible, from the camera (viewing
volume).

The objects are transformed to the viewing coordinate system clipping away any
parts falling outside the viewing volume. Once in viewing space they then have to
be projected onto the screen. This can be done either by projecting directly to the
2-dimensional display coordinates using the camera position as center of projection,
or by transforming into a third space called projection space (or box space) which is
equivalent to the 2-D display coordinates except that it has depth. Then the standard
graphics viewing pipeline performs the visible surface determination (VSD) to decide
which parts of the polygons are visible and which are blocked by others closer to the
camera [31].

This whole process from the camera de�nition to the �nal display is called the
graphics pipeline. In most modern interactive systems it is repeated in its entirety for
any change in the model or in the camera parameters.

1.2 Illumination

One of the decisive factors for the realism of an image is how faithfully the transport
of light is modeled. In the physical world light radiates from some emitting surface
(light source) and travels in a straight path until it reaches another surface. There it
is partially absorbed, partially reected and, sometimes, partially transmitted making
this other surface a new, lower intensity, light source.

The illumination algorithms can be classi�ed into two categories depending on how



Shadow Computation for 3D Interaction and Animation 15

far they go into modeling the above behavior:

Local illumination algorithms: These are only concerned with the light arriving
directly from the principle light sources. They do not account for light reected
from other surfaces. To compensate for the loss of the reected energy an ambient
term is added to the intensity of each surface.

Global illumination algorithms: These provide more realistic images by account-
ing, as much as possible, for the transition of light between objects during illu-
mination.

Another measure for classi�cation that is often used is when the illumination takes
place in the graphics pipeline. As shown in Figure 1.1, this can be done in two places
giving two classes:

Object space algorithms: The illumination calculations are done for the whole model
without taking in account the viewpoint. The calculated intensities can be used
for display from any camera position.

Image space algorithms: The illumination is done after the viewpoint is de�ned and
the visible sections of the scene determined. Typically a change in the viewpoint
requires recalculation of the illumination.

Object space algorithms are better suited for applications where the camera is likely
to change often since the solution is given for the whole scene and it is stored in object
space. On the other hand, image space methods tend to give faster results for a single
image since the computation is concentrated only on the relevant parts of the image.

Part of the illumination is the determination of the areas that receive no direct light
from at-least one of the sources (in shadow). The shape and appearance of the shadows
depends heavily on the geometry of the light source. In the real world light sources
have non-zero area and the shadows have edges that change gradually from dark to
lit (penumbras). These penumbras are computationally diÆcult and expensive so in
many applications the sources are represented by mathematical points. In this case
the problem of �nding the shadows reduces to a VSD problem with the source acting
as viewpoint. The resulting shadows (umbras) have sharp edges with no transitional
\grey" area.

1.3 Scope and Objectives

In this thesis we investigate methods for incorporating shadows into interactive appli-
cations by employing spatio-temporal coherence techniques that build upon an initial
pre-computation to achieve real-time performance. The applications targeted will re-
quire multiple views of the model from di�erent viewpoints so the algorithms involved
here are all object space solutions. We also assume that the models consist of planar
convex polygons and that direct illumination is suÆcient.

Even though we aim to account only for light arriving directly from the light source,
i.e. local illumination (page 15), we acknowledge the importance of inter-reections.
Thus the solution for area light sources presented in Chapter 5 can form the basis of
an eÆcient global illumination model.

To enable fast updates of the shadow information we use space subdivision tech-
niques to localise the operations. These are based on two main ideas:
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1. The Tiling Cube [92], which uses a regular subdivision of the space as seen from
the point of view of the light by means of a cube with a grid on each side.

2. The BSP tree [34], which uses a hierarchical binary partitioning of space using
the planes stored at its nodes. It can be used for visible surface determination if
the planes of the scene polygons are used for the partition or for shadow determi-
nation if the shadow planes (the planes bounding the volume in shadow behind
a polygon) are used for the partition. This method was perceived to be only well
suited for applications, like walkthroughs, where the camera moves continuously
but the model does not change. This is because as soon as the geometry of the
model changes then the whole tree had to be recomputed. Later in this thesis we
show that this is not necessarily true (see Section 3.1).

1.4 Contributions

The overall contribution of this thesis can be summarised as: a demonstration that
real-time generation of images including correct shadows is achievable on workstations
without specialised hardware. More speci�cally the contributions are:

1. A study in the use of BSP trees for dynamically changing scenes, with practical
solutions suggested.

2. Using the results of this study, two algorithms for calculating shadows from point
light sources were extended for use in dynamic scenes. The �rst one using the
Tiling Cube and the second using a Shadow Volume BSP tree. The implementa-
tion of both algorithms showed that fairly complex scenes, can be maintained in
near real-time on what we can refer to as common workstations.

3. Finally, an eÆcient method for �nding shadows from area sources in dynamic
scenes has been developed. The shadow boundaries (umbra and penumbra), as
well as any edges where major irregularities in the illumination value occur, are
found. The model polygons are divided along those boundaries and irregularities
with each resulting cell holding a reference to the polygons occluding its view
from the source. This allows for a fast and accurate computation of the direct il-
lumination as well as a structured way of incrementally updating this information
during interaction. The implementation of this algorithm indicates that interac-
tive frame rates can be achieved for moderately complex scenes on higher-end
workstations.

1.5 Organisation of the Thesis

This thesis is organised as follows.

In Chapter 2 we review previous related work: BSP trees, local and global illumi-
nation methods using point and area light sources. The limitations and suitability for
interaction are discussed.

In Chapter 3 we investigate methods for the use of BSP trees to represent dynamic
models as well as for producing an invariant ordering in respect to an area light source.
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In Chapter 4 we describe how the Shadow Tiling and SVBSP tree point source
shadow algorithms can be extended to accommodate moving objects. Evaluations and
comparisons of the algorithms are given at the end of the chapter.

In Chapter 5 we present a new discontinuity meshing algorithm that uses space
subdivision and BSP tree merging and is suitable for interaction.

In the concluding chapter we summarise the accomplishments of this work and
provide guidelines for future work.



Chapter 2

BSP Trees and Shadows

The focus of this thesis is on algorithms for calculating shadows in dynamic scenes.
A fundamental choice for any algorithm is the underlying data structure. The data
structure used throughout this thesis, either for representing the initial model, the
shadow planes or the illumination discontinuities, is the Binary Space Partitioning
(BSP) tree. The reason for this choice will become apparent as we describe each
method. It is therefore important to overview previous work related to both shadow
algorithms and the BSP trees.

2.1 Binary Space Partitioning Trees

The Binary Space Partitioning (BSP) tree algorithm was developed as an eÆcient
method for solving the visible surface determination problem [34]. Based on Schu-
macher's work [89], on ordering linearly separable static sets, it uses an initial pre-
processing step to give a linear display algorithm. It was later shown that BSP trees
can be used to represent polyhedra and perform set operations upon them [103, 73].
Currently they are widely used for applications ranging from motion planning [104] to
image representation [85] and shadow generation. In this thesis we will be concerned
with their use for shadow generation. This also involves visible surface determination
as well as combining BSP trees together (merging).

2.1.1 De�nitions

The BSP tree is a hierarchical subdivision of n-dimensional space into homogeneous
regions, using (n-1)-dimensional hyperplanes.

A hyperplane h (line in 2-D and plane in 3-D) is de�ned by an expression of the
form fn = a1x1 + a2x2 + a3x3 + � � � + anxn + an+1. The set of points in space that
make fn > 0 de�ne the front (or positive) half-space of h (h+), while those that make
fn < 0 de�ne the back (or negative) half-space of h (h�). The points fn = 0 are on the
hyperplane.

The BSP tree is stored in a binary tree structure. Each node t on the tree corre-
sponds to a region in space (subspace), denoted by r(t). Each internal node holds a
hyperplane ht that partitions the region at that node into front and back subspaces.
The two subspaces are represented by the left (t:front) and right (t:back) \children"
of the node. A leaf node, in contrast to an internal node, holds no hyperplane and

18
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corresponds to an unpartitioned region of space, which we call a cell.

The root node of a tree corresponds to the whole of the n-dimensional space. The
region (r(t)) of each other node is de�ned by the intersection of the open half-spaces
determined by the hyperplanes associated with the previous nodes on the path to the
node t. To be more precise, given a node ti at depth i which lies along the path
ft0,...,tig, where the subscripts denote depth, if i = 0 then r(t0) = <n, otherwise if ti
is the front child of ti�1 then r(ti) = h+ti�1 \ r(ti�1) else r(ti) = h�ti�1 \ r(ti�1).

The intersection of the hyperplane ht of a node t with its region r(t), is called the
sub-hyperplane (shp(t)). Notice that since r(t0) is unbounded, so is shp(t0). Also any
other r(ti) and shp(ti) may only be partly bounded.

In this thesis we will use BSP trees in 2-D and 3-D spaces. The following description
on building and using the tree for various tasks is given for a 3-D environment but as
the concepts behind the BSP trees are dimension independent the same is valid for 2-D.

2.1.2 Building a Tree

Given a set of polygons S = fs1; ::; sng, we can construct a BSP tree and partition 3-D
space using the following simple recursive algorithm. A polygon is selected from S; the
plane de�ned by this polygon is used to make the root of the tree and to partition space
into front and back half-spaces. A reference to the polygon is also stored on the node.
The rest of the polygons are compared against this plane and depending on which side
they lie they are placed into two sets, front and back.

Any polygon lying partly in both subspaces is split along the intersection with the
plane and the two fragments are placed in the corresponding sets. Any polygon found
to be coplanar with the root plane is stored at the root, Figure 2.1.

2a

2b

4

1
6

3 5
{1, 2b, 4}{2a, 5}

front set back set

co-planar with root
3,6

Figure 2.1: Partitioning space and the polygons with a polygon-plane

A polygon is selected from each of the two sets and its plane forms the root of the
corresponding subtree that further subdivides space and the rest of the polygons. This
is repeated until all polygons have been used and the original space has been subdivided
into homogeneous regions (cells). In Figure 2.2 the cells are labeled (a to f) and shown
as leaves on the tree. In general we will not show the cells on the tree and we may refer
to the last internal nodes as leaves. Whether a 'leaf' is a cell or the last internal node
splitting into empty subspaces, will always be clear by the context.

An alternative (incremental) approach for building a BSP tree from a set of polygons
was suggested by Thibault and Naylor [103]. Each polygon is inserted in turn into the,
initially empty, tree until it reaches a cell. The plane of the polygon then de�nes a
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Figure 2.2: A complete subdivision

node that splits the cell in two. Inserting a polygon into the tree is again a recursive
procedure that compares the polygon against the root plane and sends it into the
appropriate subtree. As before polygons might be split by the root plane or stored at
the root if they are coplanar.

Both ways of building the tree have the same complexity. The advantage of the
latter is that it allows for polygons to be added to the tree after it has been built. This
is useful for performing incremental changes to the tree (see Section 3.1).

Selecting the appropriate root polygon at each iteration can be crucial for the
eÆciency of the resulting tree. Some eÆciency issues are discussed in Section 2.1.5.

2.1.3 Visible Surface Determination

Given a BSP tree such as the one built above in Figures 2.1 and 2.2, we can use it to solve
the visible surface determination problem by traversing it from any given viewpoint to
get the back-to-front order of the polygons stored at the nodes. The polygons can then
be displayed in that order using over-painting to cover hidden surfaces.

void displayTree(Tree node, 3DPoint viewpoint)
f

if (viewpoint in-front of node plane)
displayTree(back subtree, viewpoint);
draw polygons on the node;
displayTree(front subtree, viewpoint);

else

displayTree(front subtree, viewpoint);
draw polygons on the node;
displayTree(back subtree, viewpoint);

endif

g

Figure 2.3: Traversing the tree to get a back-to-front order

The traversal is based on the fact that given a viewpoint and two sets of polygons
separated by a plane, the polygons on the same (near) side as the viewpoint can obstruct
but cannot be obstructed by polygons on the other (far) side. So to get the reverse,
back-to-front, order from the tree the simple recursive algorithm of Figure 2.31 can be
used: compare the viewpoint against the root plane, traverse the far subtree �rst then
display the root polygon(s) and then traverse near the subtree.

1The pseudocode notation is explained in Appendix A
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When the shading of the polygons is de�ned by a complex function, the multiple
over-painting of each pixel performed by the above algorithm could be costly. This can
be avoided by using the scan-line algorithm suggested by Gordon [47]. The tree in this
method is traversed in front-to-back order. As the polygons are displayed the �lled
segments at each scan-line are recorded. These segments are never overwritten and the
algorithm terminates when the whole screen has been covered, or when the tree is fully
traversed.

2.1.4 Merging BSP Trees

A very popular modeling method is constructive solid geometry (CSG). In CSG poly-
hedra are combined by means of boolean set operations (union, intersection and dif-
ference) to form more complex objects. The description of the polyhedra and objects
is usually by boundary representations. The use of this representation has many draw-
backs such as being able to deal only with closed sets and requiring di�erent data
structures or complex algorithms to perform the di�erent operations (spatial search,
model modi�cations, rendering).

Naylor and Thibault [103, 73] presented an alternative way of representing and
combining polyhedra that is simple and eÆcient and also allows for open sets.

Thibault described how a BSP tree can be used to represent any arbitrary polyhe-
dron [103]. This is done by giving an IN or OUT value to each leaf node depending on
whether the corresponding cell is inside or outside the polyhedron. A simple example
can be seen in Figure 2.4. The grey area corresponds to the inside of the polyhedron
which is denoted by the IN cells of the tree on the right.

2
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1
3

1

OUT 2

3

OUT 4

OUT IN
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OUT IN

Figure 2.4: Representing a polyhedron by a BSP tree

Given two polyhedra P1 and P2 represented as BSP trees, T1 and T2, any boolean
set operation can be performed on them by merging their trees [73]. Merging the
partitionings of space, induced by T1 and T2 produces a third partitioning, T3, that
includes the two �rst. The values of the cells of the new partitioning depend on the
operation used. The merging process however is always the same.

Merging T1 and T2 can be seen as inserting T2 into T1. In principle this is similar
to the way we inserted the polygons in the tree during the incremental construction:
starting at the root of T1, T2 is inserted recursively into T1 until it reaches the leaves
(cells) of T1. At each step of the recursion, T2 is compared against the plane ht1 of
each node t1 of T1 and is split into T+

2 and T�2 , where T
+
2 is the intersection of T2 with

the front half-space of ht1 and T�2 with the back half-space. Then T+
2 is inserted in
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t1:front and T�2 in t1:back. Once it reaches a cell, an external routine is called that
combines T2 and the cell.

Tree merge(Tree t1, Tree t2)
f

if (leaf(t1) or leaf(t2))
return treeOpCell(t1, t2);

endif

ft+
2
, t�
2
g = partitionTree(t2 , shp(t1));

t1.front = merge(t1.front, t
+

2
);

t1.back = merge(t1.back, t
�

2
);

return t1;
g

Figure 2.5: Merging two trees

op Cell Tree Cell <op> TreeT
IN t IN

OUT t t

S
IN t t

OUT t OUT

| IN t �t
OUT t OUT

Table 2.1: Combining a cell and a tree

The pseudocode for the merging is given in Figure 2.5. Comparing and splitting
the tree by the plane of a node is performed by the function partitionTree which we
will explain shortly. Combining a tree and a cell is done by treeOpCell. This depends
on the set operation being performed. In general this routine will return either the cell
or the tree or the complement of the tree (denoted by �t). The complement of the tree
is found by reversing the attributes of its leaves, IN becomes OUT and OUT becomes
IN . In this thesis only the union operation is used but the full table of the resulting
values for all operations is given in Table 2.1.

If there are other attributes involved such as colour, texture etc, then these also
have to be merged. How this is done depends on the application. An example of trees
augmented with additional values at the cells can be seen in Chapter 5. There each cell
holds a list of the polygons that occlude it from the source. In the treeOpCell function
when the tree is retained, the list of occluders from the cell is added to the cells of the
tree.

Partitioning a Tree with a Plane

As T2 is inserted into T1, at each node t1 it is partitioned by the plane ht1 , into T+
2

and T�2 . This partitioning is a recursive procedure that involves inserting ht1 into T2.
Here again we di�erentiate between leaf nodes and internal nodes. When inserting ht1
into T2, if T2 is a cell then T+

2 and T�2 are just copies of that cell. If not then three
steps are performed:

1. ht1 is compared against hT2 to �nd their relative positions,

2. the subtrees of T2 in which ht1 lies are partitioned,

3. the resulting subtrees of the above partition are combined to form T+
2 and T�2 .

For step 1 the important thing to notice is that ht1 and hT2 are not de�ned over
the whole of 3-D space but rather in the subspace formed by the intersection of r(t1)
and r(T2). So the relation of ht1 and hT2 that we need is with respect to this region.
Since ht1 and hT2 are in�nite planes we need to �nd their intersections with the re-
gion in consideration. This intersection is what we earlier called the sub-hyperplane
(shp(t)). The sub-hyperplanes are represented as polygons and their relative position
is determined by comparing one against the plane of the other.
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Figure 2.6: The sub-hyperplane of t1 in respect to the sub-hyperplane of T2

One problem with this approach is that r(t1)
T
r(T2) may be open (if for example

t1 and T2 are near the root), then the sub-hyperplanes will be open. The solution, as
suggested by Thibault in [103], is to represent 3-D space as a bounded set, for example,
as a large enough bounding box containing the model. Any hyperplane is �rst clipped
against this box to form a polygon and then is intersected against the node planes.

There are 7 possible classi�cations between the two sub-hyperplanes, which can be
grouped into three sets (in one subtree, in both, coplanar), shown in Figure 2.6.

Each classi�cation has two parts, the �rst is found by comparing shp(t1) against
hT2 and it shows the subtree of T2 in which shp(t1) lies, possibly in both subtrees. The
general idea is that only the subtrees in which shp(t1) lies will be partitioned while the
others will be left unchanged.

For example in the case where we have Infront/Inback (Figure 2.7(a)) the front
subtree of T2 is partitioned to give T2:front

+ and T2:front
� while T2:back remains un-

partitioned. In the Inboth/Inboth case of Figure 2.8, both subtrees of T2 are partitioned.
In the case where ht1 and hT2 are coplanar no subtree is partitioned.
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Figure 2.7: Infront/Inback (a) ht1 partitions T2:front into T2:front
+ and T2:front

�

and (b) T�2 and T+
2 after partitioning
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The third step is to put the pieces resulting from the partitioning of T2 together to
make T+

2 and T�2 . For each of the three sets of classi�cations we proceed as follows:

� shp(t1) falls entirely in one side hT2 . For this we also need the second part of
the classi�cation, shp(t2) against ht1 . For the case of Infront/Inback the resulting
trees are (Figure 2.7(b)):

T�2 :front = (T2:front)
�

T�2 :back = T2:back

and

T+
2 = (T2:front)

+

the other three cases are analogous.

� for the Inboth/Inboth case the two new trees are (Figure 2.8(b)):

T+
2 :front = (T2:front)

+

T+
2 :back = (T2:back)

+

and

T�2 :front = (T2:front)
�

T�2 :back = (T2:back)
�

� when the two hyperplanes are coplanar:
if they are parallel and facing the same direction then

T+
2 = T2:front

T�2 = T2:back

otherwise (anti-parallel)

T+
2 = T2:back

T�2 = T2:front

As we said at the beginning of the section, BSP merging provides a fast and simple
way of combining polyhedra, open or closed. In the following chapters this will be a
very useful facility for combining shadow volumes as well as other data.
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Figure 2.8: Inboth/Inboth (a) ht1 partitions both T2:front and T2:back and (b) T�2
and T+

2 after partitioning
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2.1.5 EÆciency Considerations

The issue of creating trees that can be used eÆciently is a problematic one, this is
because there is no single notion of \eÆciency".

As shown by Paterson and Yao [80, 81] for a set of n initial polygons the upper
bound for space and time complexity for building a BSP tree is O(n2), although the
expected case is closer to O(nlogn). There can be great variation depending on the
partitioning polygon selected as the root at each iteration.

One method that is often used for controlling the size and shape of a tree is to
select a few candidate polygons at each iteration and �nd the best of these to use as
root. The evaluation is done by comparing them against the rest of the polygons in the
subspace and computing the weighted sum of two quantities, size (number of resulting
splits) and distribution (di�erence in the number of polygons in each of the resulting
subsets).

The weights used depend on the application. For visible surface determination
the balance of the tree is not important, since every node is only visited once, but
the size is very important. On the other hand for ray tracing or algorithms involving
classi�cations, balance is more important than size. Also balanced trees are generally
faster to build (if the number of splits created is not overwhelming) even though this
doesn't reect the run-time performance.

A di�erent measurement of eÆciency, based on expected cost of various operations
given by probability models, is presented by Naylor [72]. The idea is to keep the largest
cells (with a great probability of being visited) on shorter paths and the smaller cells
on longer paths. In a sense this is a sequence of approximations similar to bounding
volumes. This method builds trees well suited for merging since in e�ect the objects
are wrapped with the minimal number of sub-hyperplanes extending outside.

Another problem with the existing algorithms for building eÆcient trees is that they
are static in nature. For example, the method of sampling to select a suitable root for
each subtree assumes that we have all polygons already at our disposal and also that
once a selection is made it is permanent in the sense that it cannot be changed when
better knowledge is acquired, without rebuilding the subtree involved [64].

In most of the algorithms presented in thesis we are not so much concerned with
building eÆcient trees. However, for the algorithms involving merging it is very impor-
tant that the trees involved are \eÆcient". By eÆcient in this case we mean Naylor's
probabilistic eÆciency [72].

2.1.6 BSP Trees in Dynamic Scenes

The non-applicability of BSP trees to dynamic scenes has been a problem that re-
searchers from the very infancy of the algorithm have tried to solve. The earliest work,
even though not as yet on BSP trees, was that of Schumacker [89]. In his algorithm,
which is considered to be the predecessor of the modern BSP trees, the tree was built
using manually de�ned separating planes between objects. Each of these objects would
have its faces sorted into a visibility order valid from any viewpoint (after back-face
elimination). The ordering between the objects as seen from each tree cell was pre-
calculated and stored and so at run time locating the position of the viewpoint was all
that was needed, to get the priority order. In this structure the objects were allowed
to move, without any recalculation of the tree, as long as they did not cross any of the
separating planes.
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The �rst partial solution for dynamic changes of BSP trees was given by Fuchs [32].
If we know in advance the objects that will be moving and the region in which they
will do so then a tree can be constructed such that the relevant region is enclosed in a
tree cell. Then the objects can move in that region independently with regard to the
rest of the tree.

A di�erent method that again involves knowing the objects that will be moving in
advance but not their path, was used by Naylor [69, 70]. A tree of the static objects
is built which is merged with the tree of the moving object at each frame to produce a
complete scene tree. No removal is ever necessary since the original copy of the static
tree is used for merging at each frame.

Torres [105] presented a BSP tree with several optimizations over the standard
structure. Each object has its own single BSP tree which is built by considering the
polygons of the object alone. These single trees form the leaves of the scene BSP tree of
which the internal nodes are separating planes between the objects. If such separating
planes cannot be found then user de�ned partitioning planes are required. To make the
single trees of convex objects more balanced and speed up their construction, halving
planes are sometimes used, which are planes chosen to be parallel to as many object
polygons as possible to minimise splits and positioned so as to have an almost equal
number of the polygons on each side.

Also wrapping planes are sometimes used over complex objects in order to minimise
the splitting of objects that are not linearly separable. Speed ups are obtained over the
initial building of the tree and the moving of certain objects but the general idea as far
as interaction is concerned is not much di�erent from that of Schumacker.

None of these algorithms are general enough. Also the theoretical question of ef-
�ciently removing nodes from an existing tree still remains. Some solutions to this
problem are given in Section 3.1.

2.2 Shadows from Point Light Sources

Modeling the light source as a mathematical point is usually the only viable way for
producing, shadows when speed is important. The shadow problem is then reduced to
a binary decision for each point on a surface in the scene, whether or not it is visible
from the source. A decision which is simple to make and fast to compute. But as a
result the shadows have sharp boundaries which give an arti�cial look to the image.

Several algorithms have been developed for calculating sharp shadows (umbras) and
following the classi�cations of Crow [28] and Bergeron [9] they can be grouped into 5
classes:

Scan line algorithms: The shadow computation is performed as the image is ren-
dered by raster scanning. The edges of the potential shadowing polygons are
projected, from the light source as centre of projection, onto the polygon being
scanned. These shadow edges then mark changes in colour on the scan segments,
[3, 11].

Two pass hidden-surface methods: As the �rst step the scene polygons are used
for a visible surface determination algorithm, with the light source as the view-
point. In this step the fragments of the scene polygons that are visible (lit) and
invisible (shadowed) are found, and the shadowed fragments are added as detail
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polygons onto the original. The scene can then be rendered from the camera
viewpoint using the same or a di�erent visible surface determination algorithm
[5, 75]. The shadow calculations are only performed once for any series of images
as long as the objects and the light source do not move.

Shadow Volumes: As described by Crow [28] the shadow volumes (the volume of
space not seen by the light source, Figure 2.9(a)) are computed in world space
but shadowing is left for the rendering stage. The shadow planes (the planes
bounding a shadow volume, see Section 2.2.1) are added to the data as invisible
surfaces and during the scan conversion of the polygons, each point is checked for
containment in the shadow volumes. Extensions of this method [17, 92, 20, 21]
calculate all shadows in object space and add them to the scene polygons as details
as in [5]. More detailed description of the latter methods is given in Section 2.2.1.

Two pass Z-bu�er: Two Z-bu�ers are used, one from the point of view of the light
source and the other from the camera position [112, 56, 86]. First the image is
rendered into the light source bu�er, the light-bu�er. Each entry of the light-
bu�er holds the distance of the object closest to the light source at that point,
and hence lit. The second Z-bu�er is used for rendering. Each point of the second
bu�er is mapped to the light-bu�er: if the distance of the point is the same as
that stored in the light-bu�er then the point is lit otherwise it is in shadow.

Backwards Ray tracing: The path of the ray from the centre of projection through
a pixel is traced and the closest intersecting object is found. To determine if
the object-intersection point is in shadow, a ray is traced from there to the light
source (shadow-ray). If an object is found that blocks the shadow-ray then the
point is in shadow otherwise it is lit [3, 45]. This method can be easily extended to
point-wise approximation of area light sources by sending multiple shadow rays.

Almost all of these methods can deal with multiple light sources by repeating the
related calculations once for each source, or by having a separate pass for each source
and using the output of the previous pass as input for the current.

The point source algorithms studied in this thesis are based on shadow volumes and
therefore a more detailed description of this class follows. General reviews of shadow
algorithms can be found in [28, 114, 31].

2.2.1 Shadow Volumes

Given a light source L and a polygon P de�ned by the vertices fv1, v2, ..., vng, a
shadow plane is the plane de�ned by a triple (L, vi, vi+1) where i = 1:::n and n+1 = 1
. The orientation of this plane is outwards, i.e. it has P behind it.

The shadow volume (SV) of P is then de�ned as the frustum enclosed by the shadow
planes of (P , L) and bounded on top by P , Figure 2.9(a).

Shadow volumes can be used for whole objects instead of just for individual poly-
gons. In such a case the shadow planes are de�ned by the contour edges of the object
as seen from the light source.

In the algorithm described by Crow in [28] the shadow planes are included in the
scene data and the shadow calculations are performed during rendering. Since a polygon
representation of these planes was necessary they were bounded by clipping against the
�eld of view or the sphere of inuence of the light. In applications where multiple views
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Figure 2.9: (a) A shadow volume and (b) its representation as a BSP tree

of the scene are required the shadow calculations are repeated from each viewpoint. For
such applications it is more eÆcient if all shadows are determined in object space and
the results combined with the scene data before rendering.

The shadow between two polygons, an occluder (O) and a receiver (R), can be
found by clipping R against the shadow volume of the O. Any part of R falling within
the volume is in shadow. This shadow can either be represented as a detail polygon on
top of R or by splitting R, using the shadow edges, to lit and shadowed pieces.

The brute force method for performing the calculations in object space would be to
compare each, of say n, polygons facing the light against the shadow volume of each
other such polygon. This, however is wasteful. An improvement to this n2 algorithm
can be achieved by observing that only a polygon closer to the light source can cast a
shadow on one further away. The polygons can be sorted by building a scene BSP tree
and traversing it in a front-to-back manner from the light position. The polygons can
then be processed in this order and each one only needs to be compared against the SV
of those before it. This method can reduce the number of comparisons involved, if the
number of splits produced by the BSP tree is not too large, but much better performance
can be achieved by using space subdivision. Two such methods are described below.
In both of these methods the shadow volume of a polygon is represented as a BSP tree
by assigning an OUT value to the front cells at each node and an IN to the back cell
at the last node, Figure 2.9(b).

2.2.2 Shadow Volume BSP Tree

The Shadow Volume BSP (SVBSP) tree algorithm was introduced by Chin and Feiner
in [17]. It uses a non-regular subdivision of space based on a BSP tree, but instead of
the planes of the scene polygons it uses the shadow planes as partitions.

A uni�ed shadow volume of all the light facing polygons is built incrementally by
inserting the front-to-back ordered polygons into an initially empty tree (Figure 2.10).
This is done in a similar manner to the Union operation described in [103] with some
important di�erences. The tree is not enlarged by adding the polygon plane when a
fragment of the polygon ends up in an OUT node but it is enlarged with the shadow
planes de�ned by the edges of that fragment. Such a fragment is classi�ed as \lit". Any
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Figure 2.10: Building the SVBSP tree

fragment reaching an IN node is classi�ed as shadowed but does not change the tree
(polygon 3.2 in Figure 2.10(d)). The polygons themselves do not need to be included
into the tree since the order of processing ensures that they will always be behind
those already in the tree. For ordering the polygons, typically, a BSP tree is used. A
consequence of this is that there is an increase in the set of polygons. This can be
avoided by including the scene polygons themselves in the SVBSP, see Section 4.2 and
[21]. For multiple light sources a di�erent tree is built for each source which can be
discarded before going to the next.

void buildSVBSP(Tree bsp, Light light)
f

/* the svbsp tree is initially set to null */
svbsp = OUT;
/* the BSP gives the back-to-front order */
order[] = traverseBSP(bsp, light);
/* each polygon is inserted in order */
for i = 0 to n do

svbsp = insert(svbsp, order[i], light);
endfor

free (svbsp); /* discard tree */
g

Tree insert(Tree svbsp, Polygon poly, Light L)
f

if (cell(svbsp)) /* svbsp is a cell */
if (svbsp == IN)
/* polygon in IN cell, in shadow */

add poly as a shadow polygon;
else

/* polygon in OUT cell, lit. expand tree*/
return constructSV(poly, L);

endif

else

/* �nd which side of the root is polygon */
classifyPolygon(svbsp.rootplane, poly, pf, pb);
if (notNull(pf))

svbsp.front = insert(svbsp.front, pf, L);
endif

if (notNull(pb))
svbsp.back = insert(svbsp.back, pb, L);

endif

endif

return svbsp;
g

Figure 2.11: Pseudocode for building the SVBSP tree

The pseudocode for this process is shown in Figure 2.11. In function buildSVBSP
the SVBSP is �rst initialised to a single OUT node, then the polygons are ordered
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using the scene BSP tree and they are inserted into the SVBSP in that order.

A polygon is inserted using the recursive function insert. At each call of insert the
SVBSP is checked, if it is an IN cell then the polygon is marked as shadowed. If the
tree is an OUT cell then the cell is replaced by the shadow volume of the polygon,
otherwise the polygon is classi�ed against the plane at the root of the tree and sent to
the appropriate subtree. At the end of the proceedure the tree is deleted.

2.2.3 Shadow Tiling

The Shadow Tiling method presented by Slater in [92] uses a regular subdivision of
space. A cube, with each of its faces subdivided into a rectangular grid, is placed
around the light position. The polygons are projected onto the sides of the cube using
the source as centre of projection. Any two polygons can have a shadow relation only if
their projections overlap on at-least one side of the cube, Figure 2.12. Of course, since
the grid elements (tiles) have non-zero area, polygons may share tiles and yet have no
shadow relation.

P

source
Light

p
2

1

Figure 2.12: Polygons with overlapping projections on the cube have a shadow relation

The polygons are processed in front-to-back order from the light source. As each
polygon P is scan converted onto the cube, its identi�er is stored in the data structure
representing the tiles. At the same time a list of all the polygons that are already stored
in the tiles visited by P , is constructed. This list is called the active polygon list (APL)
of P . Then P only needs to be compared against the shadow volume of the polygons
in the APL.

This is summarised in Figure 2.13. After constructing the tiling cube, the BSP
tree is traversed to get the order of the polygons as seen from the light position. Each
polygon (Pi) is scan converted onto the cube sides, as the polygons that share tiles with
it are found (the APL). Then, in the inner for loop, Pi is compared against the shadow
volume of each of the polygons in the APL to �nd the shadows, if any.

Certain optimisations can be used to speed up this method. One is to make a
distinction between tiles that intersect the boundary of a projection (boundary tiles)
and those that are covered completely by the projection (interior tiles). Interior tiles
correspond to a volume of space that is completely in shadow so there is no need to
add more polygon identi�ers to them. Any subsequent polygon that scan converts to
interior tiles only, is fully in shadow.

A signi�cant part of the processing required by this algorithm is taken up by the
projection of the polygons onto the six sides of the cube. This can be improved by
projecting only to the relevant sides. If for example the light source is outside the
scene then the cube can be reduced to just one face. If it is not, a method described
by Haines in [50] can be used: before projecting a polygon, one of its vertices is �rst
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void shadowTiling(Tree bsp, Light light)
f

/* �rst the tiling cube is constructed */
tc = constructTilingCube(light);
/* the BSP gives the back-to-front order */
order[] = traverseBSP(bsp, light);
/* each polygon is projected in order */
for each polygon pi in order[] do

aplpi [] = projectOnCube(tc, pi, light);
/* apl[] (active polygon list) holds the polygons that */
/* share tiles with the polygon. It will be */
/* compared against the SV of each one of these*/
for each polygon pj in aplpi [] do

castShadow(pi , pj);
endfor

endfor

g

Figure 2.13: Shadow calculation using the tiling cube

projected and the side of the cube intersected is found. The polygon is projected onto
this side and on any adjacent sides sharing an edge that was used to clip out part of
the polygon.

A detailed evaluation and comparison of the SVBSP and Shadow Tiling methods
can be found in [92]. In brief, as far as speed is concerned the two algorithms are almost
equivalent (depending on the architecture of the machine used). But the number of
output shadow polygons of the tiling method is considerably smaller than that of the
SVBSP.

2.2.4 Point Light Sources in Dynamic Scenes

As already stated, shadows are very desirable in most computer generated images and
especially so when these are part of an interactive system.

None of the existing algorithms are fast enough to be used at interactive speed for
complex environments. The standard solution used in interactive applications is to use
\fake" shadows [10]. These are just projections of the polygons onto a ground plane
without clipping or checking for obstruction. In particular no inter-object shadows are
considered. This problem is considered in Chapter 4.

2.3 Shadows from Area Light Sources

Shadows from point sources provide a lot of information about the spatial relations of
the objects in the scene. In the real world most of the light sources have a non-zero
area. To add to the realism of the images the e�ect of such sources should be modeled.
Shadows due to area sources have soft edges, they are no longer de�ned by a singular
sharp boundary (umbra), but also have partially lit areas (penumbra). A more precise
de�nition of umbra and penumbra is given in Section 2.3.1.

The algorithms for �nding shadows from area light sources can be classi�ed into
two broad categories:

Point sampling: The source is treated as a collection of point sources. The visible
part of the source is taken as the proportion of point sources visible from the
given position. This has been done using shadow volumes and a depth bu�er
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[12], using hardware supported depth bu�ers [48] and ray casting. The latter is
probably the most common with some impressive results in the context of Ray
Tracing [26]. Campbell in [14] also used point sampling with shadow volumes
before turning to an explicit calculation of the shadow boundaries for a faster
and more accurate solution.

Analytical determination: With the exception of Amanatides's method [2], that an-
alytically computes shadows from circular or spherical sources, the other methods
in this category are restricted to models made entirely of planar polygons, includ-
ing the source. The shadow planes are formed explicitly and traced into the scene
to �nd the boundaries of the shadows on the model. This is done either by tracing
each such plane separately [53, 61, 30, 37] or processing the set of shadow planes
from a single occluder as a shadow volume [76, 22], or by putting these volumes
together into an SVBSP tree [15, 18]. The calculations are done in object space.

In general, point sampling techniques are computationally expensive, especially if
an accurate solution is required, but they work for all object geometries.

In this thesis we are dealing with interactive applications where the viewpoint moves,
as well as the objects. So we will only be concerned with the object space algorithms
where the shadows are pre-computed in world coordinates and stored in order to be
displayed from any viewing position. These algorithms fall in the analytical determina-
tion category. We assume the environment to be made entirely from polygonal di�use
surfaces.

2.3.1 Extremal Shadow Boundaries

Shadows from area light sources consist of a totally blocked area, the umbra, and a
partially blocked area, the penumbra. The boundaries between lit and penumbra and
between penumbra and umbra areas are celled the extremal boundaries of the shadow.

The �rst to compute the exact extremal boundaries were Nishita and Nakamae [76].
They described how to build the penumbra and umbra volumes formed by the extremal
planes (Figure 2.14). Assuming that all shadow planes face outwards, away from the
shadow volume, then these extremal planes are:

For penumbra: Planes de�ned by a pair of (source vertex, occluder edge) or (source
edge, occluder vertex) and have the source totally in the front half-space and the
occluder on the back half-space (Figure 2.14),

For umbra: Planes de�ned by a vertex of the source and an edge of the occluder and
have both the source and the occluder in their back half-space (Figure 2.14).

The umbra shadow volume then is the intersection of the back (negative) half-spaces
of the umbra planes and the back half-space of the polygon. Similarly, the penumbra
shadow volume is the intersection of the back half-spaces of the penumbra planes and
the back half-space of the polygon.

The shadow boundaries, umbra and penumbra, on the scene polygons are computed
in object space. This is done by comparing each receiver polygon against the penumbra
shadow volume of every other polygon; if there is an intersection then the receiver is
also compared against the umbra volume of that polygon. It should be clear that where
we say \every other polygon" we only refer to the polygons that face, at-least partly,
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the light source and which lie, at-least partly, in front of it (we call these light-facing
polygons). Any polygon that is behind or has the source behind it is irrelevant to any
shadow algorithm.

Once the boundaries are found they are transformed to image space where they are
used in the illumination of the polygons during rendering. While the image is scan-
converted to the screen the intensity is calculated whenever a shadow boundary is met
and at regular intervals along the rest of the scan-line. The intensity of the unoccluded
points is computed using Equation 2.1, explained in page 34. For points in the umbra
this value is zero and only an ambient intensity is used. For points in the penumbra
Equation 2.1 is used on the visible parts of the source, from the point.

To �nd the visible parts of a source from a penumbra point p, �rst the set of
occluders (O) of that point are found. Then for each polygon in O a pyramid using the
polygon edges and with apex at p is constructed. This is very similar the point shadow
volume described in Section 2.2.1, but with p as source. The source is compared against
this pyramid and only the parts of it falling outside are visible. These visible parts are
then compared against the pyramids of the rest of the polygons in O.

The shadow boundaries and illumination intensities are not explicitly stored in
object space so whenever the viewpoint changes the whole process has to be repeated.
Also the shadow boundary determination is an O(n2) process, where n is the number
of light-facing scene polygons.

Campbell and Fussell [15] presented a more eÆcient algorithm that performs all the
calculations in object space. The penumbra and umbra shadow volumes of all light-
facing polygons are built as BSP trees and then put together to form two SVBSP trees,
one for the penumbra and one for the umbra. The SVBSP trees are constructed by
the shadow volumes using the BSP tree merging algorithm described in Section 2.1.4.
Then each of the light-facing polygons is inserted into the penumbra tree to determine
the shadow boundaries. If it is found to lie even partly in an IN cell of the penumbra
SVBSP then it is also tested against the umbra tree. The algorithm uses the two-pass
process, constructing the SVBSPs and then inserting the polygons in them, because
Campbell and Fussell failed to �nd a way of ordering the polygons with respect to the
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light source.

Chin and Feiner [18] dealt with the problem of ordering from an area by splitting
the source whenever it is found to straddle the plane of a scene polygon. The scene
BSP tree can then be unambiguously traversed from each resulting source fragment
to give the front to back ordering. Two SVBSP trees are constructed for each source
fragment and the shadows are calculated during the construction in a manner similar
to the point SVBSP tree (Section 2.2.2).

Each of these latter methods have no means of knowing exactly which polygons are
blocking the source at the penumbra vertices. Campbell and Fussell build the convex
hull for each receiver and the source and clip all the scene polygons against it. The
penumbra vertices on the receiver need only to test the source against the remaining
polygons. Chin and Feiner use the BSP tree to �nd the set of polygons (O) that lie
between the source and a receiver. For each penumbra vertex vi on this receiver a point
SVBSP tree is built using the polygons in O and vi as the apex. Then the source is
inserted into this tree and the visible parts are those reaching the OUT cells.

The visible parts of the light source as seen from a penumbra vertex, are calculated
as convex polygons which can be used as separate sources with their sum giving the
total illumination at that vertex.

The illumination Ip from a convex polygonal source with n vertices at point p is
approximated by the following equation as described in [76]:

Ip =
Is

2

nX
v=1

�v cos(�v) (2.1)

where

Is = intensity of the light source

�v = the angle formed by source vertex v, p and source vertex v + 1 (Figure 2.15)

�v = the angle between the plane on which p lies and the triangle v, p, v + 1 (Figure
2.15)

In all methods mentioned above only the umbra and penumbra boundaries are
determined explicitly, but as Campbell notes the illumination function has maxima,
minima and discontinuities within the penumbra regions. He used sampling to locate
them.

2.3.2 Aspect Graphs

More insight into the problem of the variation within the penumbra, was gained through
the aspect graph approach used for object recognition in computer vision. In this
approach the 3-D objects in the scene are represented by a set of 2-D views and the
viewpoint space is partitioned into regions such that in each region the qualitative
structure of the line drawing does not change. The qualitative measure of the structure
of each image is called the aspect [41]. By considering only views from the light source,
that is �nding the regions of space in which the visible part of the source is qualitatively
constant, this becomes the same as the problem we are trying to solve.

In the aspect graph theory, the surfaces that bound these homogeneous regions are
called critical surfaces, which when crossed produce visual events. The critical surfaces
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are de�ned by the interaction of edges and vertices in the scene and as described by
Gigus in [42, 41] they can be grouped into two classes:

EV surfaces: The planes de�ned by an edge and a vertex, Figure 2.16,

EEE surfaces: The quadratic surfaces de�ned by three non-adjacent edges, Figure
2.17, [42].

For the shadow computation problem most of these surfaces are irrelevant. We are only
interested in EV and EEE surfaces that contain a source feature (edge or vertex) and
in EV and EEE surfaces that cut the source polygon, [29]. The intersection of these
surfaces with the scene polygons generate critical curves which correspond to disconti-
nuities in the illumination function. These critical curves are also called discontinuity
curves (or edges for the EV events).

The penumbra volumes, as de�ned earlier, are made entirely of EV surfaces involv-
ing a feature of the source while the umbra volumes might consist of EV and EEE
surfaces. All the discontinuities are enclosed by the penumbra.

2.3.3 Radiosity

In Computer Graphics the bulk of the work on computing and representing the exact
structure of shadows has been carried out by researchers into Discontinuity Meshing
Radiosity. To put this in context we will give a brief description of the Radiosity
method in general before going into more detail in Discontinuity Meshing.

Radiosity is based on concepts from thermal engineering. First introduced into
Computer Graphics by Goral in [46] it requires the assumption that the energy in a
closed environment remains constant. It accounts for all inter-reections among di�use
surfaces in the environment and speci�es the resultant surface intensities independent
of the viewpoint.

The environment is represented by a set of n discrete patches of �nite size that can
emit and/or reect light uniformly over their entire area. The radiosity of each patch
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is given by

Bi = Ei + �i

nX
j=1

FijBj (2.2)

where

Bi = radiosity of the ith patch

Ei = rate of energy emitted from the ith patch

�i = reectivity of the ith patch, the fraction of incident light reected back into the
environment

Fij = form factor from patch i to patch j, the fraction of energy leaving patch i that
lands directly on patch j

The radiosity of each patch depends upon the radiosity of all other patches in the
environment, which results in a linear system of equations (Equation 2.3). In the full
matrix radiosity solution the values are found by solving this matrix using an iterative
algorithms such as the Gauss-Seidel.
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This method for calculating the radiosities has many drawbacks. The whole matrix
must be completely computed before any kind of image is produced which is a very time
and space demanding process. An alternative, called progressive re�nement radiosity,
was proposed by Cohen in [23]. The single most bright patch is selected and it shoots
its energy to all other patches in the scene. This is repeated with the next most bright
patch (accounting for the received energy as well) and so on until the next most bright
patch has an energy level below a threshold. This method converges more quickly, the
scene can be drawn after each cycle and the process can be stopped when the result is
satisfactory. Also only one matrix row needs to be stored at each step.

The most expensive part of every radiosity solution is the computation of the form
factors and accounting for visibility between the patches. It is important that these
computations are performed as eÆciently as possible. The form factor is in a sense
an expression of the visibility between two patches. For progressive radiosity where
one emitting patch is processed at a time and hence the form factor between that
patch and the rest of the environment is calculated, this is very much related to the
problem of calculating the shadows from the emitting patch. One of the �rst and most
popular solutions for �nding form factors is the hemi-cube method [24]. This calculates
the visibility using a z-bu�er as space subdivision into cells, and approximates the
form factors by counting the number of cells the projected patches cover. Alternative
methods include ray casting [63, 109, 110] and the hemi-sphere [38, 95].

Another crucial factor for speed and accuracy in the radiosity solution is subdivision
(meshing) of the surfaces. Traditional radiosity systems start with an initial mesh over
the environment surfaces, usually a regular grid, and re�ne it as more information
about the intensities on the mesh is gained [25], sometimes requiring intervention from
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the user. Many di�erent ways of re�ning the mesh have been suggested [6, 51, 94, 109].
A notable one is hierarchical radiosity [51] that automatically re�nes the mesh avoiding
excessive accuracy where it would go to waste and thus speeding up the process by an
order of magnitude.

This way of meshing the environment fails to account exactly for important intensity
gradients such as shadows. Even though greater subdivision is usually performed in
shadow areas, in general the subdivision is not aligned with the shadow boundaries.
Many artifacts are produced as a result, such as shadow/light leaks, oating objects
and jagged shadow edges.

Recent research has tackled this problem by building the initial mesh along the
shadow boundaries and other important discontinuities before re�ning it any further.
This method is called discontinuity meshing. At the same time as making a better
mesh it also provides a means of calculating the exact visibility between the patches,
accounting for more accurate form factors.

2.3.4 Discontinuity Meshing

A function f is said to be continuous (C0) over an interval (t1; t2) if and only if

8a 2 (t1; t2); lim
x!a��

f(x) = lim
x!a+�

f(x) = f(a); as �! 0 (2.4)

A function that fails this criterion is said to have a zero degree (D0) discontinuity.
A function whose kth derivative satis�es (2.4) is said to be Ck continuous. A function
that is Ck�1 but not Ck is Dk.

A B

discontinuity edgesD
2

Figure 2.18: Discontinuities of the second
degree (D2)

A B

discontinuity edgeD
1

Figure 2.19: D1 resulting from 2 overlap-
ping D2

Discontinuities in the illumination function of a polygon are caused at its inter-
section with the critical surfaces. As said before the only relevant critical events are
those caused by EV or EEE surfaces involving a source edge or vertex, which are called
emitter events, and those caused by EV or EEE surfaces not involving a source feature
but intersecting the source with their surface, which are called non-emitter events.

As described by Heckbert [52] critical surfaces due to point, linear, area light sources
cause in general D0, D1, D2, respectively but when 2 discontinuities coincide the degree
of discontinuity can decrease. As we are dealing with area sources, discontinuities from
both EV and EEE surfaces will in general be of the second degree. For example in
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Figure 2.18 as we move along line AB on the polygon, the illumination function has
D2 discontinuities at the points where it crosses the marked edges. In cases where an
edge of the source and an edge of the occluder are parallel then two EV surfaces have
a combined e�ect and produce D1 edges. In Figure 2.19 as we move along line AB
on the polygon, the illumination function has a D1 discontinuity at the point where it
crosses the marked edge.

D0 edges can also be generated. These occur along touching surfaces and they
can cause some of the most severe artifacts if they are not represented explicitly. D0

discontinuities were �rst correctly accounted for by Baum [6] by using a separate pass
through the database to locate them before doing any further subdivision. Similar
approaches have been adopted by all discontinuity meshing (DM) algorithms. This
separate pass can, however, be avoided. Following the reasoning for D1, D0 can be
seen as a set of co-linear D2, (Figure 2.20), and can be treated through the same
algorithm. The algorithm presented in Chapter 5 of this thesis promotes to D0 any
edge where penumbra and umbra edges of the same occluder and source overlap.

0

A B

discontinuity edgeD

Figure 2.20: D0 resulting from more than 2 overlapping D2

Higher order discontinuities can be generated when the radiance of the source is
non-uniform. This can be the case with secondary sources. In general a Dk on the
source can cause Dk+1 and Dk+2 on the receiver [52]. Higher order discontinuities are
less noticeable and anything above D2 is not usually considered.

The �rst study on discontinuity meshing was presented by Heckbert [54] for a 2-D
domain2. A complete mesh was constructed by considering every possible interaction
between the edges and vertices in the scene, an operation with N3 cost for N vertices.
He later extended his work to a 3-D environment [53] by using a similar algorithm which
traces every EV surface; EEE surfaces were ignored. At the same time a di�erent 3-
D algorithm was proposed by Lishinski et al [61]. They also considered only the EV
discontinuities but used a more \progressive" approach for locating them. A separate
computation is made for each emitting polygon. The highest energy polygon is selected
to be the source at each pass, the discontinuities on the other polygons caused from
this are found and the intensities are calculated. At the end, the resulting meshes are
merged in order to produce the �nal subdivision. This approach was adopted in later
DM research.

2In-fact Campbell [15] used subdivision along shadow boundaries (introducing the 2D BSP repre-
sentation), before Heckbert, but he only considered extremal boundaries, see Section 2.3.1.
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EEE surfaces were partly treated by Teller [100], in a related computation where
the visible region of a source through a sequence of portals is calculated. This method
�nds what would be the extremal umbra boundary in our problem, but the algorithm
is based on a 5-D Plucker coordinate representation that does not generalise so easily
to a complete DM solution, and is computationally expensive.

Algorithms that include all EV and EEE events, even non-emitter ones, were later
presented by Drettakis and Fiume [30] and Stewart and Ghali [96]. Most other re-
searchers, including the author, have chosen to ignore EEE and non-emitter EV surfaces
because the error produced by their exclusion is small compared to their cost.

Following Lishinski's progressive algorithm, discontinuity meshing can be broken
down into four main operations:

1. The discontinuity curves are found by tracing the critical surfaces of the emitter
through the environment.

2. These curves are used to construct the mesh, on each of the scene polygons/patches,
due to the particular emitter.

3. The illumination intensities at the vertices of the mesh and other selected points
is calculated. Calculating the intensities requires the determination of the visible
part of the source from each point.

These three steps are repeated for each of the major emitters and then �nally:

4. The meshes created on each surface are merged together to form the �nal subdi-
visions.

This last step is important only to the radiosity solution so it will not be described
here. In most algorithms, the tasks of locating the discontinuities and constructing the
mesh are interleaved but they will be discussed separately here.

Locating the Discontinuities

All DM-algorithms to date locate the D0 edges and the D1 and D2 edges using di�erent
methods. The D0, which lie at the contact between surfaces, are computed �rst by
considering only object proximity. This involves visiting each object and comparing it
against the adjacent ones. The eÆciency of this operation depends on the eÆciency of
the method used for determining proximity. Tampieri [98] uses a hierarchy of bounding
volumes while Drettakis [30] uses a voxel-based subdivision structure.

To �nd the rest of the discontinuities, which are EV emitter edges since we are not
treating EEE or non-emitter EV, the method used again by all previous algorithms, is
to form the semi-in�nite wedges using a vertex of the source and an edge of an occluder
or an edge of the source and a vertex of an occluder and �nd their intersection with the
scene polygons. For the rest of this discussion we will di�erentiate between the wedges
caused by a source vertex and those formed by a source edge by calling the former ve
and the latter ev wedges. A ve wedge with its intersections in the environment can be
seen in Figure 2.21.

All algorithms process each EV wedge separately to �nd its intersections with the
environment, but di�er mainly by whether they sort the scene polygons and compare it
against them in that order or not. In the latter group we have Heckbert and Drettakis.
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Figure 2.21: Intersecting the wedge with
the scene polygons
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Figure 2.22: Intersections are transformed
to the wedge space to determine visibility

Heckbert compares each scene polygon against each wedge, requiring excessive compu-
tations. Drettakis greatly reduces the number of comparisons by using a voxel based
subdivision which limits the candidate polygons to only those sharing voxels with a
wedge.

One problem with processing the polygons in an unsorted manner is that it is
not possible to tell immediately if the intersection of a polygon with a wedge is a
discontinuity (critical edge). Only the intersection edges that are visible from the apex
of the wedge form discontinuity edges and should be added to the mesh. For example
the intersection of polygon 4 in Figure 2.21 cannot be seen by v, because it is blocked
by polygons closer to v, and hence should not be added to the mesh. To �nd the
critical edges from each wedge all the intersections are transformed into the wedge
plane and put into a sorted list. A 2-D visibility test (a variant of the Weiler-Atherton
visible surface algorithm [5, 111]) is performed from the point of view of the wedge
apex and the critical edges are found. In Figure 2.22 only the thick edges correspond
to discontinuities.

Alternatively the scene polygons can be built into a BSP tree which will provide
the order from the apex of each wedge eliminating the need for the 2-D visibility test.
This approach was taken by Lishinski [61] and Gatenby [37]. As the polygons are
compared against the wedge in front-to-back order the intersections are found and at
the same time the wedge is clipped against the intersected polygons so that only the
unobstructed parts of it are traced further. The tracing can stop as soon as the wedge
is completely clipped avoiding unnecessary polygon/wedge comparisons. This can be
seen in Figure 2.23: intersections that do not form discontinuity edges are not found
and the tracing of the wedge stops at polygon 3.

In Chapter 5 an alternative approach is given. The set of EV wedges corresponding
to one occluder are treated as one entity (a shadow volume) and they are traced together
in the scene. The shadow volume is compared against a candidate list of receiver
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Figure 2.23: Clipping the wedge when compared against ordered polygons

polygons which is found using a tiling cube based method. The D0 are found in the
same pass.

Constructing the Mesh on the Faces

Once the discontinuity edges on each polygon are found they are combined to form
the mesh on the polygons. A common data structure used for representing the mesh,
which is also used in this thesis, is the discontinuity meshing tree (DM-tree). One such
tree is used per scene polygon.

The DM-tree consists of two parts: a 2-D BSP tree and a Winged Edge Data
Structure (WEDS)[8]. The WEDS is an edge based structure suitable for maintaining
the consistency and accelerating access to the adjacency information. It has three basic
elements: a vertex, an edge and a face structure. Most of the topological information
is held on the edge structure. This has pointers to the two faces lying on either side, to
the two vertices on its endpoints and to four other edges sharing these vertices. Each
vertex structure holds a 3-D point as well as a reference to an edge of which it is an
endpoint and each face structure holds a pointer to one of the edges that de�ne its
boundary.

The WEDS is central to the DM-tree because it allows for the intensity of each ver-
tex to be calculated only once and shared between the incident faces. Also it ensures
that no T-vertices are introduced as the faces are split. The absence of such a structure
was apparent in Campbell's work [15]. He was the �rst to use the BSP for the repre-
sentation of shadows on the polygons but in his structure the edges were not shared
between the neighboring elements which led to multiple illumination calculations and
a problems with the T-vertices.

The 2-D BSP tree is an augmented version of the structure described in Section
2.1. As before each internal node holds a sub-hyperplane (edge) and it is de�ned by its
hyperplane (line). Each node corresponds to a region of space which is partitioned by
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the node hyperplane with the leaf nodes corresponding to unpartitioned regions (cells or
mesh faces). At the leaf nodes, however, in this case we store an explicit representation
of the region of 2-D space that corresponds to the leaf by keeping a pointer to the mesh
face.
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Figure 2.24: Building the DM-tree

Initially the DM-tree is a single leaf node holding one face (the whole polygon),
as in Figure 2.24(a). When a discontinuity edge is added splitting the polygon, the
tree is updated to store the edge at the root and the two new faces at its leaves. If
the edge does not span the face completely then it is augmented by adding another
segment, called construction edge, to keep the subdivision convex (Figure 2.24(b)). As
more discontinuity edges are added they are �ltered down the DM-tree, possibly being
subdivided on the way, until they reach the leaves where they subdivide the faces held
there.

One of the potential problems of this method for building the mesh, is that it relies
on machine precision to connect the discontinuity edges at the right point. Take for
example edges e1 and e2 in Figure 2.24. These two edges were caused by wedges formed
by consecutive edges of the occluder (or consecutive vertices) and that is why they share
a common end-point (v). As each wedge is traced independently and the discontinuities
are inserted into the structure one by one, they will only correctly connect at v if no
precision errors occur in the calculations. This is a common problem, occuring in many
applications and it is usually tackled by using a tolerance value that gives thickness to
the lines. Of-course this creates other problems if we have very small or closely placed
edges.

The only work that goes some way towards limiting this problem is that of Drettakis
[29]. The ev wedges are created and traced in the order of the occluder's edges and each
new discontinuity edge on the same receiver is connected to the end of the previous
one. This is made possible because of the use of an extended WEDS to accommodate
temporarily dangling edges without the use a 2-D BSP. Yet this can only correctly
connect half the edges, and the ve events still rely on machine precision.

The algorithm presented in Chapter 5 of this thesis correctly connects all EV dis-
continuities from an occluder before they are inserted into the the mesh of the receiver
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and thus minimises all such errors.

Illuminating the Mesh Vertices

Each vertex in the mesh created above (as well as any generated by further mesh
re�nement, like triangulation) must be illuminated. The illumination calculation of
the mesh is usually the most costly part of DM. This is because for each vertex the
visible parts of the source must be found before applying Equation 2.1 on them. The
usual method for �nding the visible parts of a source (S) as seen from a vertex (v)
is to project the occluders of v onto the source plane and then use them to clip away
any hidden parts of the source. Of course only vertices in penumbra need to do this
source/occluder comparison but most of the DM-methods do not provide immediate
information on which vertices are in the penumbra or which polygons are causing the
penumbra if the vertex is found to be in one.

Using every polygon in the scene as a potential occluder would be extremely inef-
�cient. Lishinski [61] limits the number of potential occluders by using a shaft culling
technique [49]. For each vertex v in the mesh a pyramid is constructed using v as
apex and the source as its base. The scene polygons are compared against this and
only those that intersect the pyramid's interior are projected onto the source plane for
clipping the source.

Gatenby [39] uses spatial coherence to provide a much smaller set of potential
occluders for each vertex. It relies on the fact that if an occluder O does not obstruct
any part of a given receiver R from the source then no vertex on R can be in the
penumbra of O and hence O is excluded from the potential occluder set of the vertex.
Before illuminating the vertices in the mesh of a receiver polygon R, a two step \pre-
processing" is performed involving the whole of R, to �nd only the polygons that a�ect
at least a part of it. First the BSP tree is traversed, front-to-back, from each of the
source vertices until R is found. The sets of polygons encountered by the traversals are
put together to form one set L0o. The receiver is then compared against the penumbra
shadow volume of each polygon in L0o . When R is found to intersect the penumbra of
a polygon in L0o, this polygon is added to another list Lo. The potential occluders of
vertices in the mesh of R is the set Lo. Those receivers totally in umbra or unoccluded
are therefore treated particularly fast.

An altogether di�erent way of calculating the visible parts of the light source, based
on the aspect graphs, was suggested by Drettakis [30] and Stewart [96]. They use a
data structure called the backprojection which stores the exact structure of the visible
part of the source. This is computed once for each point on a surface and then it can be
updated incrementally each time a discontinuity edge is crossed to get to a neighboring
cell. It is fast compared to the alternatives but it has the disadvantage of requiring a
full mesh to be constructed, one that includes non-emitter EV and EEE edges.

In the algorithm described in Chapter 5 of this thesis the occluder polygons are
identi�ed and stored with each mesh element during the construction of the mesh so
no searching is required at illumination time.

2.3.5 Area Light Sources in Dynamic Scenes

No one has addressed the problem of computing analytically, in object space, the shad-
ows of moving objects. Some work involving dynamic scenes has been done in the
context of radiosity [7, 16, 40, 65] but only in the form of altering the radiosities on the
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e�ected patches. The geometry of the mesh does not change to explicitly follow any
shadow information.

2.4 Discussion

As it was described above, the shadow problem can be thought of as a visible surface
determination (VSD) one. One of the main parts of VSD algorithms is to decide the
precedence of overlapping faces, as seen from the viewpoint. A straightforward way to
do this is by using a BSP tree. The BSP tree is seen as a static structure and also
as one that can give an ordering only from a point (or region with same aspect). In
Chapter 3 it is shown that under the right circumstances the BSP tree can be modi�ed
at interactive speeds. A method is also described for ordering the scene polygons with
respect to a restricted planar surface which can be used to provide the ordering from
area light sources required in Chapter 5.

The SVBSP tree [17] and the shadow tiling [92] are the two fastest object space
shadow algorithms. The resulting shadows can be easily used for successive frames
where the viewpoint changes but the geometry remains the same. Ways of extend-
ing/modifying these methods to deal with moving objects are presented in Chapter
4.

The algorithms described for area light sources, especially the ones in the disconti-
nuity meshing research, capture all major variations in the illumination function. When
used with higher order interpolations they can produce very realistic e�ects. But the
motivation for these algorithms was to produce an initial meshes for radiosity solutions
which are concerned mainly with static scenes, they are not easily incorporated into
dynamic scenes. In Chapter 5 a method is presented that can still �nd the main varia-
tions in the illumination function but which also allows for modi�cations in the scene
data.



Chapter 3

BSP Trees for Dynamic Scenes

and Ordering

As discussed in the previous chapter, we will be using BSP trees in the shadow algo-
rithms but before we can do that we need to look at certain issues regarding their use.
In this thesis they have been used for ordering the scene polygons and for calculating
and storing shadow information. Owing to the nature of our applications, i.e. dynamic
scenes illuminated by point and area light sources, we came across two main problems
which we will try to address in this chapter.

The �rst is how to update the BSP tree to reect changes in the scene data. This
is required by each of the algorithms to be described in the later chapters, as they
all operate in non-static environments. For the point source tiling method (Section
4.1), the tree is built from the scene polygons to provide an ordering. For the SVBSP
method the tree holds the polygons and the shadow planes for calculating the shadows.
In the area source algorithm (Chapter 5), a 2-D tree is used for storing the shadow
information on each polygon (DM-tree).

The second problem involves obtaining an ordering of the polygons from a planar
polygonal area, rather than from a point. This is necessary for simplifying and speeding
up the area source shadow algorithm.

3.1 Using the BSP Tree in Dynamic Scenes

Several methods have been proposed in earlier literature for using BSP trees in dynamic
scenes (see Section 2.1.6). None of them, however, provides a simple and general
solution. The merging algorithm is a notable solution but as described in [73, 69] it
requires prior knowledge of the moving objects. Also the trees of the static and moving
objects need to be optimised [72] for the algorithm to operate at a reasonable speed.

In this section we describe an algorithm that places no restrictions on the mov-
ing objects or their paths. In its simplest form it can be added to an existing BSP
implementation with minimal changes [20].

Without loss of generality we will assume that any change in the scene data can
be modelled by two operations: deletion and/or addition of objects. An object trans-
formation consists of the following steps: delete object, multiply its vertices by the
transformation matrix, add object. As described in Chapter 2, a BSP tree can be built
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incrementally, either by adding polygons individually (Section 2.1.2) or by merging the
single BSP tree of an object onto the total tree of the scene (Section 2.1.5). We can
use this incremental building for the addition of objects to the tree. There remains
only one issue for a complete algorithm: how to delete an object from the tree. When
referring to a 3-D space, we will consider an object to be a set of oriented polygons.
Thus removing an object is equivalent to removing its polygons.

Deleting a polygon from the tree seems a diÆcult operation, since the plane de�ned
by the polygon may have been used to form a node which further subdivide the set of
polygons in a subspace. In this case deleting the polygon and its node would split the
tree into two separate pieces.

However this is not always true. A more careful study of the problem shows that in
many cases the polygon can be deleted trivially. Any particular polygon can hold one
of four positions in the tree. To delete the polygon, only one of these positions needs
to be processed, and our algorithm will capitalise on this.
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Figure 3.1: Possible positions of a polygon in the tree

The four positions a polygon can hold in the tree are:

(i) On a leaf node, polygon 5 in Figure 3.1.
The plane of the polygon is used to split the subspace into two empty subspaces.
In this case we can simply replace it with an empty cell.

(ii) On a node with other faces, polygon 6 in Figure 3.1.
The polygon can be deleted from this node, since the plane is still de�ned by
other polygons on that node. However, if the �rst two polygons in this node face
in opposite directions, and we are deleting the �rst polygon, then the front and
back subtrees of the node must be swapped in order to maintain the correct front
and back ordering of the tree.

(iii) On a node with exactly one non-empty child, polygon 2a in Figure 3.1.
In this case, the plane was used to split the subspace into an empty region and a
non-empty region. Thus if this node is removed, it can be replaced by the node
representing the non-empty region. In other words, the child of the deleted node
directly becomes the child of the parent of that node.

(iv) On a node with two non-empty children, polygon 4 in Figure 3.1.
This is the only case that needs more processing, as the polygon is used to split
the subspace into two non-empty regions. Therefore if the polygon is removed we
will be left with two unconnected subtrees.
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In the following three subsections, ways of removing the nodes with two non-empty
children (case (iv)) are examined. Section 3.1.1 gives a simple general solution that
requires no extra programming but makes no use of the information already built into
one of the subtrees. Section 3.1.2 uses merging of the two subtrees but it is limited to a
2-D domain since it assumes that the subspaces de�ned at the cells and internal nodes of
the tree are explicitly stored into a Winged Edge Data Structure (WEDS). An example
using this method can be found in Chapter 5. The last method is a generalisation of
the ideas used in Section 3.1.2 to work in 3-D without the WEDS.

3.1.1 Inserting Individual Polygons

The easier and in some cases the fastest method for joining two subtrees together after
the root has been removed is simply to insert the faces of the smaller one into the
larger.

Tree tranformObjects(Tree t, Object obj[])
/* t is the scene BSP and obj[] are the */
/* objects to be transformed */
f

/* remove the object polygons from t */
t = removeFromTree(t, obj[]);
/* transform the object geometry */
getNewObjectGeometry(obj[]);
/* add the objects back to the tree */
return insertObjectsInTree(t, obj[]);

g

Tree removeFromTree(Tree t, Object obj[])
f

/* mark the nodes holding a polygon */
/* of the transformed objects */
for each object oi in obj[]do

markNodes(t, oi);
endfor

/* remove marked nodes from tree */
return restore(t);

g

Figure 3.2: Transforming a set of ob-
jects in the BSP tree

Tree restore(Tree t)
f

if (empty(t)) return EMPTY;
endif

/* if the root of the tree is not marked */
if (notMarked(t.root))

/* recurse into the front and back */
t.front = restore(t.front);
t.back = restore(t.back);
return t;

else /* the root of the tree is marked */
if (any subtree empty)

return restore(other subtree);
else

/* �nd the smallest subtree */
ts = smaller subtree of t;
/* remove the marked nodes */
/* from the largest subtree */
tl = restore(larger subtree of t);
/* add the polygons of the small */
/* into the large, one by one */
return �lterPolygonsOf(ts, tl);

endif

endif

g

Figure 3.3: Removing the marked nodes
from the BSP tree

The algorithm for removing an object from the tree (removeFromTree in Figure
3.2) has the following form. Each node of the BSP tree that holds a polygon of the
transformed object is marked. This is done by following the location pointers that each
polygon stores when it is inserted into the tree. If a node holds more than one polygon
then instead of marking the node we delete the polygon in question from it directly
(case (ii) above). The remaining coplanar polygons will still de�ne the node but we
must swap the subtrees if necessary. After all the relevant nodes have been marked a
recursive function is called that goes through each node once and removes the marked
ones, as shown in function restore in Figure 3.3.

In brief, at each iteration the root is checked and if it is not marked the function
proceeds to the left and right subtrees. If the root is marked and it has only one
non-empty subtree, the algorithm will return that, after it has been processed. If both
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subtrees are non-empty then it will perform three steps: �nd the largest of the two; call
restore with it as an argument; and return the tree generated by inserting the polygons
of the smaller into it. The polygons are inserted individually using the algorithm for
incrementally building the tree (see Section 2.1.2). To determine which tree is larger,
we go through both trees and count the polygons of the largest connected subtree in
each (a marked node splits a tree into unconnected subtrees).

With restore, we have a way of removing the polygons from the tree which can then
be used by the transformObjects function (see Figure 3.2) to transform one or more
objects.

3.1.2 2-D Using WEDS and Merging

In the method described above, no relation between the polygons in the subtrees is
assumed. There are applications, however, where such a relation can be assumed and
exploited. The 2-D BSP tree used to represent the discontinuity meshing in Chapter 5
is one such case. The discontinuity edges created on a receiver from an occluder polygon
are grouped together and bounded by the, relatively few, penumbra edges. Although
on certain receivers a very large number of discontinuity edges may be present their
clustering forms a very eÆcient subdivision of 2-D space [72]. Another important factor
is the explicit representation of the binary partitioners in the tree. Each node holds an
augmented discontinuity edge that spans the whole of the subspace represented at the
node.
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Figure 3.4: A 2-D scene and its tree representation

In such an application merging becomes very attractive, since its two main re-
quirements (eÆcient subdivision and explicit representation of the sub-hyperplanes)
are ready met. Thus we can use merging to put together the two subtrees of a deleted
node.

First the root edge is removed from the WEDS. Then one of the subtrees (Ta) is
chosen to form the basis of the new tree. This is expanded to span the whole subspace
de�ned by both Ta and Tb and then (Tb) is merged into Ta. Unlike previous uses of
merging that put two unrelated trees together, here we have two subtrees from the
same tree. This means that they are de�ned in mutually exclusive subspaces. We also
know the common boundary region of their subspaces, i.e. the edge de�ned at the
marked node, which we shall call E. When this boundary edge is removed and one
of the subtrees forms the basis for the merging (Ta), this subtree may have some of
its edges expanded to the whole extent of the space de�ned at the marked node. The
edges that will be expanded are those that are bounded by E. These may now split
the other subtree (Tb). Any edge of Ta that did not touch E, had E totally on one
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side (or it is bounded by edges in between, in which case the edge is irrelevant to our
discussion). Consequently it must have the subspace over E on one side as well, since
the BSP always subdivides space into convex cells.

Following the above reasoning when Tb is inserted into the expanded Ta it can use
point classi�cation for all nodes that did not get expanded and only apply the more
expensive tree partition for the expanded nodes.

3

1

8

7
6

2
4

5

14b

14a

Figure 3.5: TL is expanded to the whole
subspace

Figure 3.6: Tb is inserted into Ta to form
one tree

The pseudocode for the algorithm is given in Figures 3.7 to 3.9. We will show how
it works using the example in Figure 3.4. To delete the marked node of edge E that
has two non-empty subtrees (Ta and Tb) the following three steps are performed:

1. The edge at the marked node is removed from the WEDS. For this we need to
traverse E from end to end. The edges at its endpoints are joined together (these
are boundary edges of the cell de�ned at the parent node) while anything else
touching the edge is marked as dangling, and may need to be expanded later.
The number of dangling edges on each side of E is counted. In our example the
dangling edges would be f3, 4g on the left and f9, 12, 13, 19g on the right.

2. One of the subtrees is chosen to form the basis for the merging. Unlike the
earlier method (Section 3.1.1) where the choice was based purely on size (largest
connected subtree) here we can use a more elaborate function for predicting the
cost of inserting each subtree. Most of the computation involved in merging
goes into the partitioning of the inserted tree. The fewer the dangling nodes,
in the kept tree, the fewer partitioning operations will be performed. The cost
of each individual partitioning depends mainly on the number of nodes of the
partitioned tree visited. An accurate cost estimation can account for this number
by comparing the lines of the dangling edges against the bounding areas of the
subtrees of the inserted tree, or by some other method. We used a simpler but
still adequate estimation of the cost:

E[costa] = Da � sizeb

where a; b 2 ffront-subtree, back-subtreeg and a 6= b, Da = number of dangling
edges in a and sizeb = number of unmarked nodes in b, (for the DM-tree we can
use as size the number of unmarked penumbra edges).

Using this function Ta is selected, traversed from top to bottom and the dangling
edges are extended to span the whole of the cell de�ned at the removed node.
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This creates a convex partitioning of the cell (Figure 3.5). To extend the dangling
edges, the boundary of the cell de�ned at the parent node of E is traversed by
always following edges from nodes that are ancestors of E. This is important
since the edges of Tb are still in the WEDS but at the moment they should be
ignored (Figure 3.5).

3. Finally, Tb is inserted into Ta to form a uni�ed tree, as in Figure 3.6. The impor-
tant thing here is that only the nodes that were expanded in step 2 (f3, 4g) may
possibly split Tb, as they are the only ones that intersect Tb's subspace. For the
rest of the nodes in Ta that will be encountered (f1, 2, 5g), classifying one point
on Tb will suÆce. When the merging is �nished the dangling edges of Tb must
be extended to span the whole of their subspace. Meanwhile, at partitioning, the
subtrees created are condensed to avoid unnecessary fragmentation of homoge-
neous regions. An example of where the condensation can take place is edge 14
in Figure 3.5. The top part, 14b, does not contain any part of a discontinuity
and so it will be removed.

Tree restoreWeds(Tree t, Object obj)
/* remove all nodes in tree t belonging to object obj */
f

if (leafNode(t)) return t;
endif

/* if root of tree was caused by the transformed object (obj) */
if (fromObject(t.root, obj))

/* remove root edge from WEDS and cound dangling edges */
counter = removeFromWeds(t.root);
if (one subtree empty)

return restoreWeds(other sub-tree, obj);
else

/* use the number of dangling edges and */
/* size of subtrees to choose which to keep */
if (keepBackTree(counter, t))

ts = t.front;
tl = restoreWeds(t.back, obj);

else

ts = t.back;
tl = restoreWeds(t.front, obj);

endif

return insert2DTree(tl, ts);
endif

else /* root is not from obj */
/* if any of the root end point are dangling */
if (dangling(t.root))

/* expand root edge to span the whole space */
/* of the cell de�ned at the parent node */
expand(t.root, t.parent);

endif

t.front = restoreWeds(t.front, obj);
tback = restoreWeds(t.back, obj);
return t;
endif

endif

g

Figure 3.7: Removing the marked nodes from the 2-D BSP tree and the WEDS

This method is particularly fast if one of the subtrees has only a few dangling
edges. An example of an extreme case can be seen in Figure 3.10. Here our algorithm
can detect the left side of E having no intersection (no dangling edges recorded when
deleting E). Hence Tb is inserted in Ta as a point.
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Tree insert2DTree(Tree t1, Tree t2)
/* inserts t2 into t1, t1 has already been restored but not t2 */
f

if (leafNode(t1)) return restoreWeds(t2);
endif

if (leafNode(t2)) return t1;
endif

if (t1.root == t2.root) /*segments of the same line*/
t1.front = insert2DTree(t1.front, t2.front);
t1.back = insert2DTree(t1.back, t2.back);

else if (t1.root has been expanded)
partition(t1.root, t2, t2F, t2B);
t1.front = insert2DTree(t1.front, t2F);
t1.back = insert2DTree(t1.back, t2B);

else

c = classifyPoint(t1.root, any point of t2);
if (c == FRONT)

t1.front = insert2DTree(t1.front, t2);
else

t1.back = insert2DTree(t1.back, t2);
endif

endif

return t1;
g

Figure 3.8: Inserting one of the subtrees into the other

In the particular application given in Chapter 5, apart from having our information
optimised for merging there is another good reason for using merging instead of the
method described in Section 3.1.1. Each vertex in our structure stores an illumination
value which is quite expensive to calculate, and therefore we want to keep as many
of the existing vertices as possible. If we insert each edge separately we may disturb
them.

3.1.3 3-D Using Merging

There may be 3-D environments where merging is an appropriate way to put together
the subtrees of a deleted node. As before the two subtrees are de�ned in mutually
exclusive subspaces and the only nodes that may intersect the opposite subtree are
those that intersect, with their plane at-least, the boundary between the two subspaces.
In general we will not have an explicit representation like the DM-tree above to know
which and how many they are.

We can still obtain this information by using the following simple procedure. First
we construct a polygonal representation of the intersection of the root plane with the
region of space represented by the root, the sub-hyperplane (shp) (see Section 2.1.4)
and then we insert it in Ta and Tb while performing two actions into the process:

1. counting the nodes that intersect it in each tree, and hence might partition the
other subtree when inserted, and

2. storing at each node encountered the classi�cation of the shp (or the fragment
that reached there) against the plane of the node.

For this operation to work properly the two subtrees must have any marked nodes re-
moved �rst, so that the restore function of Figure 3.2 is re-arranged to recurse into the
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int removeFromWeds(Edge e)
/* removes the edge; marks as dangling any edges lower */
/* down thet ree; returns a sum indicating which sides */
/* has more dangling edges */
f

v = get left end of e;
removeFromWeds e from vertex v;
while (v != NULL) do

v = next vertex to the right, along e;
if (edges meeting at v are on higher nodes on tree)

connect the edges at v together;
v = NULL;

else

mark edges meeting at v as dangling;
counter = add how many to left and right;

endif

endwhile

g

Figure 3.9: Removing a marked edge from the WEDS
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Figure 3.10: When E is removed, Tb can be inserted in Ta as a point because none of
edges of Ta touch E

subtrees before processing the root (see Figure 3.11). After this measuring/marking
step we can proceed with the merging of the subtrees. Now we use the cost estimation
function as in the previous subsection, for deciding which subtree to use as base, de-
pending on the number of times the sub-hyperplane was intersected by the two subtrees
and depending on the size of the subtrees.

The subtree to be inserted is �ltered using the classi�cations stored at nodes of the
other tree. It can only visit the nodes that the shp has visited (possibly less but not
any others) and it will have the same classi�cation as the shp. Thus we will use the
nodes that store a CUT value to partition the inserted subtree while traversing the
others without any processing at all (Figure 3.12).

One bene�t of this method compared to the original merging is that it does not
need to store the polygon representation of the shp at each node. Storing it requires a
lot of memory and processing every time a polygon is added to the tree. Here we only
need to calculate shp that are known to cut the other subtree.

This algorithm has not been evaluated (as it was not required by any of the shadow
algorithms discussed in this thesis) and requires further experimental exploration.
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Tree restore3D(Tree t)
f

if (empty(t)) return EMPTY;
endif

t.front = restore3D(t.front);
t.back = restore3D(t.back);

if (notMarked(t.root))
return t;

else

if (any subtree of its empty)
return restore3D(other subtree);

else

shp = �ndShp(t.root);
fts, tlg = measureClassify(t.front,

t.back, shp);
return merge3D(ts, tl);

endif

endif

g

Figure 3.11: Removing the marked nodes
from the tree

Tree merge3D(Tree t1, Tree t2)
/* insert t1 into t2 */ f

if (empty(t1)) return t2;
endif

if (empty(t2)) return t1;
endif

/* the classi�cation of the shp against */
/* was stored and is used here */
c = root.classi�cation;
if (c == FRONT)

t1.front = merge3D(t1.front, t2);
else if (c == BACK)

t1.back = merge3D(t1.back, t2);
else /* CUT, it cannot be ON */

partition(t1.root, t2, t2F, t2B);
t1.front = merge3D(t1.front, t2F);
t1.back = merge3D(t1.back, t2B);

endif

return t1;
g

Figure 3.12: Merging the two subtrees

3.1.4 Discussion

In this section we will discuss some details about the operation and implementation of
the algorithm.

First, it is important to realise that when a target object is being transformed in
an interactive application, the restore, restoreWeds and restore3D functions are only
relevant for the very �rst transformation. The reason for this is that after the object
polygons have been deleted from the tree, when they are transformed and then rein-
serted, they will end up in one of three places: at the leaf-nodes of the tree; at a node
shared with other coplanar polygons; and at a node near the leaf-nodes of the tree, on
subtrees consisting wholly of polygons belonging to the target object. In each case only
the simpler deletion cases discussed in Section 3.1 will need to be used in subsequent
transformations of this object in this particular interactive sequence.

Second, a consequence of the algorithm is that objects whose polygons are near the
leaf-nodes of the BSP tree can be deleted in constant time. Therefore objects which
are likely to be transformed frequently, for example a 3D cursor object in an interactive
application, or smaller objects in the interior of a room in an application involving, say,
room layout, should be placed into the tree last.

In the restore function as presented in Figure 3.3, in the case where the node to be
deleted has two children, the smaller subtree is �ltered into the larger one, regardless
of the cost of the operation. An alternative strategy is to adopt some criteria which
determines when the �ltering operation should be carried out, or when the nodes are
simply marked as deleted but not actually deleted from the tree. The criteria we have
adopted is to only do the �ltering when the smaller subtree is less than some maximum
size. It should be noted that in a scene there may be a very small proportion of polygons
responsible for most of the splitting during the creation of the tree. It is precisely
the nodes of these polygons which will, of course, have large subtrees. Therefore the
operation of leaving marked nodes in the tree will not occur very often, and will not
unduly increase the size of the tree. Furthermore, if these deleted polygons are left
in the tree, subsequent transformations of other objects may diminish the size of the
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subtrees of the deleted polygons, and so they would eventually be deleted anyway.

An important requirement for keeping the number of rendering polygons under
control will be to join fragments of a polygon together again, when they meet at a node
while �ltering the smaller subtree into the larger one. This is done by using a 2-D BSP
tree and a WEDS to represent the subdivision on each polygon. This works in a similar
way as for the DM-tree, Section 3.1.2. When two fragments of a polygon meet, their
common edge is found and removed to form a single polygon.

3.1.5 Results

The programs for computing dynamic changes to BSP trees, were written in C and
implemented on a SUN SparcStation 2+. The graphical output system used was X11
Release 5. Scenes were constructed in order to examine performance of the algorithms.
Di�erent scenes were used for the methods of Section 3.1.1 and Section 3.1.2 as they
have di�erent requirements. For the former a basic scene consisted of a room containing
a desk with a computer, and a bookcase and books with further scenes constructed from
this by adding additional desks and bookcases. For the latter the shadows on the oor
from a collection of randomly placed cubes were used.

It is very diÆcult to quantify the performance of the algorithm for dynamic changes
to BSP trees. This is because the time taken for an object transformation (not including
rendering) depends heavily on the \alignment topology" of the polygon edges in the
object rather than on the number of polygon edges in the object, or the particular
geometry involved. By \alignment topology" we mean how many splits the target
object polygons might cause in other polygons in the scene. If this number is very
small, then the operation will be relatively fast.

We consider the case of a sequence of transformations applied to an object. This
involves a simulation of the interactive situation where an object is selected and trans-
formed (e.g. translated or rotated). The time for one complete transformation consists
of three main components:

(a) marking the nodes in the BSP tree containing object polygons,

(b) using the restore or restoreWeds function to restore the tree, and then

(c) �ltering the transformed polygons back into the tree.

However, as noted in Section 3.1.4, the full version of restore/restoreWeds, which
can involve removing a node with two nonempty subtrees, is only needed for the deletion
part of the �rst transformation in the sequence, since after this the object polygons will
be at or near the leaf-nodes. Hence all the transformations involve (a) and (c) but only
the �rst involves (b). In the implementation (a) also involves a \cleaning" process when
used after the �rst transformation, that is the marked leaf-nodes are directly deleted
in constant time. (a) is a constant and negligible time operation per polygon and is
not discussed further. (c) re-uses the same function as was used for building the tree.
The time taken for this step depends on the size of the object ( number of polygons),
as well as on the \alignment topology".

In our experiment, on average the percentage of time taken to insert an object
against the total time to rebuild it was almost equal to the percentage of the number of
polygons in the object against the total number of polygons in the scene. We will not
give the timings for inserting an object back into the tree because we do not consider
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scene scene polygons Build BSP
initial after BSP time (ms)

oÆce 1 133 164 86
oÆce 2 211 258 150
oÆce 3 333 537 318
oÆce 4 745 1816 1240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
oÆce 4� 745 3521 2488

Table 3.1: Timings for initial building of the BSP trees

it to be very relevant. To justify our decision we use the following reasoning. Consider
the two alternatives, rebuilding the tree or using our delete/add method:

rebuild: rebuild without object; add object

delete/add: mark nodes; restore tree; add object

Rebuilding the tree can be seen as �rst building a tree with all other scene polygons and
then adding the object polygons, while in our method we remove the object polygons
from the tree and then add them back. As one can see adding the object is an operation
that will take place regardless of the method used. What we will argue with the tables
and discussion in this section is that marking the nodes plus restoring the tree take a
fraction of the time for rebuilding the tree without the object.

The reader is reminded that the following results are only relevant for the �rst
transformation of a selected object while for the following transformations the object
can be deleted in constant time.

Evaluation of restore

The implementation was used with a test scene consisting of a room, a bookcase with
two books, and a desk with a computer on top. A number of test scenes were created
from this basic one: scene oÆce1 consists of a room with a bookcase and two books, a
desk and a computer. Scene oÆce2 is a room with two bookcases and two books, two
desks and a computer. Scene oÆce3 is a room with three bookcases, two books, three
desks and one computer. Scene oÆce4 is a room with three bookcases, two books, ten
desks and ten computers. Scene oÆce4� has the same objects as oÆce4 but with each
one of them randomly rotated by a small angle. Images of these scenes are given in
Appendix C.

The statistics for building the BSP trees of these scenes are given in Table 3.1, along
with the number of polygons in each scene, initially and after the subdivision of the
BSP tree. In the tables of this chapter, the times are given in milliseconds.

In Table 3.2 we give the results for the restore function (including tree + marking)
of di�erent objects for the �rst transformation in a sequence. For each object we show
the number of polygons initially de�ned for the object, and the number after polygon-
splits caused in the BSP construction. Under restore tree we give times for marking
and restoring the tree based on actually deleting all marked nodes (remove), and the
times (partial) if a node is deleted only when the smaller subtree is not too large (the
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scene object object polys restore tree (ms) rebuild % rebuild
moved initial �nal all partial without all partial

oÆce1 computer 20 27 2 2 67 2.9 2.9
desk & comp 56 87 1 1 43 2.3 2.3
bookcase 54 66 9 1 (1) 38 23.7 2.6

oÆce2 computer 20 27 2 2 147 1.4 1.4
desk 2 36 52 2 2 112 1.8 1.8

desk 1 & comp 56 87 3 3 109 2.7 2.7
bookcase 1 54 54 13 2 (1) 130 10.0 1.5
bookcase 2 54 54 3 3 115 2.6 2.6

oÆce3 computer 1 20 27 24 4 (1) 309 7.7 1.3
desk 1 & comp 56 87 38 7 (3) 300 12.7 2.3
bookcase 1 54 66 28 6 (1) 480 5.8 1.5
bookcase 2 54 130 15 7 (3) 244 6.1 2.9

any other obj 6-56 2 - 3 2 - 3 <2 <2

oÆce4 computer 1 20 27 70 20 (6) 1150 6.1 1.7
desk 1 & comp 56 79 198 30 (13) 1270 15.6 2.3
desk 2 & comp 56 115 22 12 (1) 1070 2.0 1.1
bookcase 1 54 66 219 16 (1) 1131 19.3 1.4
bookcase 3 54 221 118 23 (13) 899 13.1 2.5

book 6 66 6 6 1220 0.5 0.5
any other obj 6-56 8 - 20 8 - 11 (�1) <3 <2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
oÆce 4� computer 1 20 27 495 38 (10) 2328 20.2 1.6

desk 1 & comp 56 79 1620 61 (24) 1800 90.5 3.3
desk 2 & comp 56 245 97 49 (9) 2179 4.4 2.2
bookcase 1 54 72 588 54 (4) 2684 21.9 2.0
bookcase 3 54 234 334 45 (16) 2206 15.1 2.0

book 6 6 14 14 2460 0.5 0.5
any other obj 6-56 18 - 40 18 - 32 (�2) <3 <2

Table 3.2: Timings for initial transformations of objects in the BSP tree

criteria used was a maximum of 5 polygons in the smaller subtree). Together with
partial we give in brackets the number of marked nodes actually retained. This is
important because if there were a large number of retained nodes it would signi�cantly
increase the size of the tree, but in fact the �gures show that only a very small number
of polygons (never greater than 1% of the total) cause much of the splitting.

The timing given under rebuild without is the time taken to build the tree without
the selected object. More important than the timing is the percentage given in the
two last columns, under %rebuild. This shows the saving involved in this algorithm by
comparing the time to restore against the time to rebuild ( restore

rebuild
� 100).

To give a thorough evaluation of the algorithm, we computed the timings for trans-
forming each and every object in the scene. The selected objects in Table 3.2 are the
ones that occupy the higher nodes in the tree and hence give the worst performance.
For scenes oÆce3 and oÆce4, this can be con�rmed by looking at the position of the
selected objects on the trees which are shown in Figures 3.13 and 3.14 respectively. All
other objects take considerably less time, less than 3% of rebuilding, which is mainly
the time taken to traverse the tree and to do the size measurements when a marked
internal node is found. While doing the experiment, we noticed that for certain objects
the results were much better than we expected. Take for example desk 2 in oÆce4
or bookcase 1 in oÆce3, even though they have nodes with very large subtrees (see
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scene cube faces number of Build BSP
total active cells in BSP time (ms)

4 cubes 26 11 595 140
7 cubes 44 21 1231 350
15 cubes 92 44 2541 800

Table 3.3: Timings for initial building of DM-trees

Figures 3.13 and 3.14), they were deleted relatively fast. The reason for this is that
some of the object polygons are coplanar with polygons from other objects in the scene
that are not moving. Even though this is normal and expected in most scenes, we ran
another set of experiments (oÆce4�) with a scene that has no coplanar faces between
objects, to see the power of the algorithm in such a case. Here we found that the
number of retained nodes, when retaining those with large subtrees, increased, even
though it never exceeded 1% of the total number of nodes. Also the time for the worst
case increased, with one object taking for its deletion as much as 90% of the rebuilding
time. But in-fact the majority of the objects were deleted in less than 2-3% of the time
with some as low as 0.5%.

In general we can see, that restoring the tree using this method takes a small fraction
of the alternative.

Evaluation of restoreWeds

The restoreWeds function as described in Section 3.1.2 only works for 2-D domains and
hence the scenes used above are not suitable. Rather the data we used for evaluation
are the discontinuity edges on a polygon created by a set of randomly placed cubes and
a rectangular light source.

The scenes have 4, 7 and 15 cubes with their shadows generating fairly complex
BSP trees with up to 2541 nodes.

The subdivision on the polygon from the cube scenes can be seen in the Figures
3.15 to 3.17. In Table 3.3, we give for each scene the number of cells in the tree and the
time spent for building it. Under cube faces is the number of polygons in the cube scene
total and the number of them that created any discontinuities (active), even though
this is not very relevant for the exercise. Since this example is taken from the algorithm
in Chapter 5, each set of edges (from each active cube face) is �rst built into a BSP
tree and then merged to the total tree of the polygon. The times given under Build
BSP are actually only for merging the single trees and does not include their building.
A de�nitely more favorable evaluation of this method can be achieved by including the
times for building the single trees as well. These were not included however since it
could be argued, that a copy of the single trees from the static objects could be stored
and reused when required.

Following the evaluation of restore, we compute the performance of this method by
comparing the time it takes to restore the tree against rebuilding it without the set of
edges created by the transformed object. The results are shown in Table 3.4. Various
objects in each scene were transformed and the time to remove their discontinuity
edges from the polygon were recorded under restoreWeds. In the next column (rebuild
without), we give the times for rebuilding the tree by merging the single trees of the
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scene object moved restoreWeds (ms) rebuild without %rebuild

4 cubes cube 1 21 92 23
cube 2 11 105 10
cube 3 10 90 11
cube 4 9 120 7

7 cubes cube 1 15 300 5
cube 3 48 318 15
cube 4 10 340 3
cube 5 9 310 3

15 cubes cube 1 88 732 12
cube 2 22 760 3
cube 3 97 745 13
cube 5 21 750 3

Table 3.4: Timings for initial transformation of objects in the DM-tree

sets of discontinuities from the other objects. Finally the percentage time used by the
function restoreWeds against the function rebuild is given under %rebuild.

However large the subtrees were, no nodes were retained. This explains why we
have one column of timings under restore, rebuild without and %rebuild.

Unlike the previous function (restore), where we had coplanar polygons between
the static and the transformed object, here we have no collinear edges between the
sets. This is because the cubes were randomly placed in space above the oor. In
applications showing collinear edges, the performance of the algorithm improves.

Comparison of the Two Algorithms

A direct comparison of the two methods is inappropriate since they operate under very
di�erent circumstances. However some observations can be made.

The more complex method used in the restoreWeds function shows its strength
when the objects are transformed for the �rst time in a sequence. Even when deleting
nodes with large subtrees, it gives considerable gains. For subsequent transformations,
maintaining the WEDS is an overhead, whereas the simple deletion algorithm used by
restore works more eÆciently.

The major expense for both of these algorithms is the insertion of the object back
into the tree. In our experiments this takes a fraction of time proportional to the
fraction of polygons (or edges in the 2-D case) in the object moved, compared to the
total number of polygons in the scene, regardless of the total numbers involved. As the
number of objects and the size of the scene data grow, the gain from these methods
also grows, when the size of the moving object remains small. These results are only
valid for the range of data and the particular scenes considered. There is no reason not
to expect this to generalise, however this remains to be shown.
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Figure 3.15: The subdivision generated by the shadows of 4 randomly placed cubes

Figure 3.16: The subdivision generated by the shadows of 7 randomly placed cubes
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Figure 3.17: The subdivision generated by the shadows of 15 randomly placed cubes

3.2 Determining the Order with Respect to an Area

One of the principle uses of the BSP tree is for ordering the scene polygons, either
for visible surface determination from the viewpoint or from the point light source for
shadow calculations. Ordering from area light sources is not as easy. We are not dealing
with just one point but a �nite area that might fall on both sides of a plane de�ned at
a BSP node.

Previous researchers dealing with area light sources realised this problem but being
unable to �nd a satisfactory solution, their methods resulted in unnecessary processing
(see Section 2.3.1):

� Campbell and Fussell [13] did not attempt to �nd an order, assuming that it
is not possible, their method requires two passes over the polygon set. One for
building the uni�ed shadow volumes, umbra and penumbra, from an unsorted set
of polygons using merging and the second for calculating the shadow boundaries
by inserting the polygons in these volumes.

� Chin and Feiner [18] simplify the problem of ordering in respect to the area source
to one of ordering from a point by splitting the light source whenever it is found
straddling the plane of a scene polygon. Thus they can combine the two passes
mentioned above into one but performed multiple times, once for each source
fragment.

� Gatenby and Hewitt [38], use the BSP tree to �nd the polygons lying between
the source and a receiver but not by getting an absolute order. Rather they take
the union of the polygon sets derived by traversing the BSP tree from each source
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vertex to the receiver and get an over-estimation of the set of polygons between
the receiver and the whole of the source.

The reason traversing a BSP from an area light source (or viewing area) is not the
same as for traversing the tree from a viewpoint is because the viewing area cannot
necessarily be unambiguously classi�ed against the root plane at each node. Take for
example the simple scene of Figure 3.18(a). Traversing the tree of Figure 3.18(b) front-
to-back from di�erent points on A gives di�erent orderings: a1 gives f2, 1, 3g while a2
gives f3, 1, 2g. But the di�erent orderings do not imply that there is a cycle or that
an order valid for all points on A cannot be found. In fact because we are dealing with
oriented polygons and we are only considering a limited viewing space, commonly there
will be an invariant ordering, for example f1, 3, 2g here.

3

1 2 3

1

A

2

a1 a2 T1

a1 ->  { 2,  1,  3 }

a2 ->  { 3,  1,  2 }

T2

2

3

1

a1 ->  { 1,  3,  2 }

a1 ->  { 1,  3,  2 }

(a) (b) (c)

Figure 3.18: (a), (b) When the plane of an internal node cuts the area (A) di�erent
orderings are produced for di�erent points on the area. (c) If the cutting node is placed
at the leaves then the ordering is the same for every point on A

As we can see in Figure 3.18(c) a di�erent tree can be constructed that when
traversed gives that ordering from any point on A. The reason why a tree like T1 does
not work is because di�erent points on A lie in di�erent subspaces of polygon 1 and
hence produce di�erent orderings on the children of 1. In T2 this still holds but since
both children of 1 are now empty their ordering is irrelevant.

So an apparent solution to the problem of ordering from a viewing area, is to push
all polygons that intersect the viewing area to the leaves of the tree and the traverse it
from any point on the area.

3.2.1 De�nitions

An interesting study related to this problem can be found in the list priority algorithms
for visible surface determination that use pre-processing to induce priority relations
among the scene polygons. Of particular interest is the work of Schumacker [89, 97].
He applied graph theory to �nd an invariant order for a set of polygons (a cluster).
Along the same lines was also the work of Fuchs [33] and Naylor [67].

Before proceeding let us rephrase some adapted de�nitions and theorems from the
above literature. In what follows si and sj denote polygons:
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De�nition 1 Actual visibility obstruction: si can have an actual visibility obstruction
on sj, with respect to a viewing vector v, if the vector goes through points ti on si and
tj on sj, and ti is closer to the origin of v than tj, and both polygons are front facing
w.r.t. the origin of v.
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Figure 3.19: Polygons si and sj are related under actual visibility obstruction with
respect to v

The actual obstruction gives us the visibility priority of two polygons from a par-
ticular viewpoint, Figure 3.19. This can be generalised by the following de�nition to
give the priority relation of two polygons from any point in space:

De�nition 2 Potential visibility obstruction: si can have a potential visibility obstruc-
tion on sj if 9 a vector v that relates si and sj under actual visibility obstruction.

Potential visibility obstruction makes no assumptions on the position of the view-
point so any ordering obtained under that relation is valid for the whole space. This
relation between two polygons can be determined using the following theorem:

Theorem 1 si can have a potential visibility obstruction on sj if and only if 9 a point
on si in the front half-space of sj and 9 a point on sj in the back half-space of si. (See
[67] for proof of the theorem).
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Figure 3.20: The pairs in (a) are related under potential visibility obstruction while
those in (b) are not

Applying Theorem 1 to the arrangements in Figure 3.20 we �nd that the two pairs
on the left are related under potential visibility obstruction while the two pairs on the
right are not.

3.2.2 Small Viewing Areas

In the research mentioned above, the aim was either to �nd an invariant visibility order
for the whole of 3-D space, or one order for each viewpoint (or sets of viewpoints). Here
we are dealing with a sub-problem since we are only interested in the set of viewpoints
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lying on a pre-de�ned planar polygonal space. Note that in what follows we assume
this area to be convex. For a concave area, it will still hold if we use its convex hull.

Let us now state clearly what it is we will try to achieve:

Given a set of polygons S = fs1; :::; sng and a viewing area A we want to build a tree
T � that when traversed from left to right1 will give a front-to-back priority ordering
<�1; :::; �k> valid from any point on A, where 8�i, �i � sj, some 1 � j � n. For
convenience we will call such a tree ordered.

This ordered tree is equivalent to a linear list of the polygons as seen front-to-back
from A. As we will see later it is not always possible to generate this tree without
splitting A since cycles may be present. In general, however, under the conditions we
will be assuming it will be feasible. Any unbreakable cycles will be reported.

The method has two stages. First a BSP tree T 0 is constructed in the conventional
way but only with the polygons in S that have A totally in their front half-space.
The polygons that intersect A with their plane are stored in a list Lo while those
that embed A or have A totally behind their plane are ignored. We will refer to the
polygons that have A totally in-front as area-facing and to those that cut A with their
plane as o�ending. Clearly traversing T 0 from any point on A gives the same ordering.
Any point on A is in-front of the plane de�ning each node so traversing the tree from
left-to-right is equivalent to a front-to-back traversal.

The second step is to construct T � by inserting the polygons in Lo into T
0. It is easier

to understand why T � is ordered by thinking of T 0 as an ordering of subspaces Ci (cells)
as seen from A. Any additional polygons inserted into T 0 will further subdivide the
cells but cannot change their relative priorities. Thus it suÆce to show that polygons
within each Ci are ordered.

Since the area we are considering is the light source, which is relatively small, the
number of polygons cutting it with their plane are expected to be few compared to
those facing it. So the polygons in Lo will probably reach di�erent cells or maybe few
in the same cell. When an o�ending polygon is the only one to reach a leaf node of
T 0 then we just create a tree node and add it there. For cells with more than one
o�ending polygons, we use a graph theoretical approach, described below, to order
them and produce a subtree to replace the cell.

Each polygon in the cell forms a node of the graph and has arcs connecting it to
all other graph-nodes that it has priority over. The priority relation is determined
using Theorem 1. We will denote this relation using ;, si ; sj meaning that si has
a potential visibility obstruction (PVO) on sj . Once the graph is built it is searched
using a depth �rst search (DFS) to order the nodes and check for cycles. If cycles
are detected a second DFS is performed on the transpose of the graph (the arcs are
reversed) to locate the cycles and reduce it to its strongly connected components [27].
In the scenes we used for Chapter 5 this second search was never needed. If the cycle
is a trivial one involving only two polygons (Figure 3.21) then it can be resolved by
cutting one of the polygons along the plane of the other. A method for dealing with
other cycles is suggested in Section 3.2.4.

Building a tree using the arcs in the graph is an O(n2) process, where n is the
number of polygons involved, but as these are very few this is not detrimental to the
speed of the whole algorithm.

Such a graph theoretical approach was used by Schumacker [89] to order the poly-

1Assuming that the left is the front subtree and the right is the back
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Figure 3.21: Cycle of two polygons
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Figure 3.22: Cycle of more than two

gons in each cluster. It was also used in [67] for generating a total ordering on the
whole set of polygons but it was found impractical due to the large number of cycles
involved. Our problem, however, is not as demanding since we are only interested for
visibility priority from a limited area.

The tree we have constructed here excludes any back-facing polygons, with respect
to A. This is not a requirement of the algorithm and if the tree is to be used for other
operations then the complete set of polygons can be included. In this case the back-
facing polygons are marked so as to traverse the right subtree before the left, when
getting the order with respect to A.

The order for visible surface determination from any point in space, can be obtained
by a normal back-to-front BSP traversal (classifying the viewpoint at each node) on
the nodes of T 0 and right-to-left on the o�ending subtrees.

To use such a complete ordered tree from a di�erent viewing area A0, all that is
needed is to identify the o�ending polygons for A0 and push them down to the leaves.
They do not have to be reinserted at the root of the tree but rather from the node
where they lie. The priorities on the previously-o�ending subtrees are still valid but if
the addition of the now-o�ending polygons creates cycles they will have to be rebuilt.

3.2.3 Maintaining the Order During Interaction

For interaction we assume the use of the algorithm described in Section 3.1.1: the
polygons of the transformed object are removed from the tree and they are added back
at their new positions. When removing polygons from leaf-nodes or from nodes with
one non-empty subtree it can be shown trivially that the ordering in the tree is not
a�ected. But while putting two subtrees together in the restore function or as the new
polygons are added, area-facing polygons might reach an o�ending subtree. In order
to maintain the assumptions we made earlier, area-facing polygons must go before any
o�ending polygons in the tree. So when inserting an area-facing polygon, if it meets a
subtree with o�ending polygons then the area-facing one is placed at the root of the
subtree and the o�ending polygons are pushed down past it one by one.

3.2.4 A Generalisation of the Method

As mentioned earlier the visibility is restrained to a particular area, even if the area is
large, the fact that it is limited and planar places an extra constraint on the visibility
relation which can be used to resolve most of the cycles.
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The arcs in our graph denote the potential visibility obstruction. This relation is
very broad, we are not interested in whether there exists a point in space for which two
polygons can have an actual visibility obstruction but what we are interested in is if
there exists such point on A. We will give a new name to this relation in the following
de�nition:

De�nition 3 Distributed visibility obstruction: two polygons, si and sj, are related
under distributed visibility obstruction with respect to a planar polygon A, if 9 a point
p on A such that si and sj are related under actual visibility obstruction with respect
to that point.

Obviously, distributed obstruction is a subset of potential visibility obstruction. It
cannot create any extra arcs that are not present already. But by validating the existing
arcs against this new relation their number can be reduced and cycles resolved. The
existence of distributed visibility obstruction (DVO) can be determined by the following
theorem:

Theorem 2 Given 3 polygons A, si and sj, si can have distributed visibility obstruction
on sj if si has potential visibility obstruction on sj and 9 a point on sj behind all of
the extremal penumbra planes from A and si.

Proof: By de�nition (see Section 2.3.1), the extremal penumbra planes have the
\source" totally in the front half-space and the \occluder" totally in the back half-
space. Here the source is A and the occluder is si. If sj falls in front of any penumbra
plane then fA, sjg and fsig are linearly separable by that plane, eg plane A1 in Figure
3.23. This implies that there can be no line going through a point on A and a point
on sj that can be intersected by si. Thus there is no point on A from which si and sj
can have an actual obstruction. 2
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Figure 3.23: si can have distributed visibility obstruction on sj with respect to A only
if sj lies, at-least partly, in the penumbra of si

Using the same reasoning we can also show that DVO between A, si and sj can
exist only if A has some intersection with the subspace de�ned by the intersection of the
extremal penumbra planes of si and sj and the front half-space of si. This penumbra
structure is similar to the obstruction polyhedron de�ned in [67].

The test for distributed obstruction is more expensive than checking for potential
obstruction. If we are expecting only few cycles then we can build the arcs in the graph
using only PVO, and only apply DVO to verify them after the polygons involved in
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scene N pol F area O area Max O N cycles

oÆce1 139 58 17 4 0
oÆce2 211 96 19 3 0
oÆce3 333 147 28 4 0
oÆce4 751 336 65 4 0
oÆce4� 751 327 70 6 0

Table 3.5: Visibility from the normal light source

the cycle are found. Also we can create fewer splits if we verify an obstruction before
cutting a polygon involved in a cycle of size two, mentioned in the previous section.

We might �nd examples, such as the one in Figure 3.22, where cycles occur that
can not be resolved by splitting the polygons or otherwise. In this case the actions
taken depend on the application. For example in the area sources algorithm described
in Chapter 5, we can assign the same priority number to all elements of a cycle. When
deciding the shadow relations, polygons with the same numbers will be compared both
ways (see the inner loop in Figures 5.1 and 5.2).

If this is to be used for rendering with the viewpoint moving on A, then we can
�nd the polygon(s) whose removal will break all the cycles and use their planes to split
A. The BSP nodes of these polygons are marked and their planes are checked when
crossing from one fragment of A to another. The subtrees of the node whose plane is
crossed are then switched (left goes right and vice-versa).

To use a tree constructed using DVO from a di�erent viewing area A0 the o�ending
subtrees should be rebuilt. Also it can not be used for rendering from any viewpoint
not on A.

3.2.5 Results

For evaluation of the method the oÆce scenes were used. A relatively large light
source was placed at the center of each room, near the ceiling and the tree was built
with respect to that source. In Table 3.5 we give statistics on the total number of
polygons (N pol) in the scene, the number of polygons that have the area totally in their
front half-spaces (F area) and number of polygons that cut the source with their plane
(O area). The next �eld (Max O) gives the maximum number of o�ending polygons
in any cell of T 0. As we can see this number is very small, not exceeding 6 in any of
the scenes. Finally we give the number of cycles found. For determining the visibility
relations between the o�ending polygons, we used only potential visibility obstruction
(Theorem 1). We can see that no cycles were present in any of the scenes.

The corresponding trees for these scenes oÆce1, oÆce3 and oÆce4 are shown in
Figures 3.24 and 3.25. To show clearly the double structure of the tree, the BSP (T 0)
nodes are marked with white squares (these are from the area-facing polygons) while
the graph theory based nodes are marked with black squares (the o�ending polygons).

To see how the algorithm behaves when we use large sources (or viewing areas), two
more sets of experiments were run: one with a source having sides equal to half that of
the ceiling and one with using the ceiling as the source. The data of these experiments
are shown in Table 3.6 and Table 3.7. The columns in these tables are the same as in
Table 3.5, apart from the last column (N cycles�). This corresponds to the number of
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scene N pol F area O area Max O N cycles�

oÆce1 139 51 41 8 0
oÆce2 211 74 64 11 0
oÆce3 333 110 108 31 0
oÆce4 751 240 241 66 0
oÆce4� 751 227 259 46 1

Table 3.6: Visibility from a light source with half the dimensions of the ceiling

scene N pol F area O area Max O N cycles�

oÆce1 139 26 91 32 0
oÆce2 211 39 143 64 0
oÆce3 333 59 225 96 0
oÆce4 751 129 497 227 17
oÆce4� 751 122 509 191 25

Table 3.7: Visibility from a light source with the dimensions of the ceiling

cycles in the tree with the arcs created on distributed visibility obstruction (Theorem
2) rather than potential obstruction.

As the size of the source becomes larger the number of polygons intersecting it with
their planes (o�ending) grows rapidly (O area). Also the number of o�ending polygons
reaching the same cell of T 0 grows (Max O), making their ordering, using only potential
obstruction impossible. This is the same problem recorded by Naylor in [67]. However,
using the extra constraint provided by DVO, we can see that almost all of the cycles are
resolved. Only in experiments with oÆce4 and oÆce4� do cycles remain. The reason
for that is that the area used for visibility (the source) here is much larger than in the
other experiments and in particular it is very large compared to its distance to the
other objects in the scene. In further experiments using the same data but pushing the
ceiling to twice the height we found that all the cycles disappeared.

The tree for oÆce4 in Table 3.6 is shown in Figure 3.26 and for oÆce1, oÆce3 and
oÆce4 of Table 3.7 in Figures 3.27 and 3.28. As we can see the double structure of the
tree is almost lost in the trees for Table 3.7. Also in the latter tree cycles were present.
These cannot be seen on the tree because we stored all polygons in each cycle on the
same node. So the nodes of the tree are ordered but some of them hold polygons that
form a cycle.

We will not give the timings for building the tree as the purpose of the experiment
was not to build the tree fast but to show that an ordering in respect to an area was
attainable. Also in applications the tree would be built in the pre-processing stage so
it would not a�ect the run-time performance. But to give an idea of the times involved
we can say that for Table 3.5, where the reference area is a normal light source, the
timings were less than building a normal scene BSP tree. This is because the back-
facing polygons were excluded. For Table 3.6 it took slightly longer, while for Table
3.7 it took many times longer than for building a normal tree. These results were
predictable since, as we said in Section 3.2.4, ordering the polygons in a cell is an
O(n2) operation and in Table 3.7 n is very large.
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Figure 3.24: Trees of oÆce1 and oÆce3 from the normal light source

Figure 3.25: Tree of oÆce4 from the normal light source

Interpolating from the above results we can draw the following conclusion: that
even for complex scenes an ordering from an area light source can be derived using this
method with few or even no splittings of the source.

3.3 Summary

In this chapter we have considered issues regarding the use of BSP trees for:

(a) Representing dynamic scenes. The BSP tree is incrementally updated at each
scene modi�cation by removing the polygons of the transformed object and rein-
serting them at their new position.

(b) Ordering polygons in respect to an area. A two level tree is constructed with
respect to the area in consideration. The top level is a BSP tree of the polygons
facing the area. The bottom level is a linear order of the polygons cutting the
area lying in the leaves of the BSP tree.

Experimental results have shown that:

(a) The incremental update of the BSP tree can be performed in a small percentage
of the time required to rebuild it, especially if only a small part of the scene
changes.

(b) An ordering for small areas, such as the light source used in Chapter 5, always
existed for the scenes tested. If cycles in the priority relation are present (e.g. for
larger areas or more complex scenes), they will be found along with a minimal
splitting set for the area to resolve them.

In the next chapter we will present algorithms that use the BSP tree in dynamic
scenes to produce shadows from point light sources.
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Figure 3.26: Tree of oÆce4 with light having half the dimensions of the ceiling
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Figure 3.27: Trees of oÆce1 and oÆce3 with light having the dimensions of the ceiling

Figure 3.28: Tree of oÆce4 with light having the dimensions of the ceiling



Chapter 4

Dynamic Scenes Illuminated by

Point Light Sources

Many interactive applications could bene�t from the addition of shadows, even if these
are produced by point light sources. In this Chapter, two shadow volume algorithms
are extended to deal with moving objects. Shadow volumes were chosen because they
operate in object space and the solution is independent of the viewing position. This is
a desirable attribute for animation/interaction, where the viewpoint changes frequently.
We will assume that in the applications where this method is used speed is critical. In
both algorithms, the shadows are stored as detail polygons on-top of the original scene
polygons. This allows for easy deletion/addition of shadow polygons when objects are
moved. Of course this is not inherent in the algorithms. A mesh such as the one used
in Chapter 5 could be used.

The general idea of shadow volumes is that any part of a polygon falling within
the shadow volume of some other polygons is in shadow. Both of the algorithms to
be described use subdivision of space to avoid the O(n2) comparison of all polygons
against the SV of all other polygons.

4.1 Shadow Tiling

The shadow tiling method as described in Section 2.2.3 makes use of the BSP tree to
order the polygons in respect to the light source. Following the dynamic BSP trees
in Section 3.1 we can deduce a straight forward extension to the tiling algorithm for
dealing with moving objects.

Initially the tiling is built as for the static case: the BSP tree is traversed to get the
front-to-back order and the polygons are projected and scan converted onto the sides of
the cube. During scan conversion with each polygon (P) we record the identi�ers of any
other polygons already in the tiles it visits. These are stored along with the polygon
in its active polygon list (APL). All polygons in the APL are closer to the source than
P, since they are being processed in front-to-back order. Hence P is compared against
the shadow volume of each of these for a shadow. The only di�erence from the static
method is that some extra information has to be stored that will be used later for
deletion from the tiling. Each polygon needs to hold the following:

(a) The tiles it intersects on the cube. If memory is a problem then we can re-scan

73
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the polygon to �nd the tiles when it will be deleted but it is faster if we just store
them when the polygon is inserted.

(b) A list of faces it casts shadows on.

(c) As described earlier, shadows are stored as detail polygons on-top of each receiver.
Each such shadow polygon needs to record the identi�er of the occluder polygon
that caused it.

When an object is transformed during interaction we need to remove its polygons
from the BSP tree and the tiling cube and then reinsert them in both. The order in
which this is done is seen in Figure 4.1. First each polygon in the object is marked on
the BSP tree and removed from the tiling. To remove a polygon from the tiling we use
the information described above:

(a) Is used to delete its identi�er from the cube.

(b) Is used to delete the shadows it generates.

(c) Is used to delete its identi�er from the set of polygons which cast shadows upon
it.

Then the polygons are removed from the BSP tree using the functions described in
Section 3.1, the object is transformed and the polygons are inserted back into the tree,
marked as new.

Once the tree is complete, we can traverse it to obtain a new front-to-back list of the
polygons with respect to the light source position. This list will contain some polygons,
those marked as new, that do not have any shadows yet. The function newShadows
(Figure 4.2) is called that will go through the list and put each such polygon in the
tiling cube.

Tree transformObject(Tree bsp, Object obj)
f
/* remove the object faces from the tiling */
/* cube and delete their shadows */

for each polygon pi in obj do
mark pi on bsp;
remove pi from tiling cube;
remove shadows of pi

endfor

/* transform the polygons update the BSP */
bsp = restore(bsp);
getNewObjectGeometry(obj[]);
for each polygon pi in obj do

add pi to bsp;
endfor

/* get new polygon order from light */
order[] = traverseBSP(bsp, light);

/* cast the shadows of the object faces */
newShadows(order[]);
return bsp;

g

Figure 4.1: Transforming an object us-
ing the Shadow Tiling

void newShadows(order[])
f

for each polygon pi in order[] do
if new(pi)

project pi on cube, and compute aplpi [];
for polygon pj in aplpi [] do

if orderno(pj ) < orderno(pi)
cast a shadow from pj to pi

else

cast a shadow from pi to pj
endif

endfor

endif

endfor

g

Figure 4.2: Adding polygons to the tiling cube

Unlike the initial generation of the shadows, the APL of the new polygons can
contain polygons both closer and further away from the source. We can distinguish
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between these from their positions in the new order list, which is given by the function
orderno(pi) in Figure 4.2. Polygons closer to the source will have lower order numbers.
These will be used to cast shadow on the new polygons while others with greater order
numbers will have shadows cast from the new polygons.

A disadvantage of this method compared to the original described in [92] is that
no distinction is made here between the interior and the boundary tiles. All tiles are
treated as boundary. If we use the idea of marking the interior tiles and do not process
any further those polygons projecting only on them, then some shadows might not be
cast. For the scenes this is �ne since these uncast shadows will be over areas already
covered by the polygons of the interior tiles. In dynamic scenes these polygons might
move and uncover such areas causing errors in the shading.

It is possible, however, to have an algorithm that uses interior tiles. This algorithm
can mark the polygons that scan convert totally these tiles as \potentially casting",
but will not use them to cast any shadows and does not need to compare them against
any SV since we know they are totally shadowed. When the occluder of the interior
tiles is removed then any \potentially casting" polygon in its APL will be processed
again. To keep track of potentially casting polygons we would still need to enter all
the identi�ers in the tiling cube so the gain is limited and also the algorithm becomes
more complicated. This has not been implemented.

Multiple light sources can be modelled by maintaining a separate tiling cube and
the associated information for each source.

4.2 Unordered SVBSP Tree

The tiling algorithm described above provides a great speed-up compared to the alter-
native, which is calculating everything from scratch. The fact that it has to rely on
the BSP tree for sorting the polygons from the light source is a disadvantage for large
environments.

An alternative algorithm which has similar performance for static scenes [92] is the
SVBSP tree. In its standard implementation it also uses the BSP tree for sorting from
the light source. This is not, however, essential. In this section we show how to use
a SVBSP tree built from an unsorted set of polygons for producing and maintaining
shadows in a dynamic scene.

4.2.1 Building the Unordered SVBSP Tree

The standard SVBSP tree is built from an ordered set of polygons so there is no question
as to which polygon is closer to the light source when the SVs of two polygons intersect.
Building the tree using only the shadow planes is suÆcient. For the unordered SVBSP
tree the scene polygons themselves must be added to convey that information, so the
SV of each individual polygon is complemented with the polygon plane. Since nodes
containing shadow planes and nodes containing polygon planes are treated di�erently
by the algorithm we will distinguish between them by calling the former SP-Nodes
(Shadow Plane Nodes) and the latter PP-Nodes (Polygon Plane Nodes).

The algorithm uses a copy of the scene polygons in the tree for calculating the
shadows which are then stored as detail on-top of the actual scene polygons.

The tree is built incrementally by inserting the light-facing polygons into an initially
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empty tree, a single OUT node (Figure 4.3). The �rst polygon just replaces that node
with its SV (Figure 4.4). Subsequent scene polygons are �ltered into the tree by
comparing them at each level against the plane at the root of the tree and recursively
inserting them into the appropriate subtree. If they straddle the root plane then they
are split and each piece is treated separately. When an OUT node is reached it is
replaced by the SV. If the polygon was split its SV is built using the shadow planes of the
original polygon (polygon 4 in Figure 4.6). This is necessary for dynamic modi�cation
and it also means that the SV needs to be calculated only once even if a polygon is
split into many pieces.
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When a PP-Node is encountered, if the inserted polygon is classi�ed as behind its
plane then it is marked as shadowed and stored there (face 3 in Figure 4.6). If it is
classi�ed as in front then it takes note of the face at the root as a potential receiver and
it is inserted into the front subtree. If it reaches an OUT node then a shadow is cast
on the face stored as potential receiver (face 2 in Figure 4.6). If it comes in front of
more than one potential receiver, only the last one is remembered and used (polygon 5
in Figure 4.7 comes in front of 2 and then in front of 4, a shadow is casted only on 4).

To cast a shadow onto a receiver, the original scene polygon of the receiver is clipped
against the relevant SV. Likewise, as mentioned above, the SV is always de�ned by
original scene polygons which means that the �st time two polygons or, fragments
of them, meet, the whole shadow between them is cast. This way a lot less shadow
polygons are created, but to avoid duplication the occluder is marked so that it will
not cast a shadow again on the same receiver.

The pseudo-code for building the unordered SVBSP tree is given in Appendix B.
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4.2.2 Using the Tree for Dynamic Shadow Computation

In an interactive application where the scene geometry changes, the tree can be used
to maintain the correct shadows.

During the building of the tree, each inserted polygon constructs a list of pointers
to the locations it occupies on the tree. When an object is transformed, its polygons
and their shadow planes on the tree are found using the location lists and are marked.
After all relevant polygons have been marked, a recursive function is called that will
iterate through the SVBSP tree once and remove all marked nodes. The result of this
will be a valid SVBSP tree for the scene, but now without the transformed object. The
object can then be reinserted into the tree using the algorithm described in Section
4.2.1, to get the shadows at its new position.

A detailed description of the procedure in pseudo-code form is given in the Appendix
B.

Removing the Marked Nodes

The function used for removing the marked nodes works on the whole SV of polygons
rather than on single nodes. There are 3 possible positions for each polygon and its
shadow volume to consider:

(a) In the IN region, behind a PP-node (no shadow planes were attached here, just
the polygon). This is the simplest case, the polygon is just removed (polygon 3
in Figure 4.7).

(b) At the leaves, subdividing an empty subspace. Again this is simple, the SV is
replaced by an OUT node. Care must be taken if the PP-Node had a non-null
receiver. This occurs when it is in front of some other PP-Node during insertion
and it is now casting a shadow on this. In this case the shadow must be removed.
For example when deleting polygon 5 in Figure 4.7, the front (left) subtree of
node labeled 4.2 should be replaced by OUT and the shadow on polygon 4 should
be deleted (the arrows there show the receiver relation).

(c) Splitting a non-empty subspace, the SV forms the root of a larger subtree. This
is the only relatively complex case. Removing it would result in unconnected
sub-trees and these must be put together to form a new tree to replace the old
one. This is similar to the fourth case in Section 3.1. If the deleted polygon was
casting a shadow then that must be replaced by shadows from polygons that had
the deleted one as target. These can only be in the front subtree of the deleted
PP-node. For example if polygon 4 in Figure 4.7 is deleted then the shadow from
4 to 2 should be replaced by a shadow from 5. Any polygons that were in shadow,
in the IN region behind the deleted polygon, must also be inserted into the new
uni�ed subtree.

Joining the Subtrees

The fact that the polygons and their shadow planes come in clusters led us to �rst
try the merging algorithm as described in Section 2.1.4. After several experiments we
came to the conclusion that merging is too slow for our purposes here. The main reason
is that it requires calculation of the sub-hyperplanes of the shadow planes involved in
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the merging Section 2.1.1. Also it is very general, does not utilize the fact that all the
shadow planes emanate from the same point (the light source).

A more specialized algorithm is used here. The largest of the trees to be merged
is found, say T1, and any possible marked nodes on this are removed. The inserted
tree, T2, is then treated as a set of shadow volumes. The polygon node (PP-Node) of
the shadow volume forming the root of T2 is found and �ltered down T1 along with its
front and back subtrees. The �ltering is done in a similar manner to a polygon. The
fact that all shadow planes go through the light source position ensures that anything
enclosed by a polygon's shadow volume can be split by another shadow plane, only
if the polygon itself is split. This means that the front and back subtrees need to be
checked for intersection with a plane only if the polygon is split by that plane. If the
PP-Node meets another fragment of its own original polygon then it stops there and
its front subtree is inserted into the front of the tree node (this is possible since the
shadow planes used by the fragments are those of the original). When it reaches an
OUT node its SV is attached. After the `root' SV and the subtrees of its PP-Node
have been inserted, the algorithm is called recursively to insert the front subtrees of its
SP-Nodes.

Note that the subtrees involved here are linearly separable by the deleted planes
which embed the light source. No ray starting from the source and going in any one
direction can intersect more than one of these subspaces so there is no shadow relation
between them. Also, if polygons split or come together during the merging, the shadows
on them or the shadows they cast do not change.

4.2.3 Further Discussion

As for the tree described in Section 3.1, when a target object is being continuously
transformed, for example as a result of being dragged during an interactive application,
the functions described in Section 4.2.2 are only relevant for the very �rst transforma-
tion. After the �rst deletion and re-insertion, the faces will end up at the leaves and in
subsequent frames can be deleted in constant time.

In the standard SVBSP tree the smaller objects which are usually placed on top of
other larger ones tend to be higher up the tree because they tend to be closer the light
source. This is the order that is obtained from the scene BSP tree traversed from the
light position. Also their polygons may be widely distributed in the tree (Figure 4.10).
Moreover these smaller objects are the ones most likely to be selected and transformed
during an interaction.

In the method described here, the polygons may be grouped together according
to the object to which they belong and are given to the SVBSP tree in that order.
Therefore there is greater probability that those polygons belonging together will be
grouped together in the SVBSP tree (Figure 4.11). Also the smaller objects can be
inserted last. For Figure 4.11 the objects were inserted in depth-�rst order in relation
to in the scene hierarchy (Figure 4.9).

Again, as in the case of the BSP trees in Section 3.1, a small proportion of shadow
planes in the tree are responsible for most of the splitting. Removing these, when their
polygons have moved, could be an expensive operation. This can be avoided by leaving
these nodes in the tree as marked, and not removing them if their subtrees are found
to be too large. They are removed eventually when later transformations make their
subtrees suÆciently small.
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scene scene polygons normal tiling adjusted tiling
initial after BSP time (s) shadow pol time (s) shadow pol

oÆce1 133 164 .43 130 .49 161
oÆce2 211 258 .63 215 .73 275
oÆce3 313 537 1.26 502 1.52 624
oÆce4 745 1816 4.57 1773 5.54 2386

Table 4.1: Timings for calculating the shadows using tiling

More than one light source can be modeled by creating a separate SVBSP tree for
each. The input for subsequent sources are the initial scene polygons and their shadows.

4.3 Results

Both algorithms were written in C and implemented on a SUN SparcStation 2+ with
the same speci�cations as in Chapter 3. The scenes used for evaluation were again the
oÆce scenes as described in Chapter 3, shown in Appendix C.

To evaluate the methods we computed the time taken to update the shadows of a
transformed object (delete the old shadows and �nd the new shadows) and compared
this against the time taken for recalculating the shadows for the whole scene.

4.3.1 Tiling

In Slater's [92] initial tiling method where each projected polygon is scan-converted onto
the cube sides, the tiles that are fully covered by the projection (internal) are marked
as blocked, and no polygon identi�ers are added to them. In our implementation this
optimization was disabled since it would have caused omission of shadows that might be
apparent after a modi�cation. Due to this, the initial tiling method (we call it normal
tiling) generates less shadow polygons and takes less time than our implementation
(adjusted tiling).

The evaluation was done by comparing the update timings against the times taken
by both methods.

In Table 4.1 we give the data for the initial calculation of shadows. Under scene
polygons we show for each scene the initial number of polygons and the resulting number
after the construction of the BSP tree. Under normal tiling, we show the time used
and the number of output shadow polygons created by calculating the shadows with
the normal tiling method. Finally we give the corresponding timings and numbers of
output shadow polygons resulting from our implementation (adjusted tiling).

A number of objects were selected and transformed. The timings for these trans-
formations are given in Table 4.2. For each object moved, we show the number of
polygons prior and after adding objects to the scene BSP tree and the percentage of
the scene they represent (%scene). The time taken by each transformation is �rst given
in seconds (move object), then as a percentage of the time taken to rebuild the shadows
using the normal tiling method (compared to N-tiling) and �nally given as a percentage
of the time taken to rebuild the shadows using the adjusted tiling method (compared
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scene object object polygons move compared to compared to
moved initial �nal %scene object (s) N-Tiling (%) A-Tiling (%)

oÆce1 computer 20 27 16 0.07 16 14

oÆce2 computer 20 27 10 0.08 13 11
bookcase 54 54 21 0.25 40 34

oÆce3 computer 20 35 7 0.07 5 4

oÆce4 computer 20 27 2 0.21 5 4
desk 1 & comp 56 79 4 1.05 23 19
desk 2 & comp 56 115 6 0.95 20 17

bookcase 54 66 4 0.50 11 9

Table 4.2: Transformation timings for the tiling method

A-tiling).

It is apparent from these tables that small objects can be transformed particularly
fast. In all scenes, the computers, for example, take a percentage of time comparable
to the ratio of their polygons against the scene polygons.

Other objects however, like desk1 and desk2 in scene4 take a greater percentage
of time than their corresponding ratio of polygons. We can see in Table 4.4, where
the same objects were transformed using the SVBSP algorithm, these objects also take
longer than their size alone explains. This is because the algorithm does not only
depend on the size of the object but also on the number of shadows produced. These
objects cast shadows on other objects, not only on the oor.

4.3.2 SVBSP Tree

As for the tiling, the algorithm we used for shadow generation is not the same as
the original SVBSP algorithm. In the original method (standard SVBSP) the tree is
built by inserting the polygons in increasing distance from the source, while in the
method we used here (unsorted SVBSP) the polygons can be added in any order. In
the experiments the order in which the polygons are inserted is determined by the scene
hierarchy.

Table 4.3 shows the timings and number of shadow polygons created when gen-
erating the shadows in the four test scenes. S-SVBSP refers to the standard SVBSP
method, the time to build excludes the time to create the scene BSP tree.

scene S-SVBSP U-SVBSP after BSP U-SVBSP no BSP
time (s) shadow pol time (s) shadow pol time (s) shadow pol

oÆce1 .46 332 .45 237 .28 172
oÆce2 .72 526 .74 384 .51 292
oÆce3 1.25 892 1.16 677 .63 389
oÆce4 4.65 3820 3.70 2458 1.51 1063

Table 4.3: Timings for initial building of the SVBSP trees

The unordered SVBSP tree is created in two alternative ways, using the initial set
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of polygons (column marked U-SVBSP no BSP) and using the polygons after they
have been split by the scene BSP tree (column marked U-SVBSP after BSP). In both
cases however the order of insertion is determined by the scene hierarchy. The di�erent
ordering is partly responsible for the di�erence in timing between the S-SVBSP and
the U-SVBSP after BSP. Timings include the calculation of the shadow geometry. The
results suggest that even when (unnecessarily) using the polygons from the scene BSP
tree, the unordered tree takes no more time to build, and results in less shadow polygons
than the method described in [17].

Table 4.4 gives timings for transformations of various objects. In each case the
number of polygons along with the proportion of the total scene accounted for by
the object being transformed is shown. The timings for transformations di�erentiate
between the �rst move and subsequent moves. The subsequent transformations always
take less time, for the reasons given in Section 4. The column marked compared to
S-SVBSP gives the proportion of time taken for the transformation in comparison with
recreating the complete standard SVBSP tree and the column marked compared to
U-SVBSP the proportion of time against recreating the complete unordered SVBSP
tree.

scene object object polygons time to move (s) %U-SVBSP %S-SVBSP
moved number % scene �rst next �rst next �rst next

oÆce1 computer 27 16 0.08 0.06 17 12
20 15 0.03 0.07 12 9 7 5

oÆce2 computer 27 19 0.12 0.06 16 8
20 15 0.07 0.03 14 6 10 4

bookcase 54 21 0.25 0.14 34 19
54 26 0.19 0.9 37 18 26 13

oÆce3 computer 51 9 0.21 0.07 17 5
20 6 0.05 0.03 8 5 4 2

oÆce4 computer 27 2 0.25 0.14 5 3
20 3 0.15 0.07 10 5 3 2

desk 1 & comp 79 4 2.20 0.82 47 18
56 8 0.43 0.22 28 15 9 5

desk 2 & comp 115 6 0.83 0.43 18 9
56 8 0.23 0.12 15 8 5 3

bookcase 66 4 0.70 0.18 15 4
54 7 0.17 0.09 11 6 4 2

Table 4.4: Transformation timings for the SVBSP method

Two sets of experiments were performed for each scene. In the �rst set (�rst row
for each scene), a BSP tree was built representing the scene and the resulting polygons
were used as input for building both SVBSP trees. This was done to obtain a measure
of the performance when the input polygons for the SVBSP trees are the same. In the
second set of experiments (second row), the unordered SVBSP tree was built from the
scene polygons, which is why the same object has less polygons and it takes less time
to move. The standard SVBSP tree used for comparison is the same throughout.
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4.3.3 Comparison of the Tiling and the SVBSP Algorithms

When generating the initial set of shadows for the two methods, we observed that
given the same input polygons, they perform equally well in terms of speed. In terms
of output shadow polygons, the tiling method produces a much smaller set. This is in
accordance with the observation in [92].

The advantage of the unordered SVBSP is that it allows us to use the initial scene
of polygons as input, instead of the polygons after having built the scene BSP tree.
Because of this, the time taken by the unordered SVBSP algorithm is about one third of
the time taken by the tiling (and the standard SVBSP) algorithm. Another advantage
is the low number of output shadow polygons in the unordered SVBSP method.

The reason for using the BSP tree for the tiling was mainly because the ordering al-
lowed for marking of interior �les which resulted in fewer shadow polygons and greater
speed. For interaction we do not use the marking, so a better performance could proba-
bly be obtained by using an \unordered tiling". Even though we have not implemented
this, we believe that times comparable to the unordered SVBSP algorithm could be
obtained with de�nitely fewer shadow polygons.

For interaction, comparing the two algorithms directly from the tables given here is
unfavorable for the tiling method. This is due to the fact that the code for the SVBSP
was highly optimized (at a low level) for interaction, while the tiling was not. However
we can still make some observations. For both, the transformation time depends on
the size (number of polygons) of the object moved and on the number of shadows
produced. For the SVBSP algorithm the time for the �rst transformation in a sequence
also depends on the position of the object in the tree. This may cause considerable
delay when certain objects are �rst selected. So this method is more suitable for scenes
where a selected object is likely to move for more one than one frame in a sequence
and/or when the objects likely to move are known in advance and they are added to
the tree at the end. For the tiling the interaction times are the same for all steps in
a sequence which makes it more suitable for environments where the selected object
changes frequently.
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Figure 4.8: OÆce2

Room

Bookcase1 Desk1 Desk2

Computer1 Computer2

Window Bookcase2Desk3

Book1 Book2

Figure 4.9: Model hierarchy

Figure 4.10: Position of computers in standard SVBSP

Figure 4.11: Position of computers in unordered SVBSP

The faces of computer1 in the tree are marked by a 2 and those of computer2 by *



Chapter 5

Dynamic Scenes Illuminated by

Area Light Sources

In the previous chapter we have described two methods for generating shadows from
point light sources in dynamic polygonal scenes. Although the shadows produced have
provided much information about the relationships between objects in the scene, and
made the task of interaction much easier, they are too simplistic and unrealistic for
many applications. Instead, a better representation of real lighting can be achieved
using area light sources. However these require more complex algorithms if they are to
represent the illumination function closely: the boundaries of the umbras and penum-
bras must be located, and any other abrupt changes (discontinuities) in the gradient
of the illumination function must be identi�ed.

Previous research, in the context of discontinuity meshing radiosity, has provi-ded
a number of ways for identifying the illumination discontinuities but only for static
scenes. In this chapter we will describe a new method for constructing a discontinuity
mesh that allows for fast updates after a modi�cation in the scene geometry. Since we
assume that speed is critical for the applications concerned, we will not consider any
EEE or non-emitter EV events. Using the same reasoning we will avoid any further
subdivision other than that necessary. The method can be extended to the use of EEE
and non-emitter EV-events and adaptive subdivision if it is be to used for static scenes.

5.1 The Need for a New Algorithm

All existing methods for discontinuity meshing share a common fundamental problem
that makes them unusable for interaction. They trace each discontinuity surface in
the scene separately, so even though they �nd all critical edges they cannot �nd the
areas covered in shadow. If they were to be used for interaction, these methods, would
have no way of knowing which vertices or edges have a modi�ed visibility with respect
to the source, when a polygon is added or removed from the scene. An example of a
case where existing algorithms would fail is shown in Figure 5.19. To determine which
vertices are covered by the newly added polygon (Figure 5.19(b)) an exhaustive search
would have to be performed on the entire set of existing vertices.

In the method described in this chapter we deal with this by taking a step backwards
and treating the discontinuity meshing problem as a shadow problem.

The boundary of an area light source shadow is de�ned by the penumbra. To �nd

84
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the discontinuities we trace the penumbra volumes of each occluder in the scene and
when an intersection is found we cast the whole set of discontinuities as one, instead of
tracing each one separately. Shadow volumes for area light sources have been suggested
before [13, 18] but the di�erence is that we do not only �nd the umbra and penumbra
boundaries, as in those methods, but the complete set of EV edges.

Another problem with existing methods is their speed. Usually the construction
time of the DM for a simple scene is of the order of tens or hundreds of seconds, on
very powerful machines. Even if the mesh could be modi�ed in a fraction of this time,
still it would not give real-time rates. Several acceleration techniques are suggested
here.

We speed up the process of �nding the shadow relations between the polygons in
the scene by using an eÆcient space subdivision scheme based on the tiling cube and by
ordering the polygons using the method described in Section 3.2. To avoid the increase
in the number of input polygons we do not split these when building the BSP tree and
show how to use the tiling cube with such a tree.

Once a shadow relation is identi�ed, the discontinuity edges from the occluder to
the receiver are found and built into a single DM-tree. To accelerate the insertion of
these edges into the receiver's DM-tree we use BSP merging. Note that at this stage
any D0 edges due to a touching occluder and receiver are also found so no extra pass
is required to locate them, as in the other methods.

The most important bene�t of the merging is apparent at the illumination step.
At the construction of the single DM-tree each of its cells is assigned the identi�er of
the occluder. As the single DM-tree is merged into the total DM-tree of a receiver this
information is passed to the cells of the total tree. During illumination we use this
information to reduce the amount of occluder/source clipping needed to the minimum.

In addition to the speed advantage our method is also more accurate since the
discontinuities from an occluder are connected by the adjacency information of the
EV surfaces rather than by relying only on machine precision (see page 42 for related
discussion).

5.2 Overview of the Algorithm

The description of the method is divided into two parts, the initial building and illu-
mination of the mesh and the incremental modi�cation step.

The algorithm for constructing the discontinuity mesh is summarised in Figure 5.1.
The basic structure is very similar to the Shadow Tiling for point light sources (Section
4.1). First the scene BSP tree and the tiling cube are built. Then, the polygons are
projected into the cube in the front-to-back order as seen from the light source and the
active polygon list (APL) is found. Shadows are then cast between the current polygon
and the polygons in its APL. Finally, the vertices of the mesh are illuminated.

Of course most of the operations performed at each of the above steps are very
di�erent from the point source tiling: the BSP tree is specially built to give an invariant
ordering for any point on the light source (Section 3.2); the tiling is not a small cube
placed around the source but more like a bounding box placed around the scene and the
polygon projections are found by clipping the cube sides against the polygons penumbra
volume and the cube sides (Section 5.3.1); and the shadows cast from occluder to
receiver are complete sets of discontinuities pre-built into a DM-tree and then merged
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void buildDM()
f
/* construct the tiling cube and the scene BSP */

bsp = buildOrderedBSP(light, polygons[]);
tc = constructTilingCube(scene bounding box, light);

/* project polygons in order on cube and �nd the discontinuities */
order[] = traverseBSP(bsp);
for each polygon pi in order[] do

if not already processed pi
/* build the penumbra, umbra and internal shadow volumes */
fPSVpi , USVpi , ISVpig = constructShadowVolumes(pi , light);
/* project on the tiling cube using the penumbra */
aplpi [] = projectOnCube(tc, PSVpi);
/* �nd the shadows between pi and polygons in its aplpi [] */
for each polygon pj in aplpi [] do

castShadow(pj , pi);
if last orderno of pj � i

castShadow(pi , pj);
endif

endfor

endif

endfor

/* illuminate mesh vertices */
for each vertex vi in the mesh do

illuminateVertex(vi);
endfor

g

Figure 5.1: Initial building of the discontinuity meshing

into the receiver's total DM-tree rather than detail polygons stored on-top (Section
5.3.2).

The information produced from this method is in object space and can be used for
rendering the scene from any viewpoint. Thus all that is required is a way to modify
the scene objects for a fully dynamic environment. As before modi�cations are modeled
by a deletion and/or an addition of objects.

The dynamic process is described in Figure 5.2. When an object is transformed, its
polygons are deleted from the tiling cube and the BSP tree similarly to the algorithm in
Section 4.1. Then the DM-trees of all relevant polygons are traversed for removing all
shadow information due to this object. This information includes mesh edges forming
nodes in the 2-D BSP. These are removed using the method described in Chapter 3.

Once the object is transformed to its new state, it is added back to the scene BSP
tree which is traversed to get the new front-to-back order. Each of its polygons is
projected into the tiling cube to �nd its APL. The precedence of polygons in respect to
their visibility from the source can be determined by their �rst and last order numbers.
For any polygon further away we need to �nd the discontinuities on it from the added
polygon, if any, and for any polygon that lies closer the reverse.

Finally any newly created vertices and any existing vertices that were uncovered
when the object was deleted or covered when it was added back will have their illumi-
nation value calculated.

In the rest of this Chapter we present and evaluate the algorithm for dynamic scenes.
The next section gives a more detail description of the main steps for the building of
the discontinuity meshing followed by the section on modifying the mesh in dynamic
scenes and closing with some examples and results.
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void transformObject(obj)
f
/* remove the object */

/* remove its polygons from the tiling and the scene BSP tree*/
for each polygon pi in obj do

mark pi on the scene bsp;
remove pi from the tiling;
add the id of pis receivers to invalidDMT[];

endfor

/* remove the shadows of the object from the relevant DM-trees */
for each polygon in invalidDMT[] do

remove discontinuities due to obj;
add any disturbed vertices to toIlluminate[];

endfor

/* update the BSP tree */
bsp = restore(bsp);
getNewObjectGeometry(obj);
bsp = addToOrderedBSP(bsp, obj);
order[] = traverseBSP(bsp);

/* add the object back */
/* Build shadow volumes, add to the tiling and cast shadows */
for each polygon pi in obj do

fPSVpi , USVpi , ISVpig = constructShadowVolumes(pi , light);
aplpi [] = projectOnCube(TC,PSVpi );
for each polygon pj in aplpi [] do

if �rst orderno of pj � last orderno of pi
castShadow(pj , pi);

endif

if last orderno of pj � �rst orderno of pi
castShadow(pi , pj);

endif

endfor

endfor

/* illuminate any new or disturbed vertices */
for each vertex vi in toIlluminate[] do

illuminateVertex(vi);
endfor

g

Figure 5.2: Modifying the discontinuity meshing

5.3 Constructing the Mesh

As a �rst step the scene BSP tree is built, using the algorithm presented in Section
3.2, so as to give an order valid from any point on the light source. One of the main
problems in using BSP trees is the increase in the number of polygons. This is especially
true in applications, such as the present, where expensive operations depend heavily on
the number of polygons. To reduce the problem but retain the bene�ts of the ordering
given by the BSP tree, we do not split the polygons during the construction of the tree.
Whenever a polygon is found straddling the plane of a root node two copies, pointers
to the original polygon are inserted down the subtrees, one in each side. The resulting
tree will have exactly the same structure as if had been built normally only that at
nodes where a fragment would be held now we have a pointer to the original. A tree
built like this can not be used for visible surface determination but, as we describe in
the next section, it can be used for determining the priority in the tiling.

Since the polygons are processed as a whole, the �rst time a polygon is encountered
all its critical surfaces are created. For convenience we group the critical surfaces of a
polygon into three sets the penumbra (PSV), umbra (USV) and internal (ISV) shadow
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volumes. As their names suggest, the �rst two are collections of the extremal surfaces,
penumbra and umbra. The third set (ISV) does not de�ne a volume of space but is
simply the rest of the critical surfaces which fall between the umbra and the penumbra.

The criterion for classifying the surfaces into the aforementioned sets is the same
one proposed by Nishita and Nakamae [76]: penumbra surfaces are those having the
source fully in their front half-space and the occluder fully in the back half-space; while
umbra surfaces are those having both the source and the occluder fully in their back
half-space. The rest (internal) intersect either the source or the occluder.

A special case occurs when a polygon, lying in the front half-space of the source,
cuts the source with its plane. Here we use as source the part that falls in the front
half-space of the polygon and there is no USV.

5.3.1 Determining Shadow Relations Between Polygons

In most algorithms where tiling cubes (or hemi-cubes as here) are employed, they
are usually placed closely around the \source" and the polygon intersections with the
cube are found by a projection through the centre of the source (Figure 5.3). This is
suÆcient for applications where the source is a point ([50, 92], Section 4.1) or where
an approximation by a point is acceptable ([24]). In our case we cannot accept such
an approximation as it would under-estimate the relations between some polygons and
cause the omission of shadows. See for example Figure 5.4 where even though P2
intersects the penumbra of P1 their projections on the cube do not intersect.

Point
light
source

P

2

1

P

Figure 5.3: Tiling cube for point light
source gives a minimal super-set of the
shadow relations

P

2

Area light
1

source

P

Figure 5.4: Projection by point approxima-
tion underestimates the shadow relations for
area light sources

A method that identi�es all shadow relations is the shaft volume (Figure 5.5), where
the projection is taken as the intersection of the cube with the shaft of the source and
a scene polygon. For this volume we can either use the axis aligned bounding boxes
of the two polygons [49] or their convex hull [13]. However, apart from requiring extra
processing for �nding the planes that form the volume, it also greatly over-estimates
the number of possible interactions.

We found that a much smaller super-set, which at the same requires no additional
calculations, can be found by letting the tiling cube enclose the whole scene and us-
ing the intersection of the cube faces with the penumbra as projection (Figure 5.6).
Assuming that the source is relatively small compared to the distances involved, this
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Figure 5.5: Using the shaft volume
greatly overestimates the shadow rela-
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Figure 5.6: Placing the tiling cube around the
scene gives a minimal super-set of the shadow
relations

estimation can be very close to the set of actual relations. The closer the sides of the
tiling cube are to the polygons, the smaller the set of excess classi�cations. An example
can be seen in Figures 5.6 and 5.7, making the tiling cube larger causes the projections
of P1 and P2 to overlap.

P2

source
P1

Area light

overlap

Figure 5.7: Larger cube gives larger overestimation

In our implementation the size of the cube is determined by two factors: the bound-
ing box of the scene, including the volume where objects may possibly move, and the
sphere of inuence of the light source. We take the minimum of the two in each direc-
tion.

Once the cube is built, the polygons are projected onto it. As mentioned earlier,
the polygons are not split during construction of the BSP tree and thus when the tree
is traversed to get the front-to-back order from the source some will inevitably hold
more than one position in the ordering. While the BSP is traversed the smallest and
largest order numbers of each polygon are stored. The smaller the order number the
closer it is to the light source.

As each polygon Pi is processed, the �rst time it is encountered it is put into the
tiling and its APL is found, then it is marked as \processed" and next time it is found
is not processed again. Any polygon Pj in the APL of Pi may be, at-least partly, closer
to the light source, which is why it is already there. So there is a possible shadow
relation from Pj to Pi. But since Pj may have many positions in the tree, one part of
it may be behind Pi. This is checked by comparing the last order number of Pj against
the �rst of Pi.
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Before actually casting any shadows we apply a �rst veri�cation test, by testing if
the occluder and receiver have a potential visibility obstruction (see Theorem 1, page
64).
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Figure 5.8: (a) A simple scene with a light source and (b) the BSP representation of
the scene (top), the order derived by traversing the BSP from the source (middle) and
a table of the order numbers of each polygon (bottom)

To give an example of how this works we use Figure 5.8. This in fact is a worst
case scenario for the simple scene of Figure 5.8(a). The BSP tree representation at the
top of Figure 5.8(b) is very ineÆciently built, but it serves well the purpose of showing
the steps involved in the method. Notice that the polygons in the tree are not split.
When this tree is traversed to get the order from the source some polygons occupy more
than one entry in that order. The order is shown below the tree. When processing the
polygons in this order we do the following operations:

Note that here fPi ! Pjg means that there is a shadow relation from Pi to Pj and
cancelled refers to the relation failing the veri�cation test just mentioned.

step = 1 a is added APL = ;
step = 2 i is added APL = fag a ! i

last(a) > �rst(i) i ! a (cancelled)
step = 3 b is added APL = fa, ig a ! b (cancelled)

last(a) > �rst(b) b ! a (cancelled)
i ! b (cancelled)

last(i) > �rst(b) b ! i

step = 4 i has already been projected
step = 5 e is added APL = fa, i, bg a ! e

last(a) > �rst(e) e ! a (cancelled)
i ! e (cancelled)

last(i) > �rst(e) e ! i

b ! e

step = 6 a has already been projected
step = 7 i has already been projected
step = 8 g is added APL = fa, ig a ! g

last(a) > �rst(g) g ! a (cancelled)
i ! g (cancelled)

last(i) > �rst(g) g ! a
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step = 9 a has already been projected
step = 10 i has already been projected

By the end of this process only seven pairs of (occluder, receiver) are found that may
have a shadow relation and survive to the more expensive operations. Note that the
above example can be made more eÆcient if the scene BSP tree is more carefully built,
for example if the two large polygons (oor and top of table) are added to the tree
earlier.

Optimisation

The same optimisation used in Chapter 4 for speeding up the scan-conversion of polygon
projections in the tiling cube can be used here as well: we can avoid comparing all 5
sides of the hemi-cube against the penumbra planes by �rst projecting one of the
penumbra vertices onto the cube to �nd which side it falls on. During scan-conversion
of the projection on this side, if any boundary edge is crossed then we continue with
the cube-side over that edge.

5.3.2 Casting a Shadow Between two Polygons

The potential shadow relations computed in the previous section are used for casting
the shadows between the polygons. In this section we will describe how, given two
polygons (an occluder O and a receiver R), we �nd the discontinuities and the regions
on the receiver, covered by the umbra or penumbra of the occluder. This is summarised
in Figure 5.9.

void castShadow(Polygon occluder,Polygon receiver)
/* cast a shadow from the occluder to the receiver*/
f

/* project the penumbra vertices onto the plane of the receiver */
pv[] = projectPenumbraVertices(occluder, planeOf(receiver));
/*compare the receiver polygon against the penumbra vertices */
compareAgainstPenumbra(receiver, pv[]);
if there is no intersection return ;
endif

singletree = constructSingleTree(occluder, pv[], receiver);
receiver.dmt = merge(receiver.dmt, singletree);

g

Figure 5.9: Casting a shadow from one polygon to another

First we apply an additional veri�cation test on the shadow relation: the penumbra
vertices are projected on R's plane and the area they de�ne is compared against R,
Figure 5.11. Since all critical surfaces from an occluder are enclosed by the penumbra,
if the receiver has no intersection with the penumbra then it cannot have an intersection
with any of the other surfaces. The function execution terminates here if no intersection
is found, and we proceed to the next (R, O) pair. If there is some intersection then
the rest of the vertices (umbra and internal) are projected onto R's plane, Figure 5.12,
and they are joined to make a DM-tree of discontinuities from O, Figure 5.13. We call
this tree the single DM-tree of O on R (or simply single-tree). This single DM-tree is
then merged into the total DM-tree of R, Figure 5.14.
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Figure 5.10: The source, the receiver and
the occluder with the complete set of EV
planes.
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Figure 5.11: The penumbra vertices are
cast on the receivers plane and checked for
intersection with the receiver.
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Figure 5.12: When an intersection is es-
tablished the rest of the vertices are also
projected.

umbra cell

Figure 5.13: The single-tree is built using
the adjacency information in the shadow
planes.

Constructing the Single DM-Tree

After studying the structure of the set of discontinuities on a receiver for a variety
of occluder/source pairs (Figure 5.15) and for di�erent orientations, we made certain
observations which we thought could help to build the single tree more e�ectively. The
four edges meeting at each of the vertices, two ev (source edge, occluder vertex) and
two ve (source vertex, occluder edge), will always connect in a certain order depending
only on the relative geometries of the occluder and the source, not the receiver. Also the
overall structure of the single tree for a given pair (occluder, source) will be qualitatively
equivalent on most receivers. Certain simple tests can be applied to indicate whether
this structure holds for a given receiver or not. One such test could be to project the
umbra vertices on the receivers plane and check if the umbra cell is de�ned and it has no
edges or if the non-consecutive umbra edges cross, where no is the number of occluder
edges.

Initially it was anticipated that a parameterised DM-tree could be built for each
occluder. This would have both the 2-D BSP tree and the WEDS structure pre-
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Figure 5.14: The single-tree is merged into the total-tree of the face, clipping anything
outside and adding construction edges to any penumbra edge not spanning its subspace.

rectangular

triangular

triangular pentagonalrectangular
source source source

occluder

occluder

Figure 5.15: Shadows and discontinuities from pairs of di�erent geometries.

computed, including the intersection of the edges, the only variable being here the
exact co-ordinates of the mesh vertices which would depend on the plane equation of
the receiver. For the majority of shadow relations the criteria mentioned above are met
and so the single-tree could be found by just plugging the receiver's plane equation into
the parameterised tree. For receivers not meeting the criteria a more general algorithm
is needed.

Given such a parameterised tree, when building a mesh for a static scene, we can
clip it as we go along by keeping only the part falling in the OUT cells when merging
it with the receivers total DM-tree.

Such a tree was partly implemented with some success for the general case of rect-
angular occluder and source, but it was later abandoned as it required very complex
and specialised functions for each di�erent pair of (occluder, source) geometries and
because of the large number of special cases.

The current implementation employs a more generalised algorithm that uses only
some of the available information: �rst the umbra and internal vertices are projected
onto the plane of the receiver; recall that the penumbra vertices have been projected
already in the previous step. In general there will be no � ns vertices, including the
penumbra, where ns is the number of source vertices. Each of these vertices has its own
id-number indicating the vertices (one from the occluder and one from the source) that
caused it. The penumbra subtree is constructed by traversing the penumbra vertices
and connecting them. We know that none of these edges intersect so they form a linear
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tree. The umbra subtree is then built using the umbra edges but some comparisons are
needed here as there may be intersections between them. This subtree is attached at
the back of the penumbra. At this point the umbra cell is identi�ed, if it exists, and is
marked.

The edges due to surfaces in the ISV are added one by one starting at the �rst umbra
node since they are de�nitely behind all penumbra nodes. As they are �ltered down
the leaves of the tree, if a vertex with the same id-number as one at their end-points
is met then they make a connection with it. This ensures that each vertex connects
to the correct four edges without depending on machine precision and with minimal
computation.

Some notable special cases of this method are:

D0 edges: If the receiver and occluder are touching then some of the umbra vertices
will coincide with penumbra vertices. In such case these (D0) vertices are marked
as both umbra and penumbra and any edge de�ned by two such vertices is marked
as D0 edge.

Unde�ned vertices: When the receiver cuts the occluder with its plane then not all
of the no � ns vertices will project correctly. Dummy vertices are used to replace
those unde�ned which are clipped away later during the merging with the total
DM-tree of the receiver.

Merging the Single DM-Tree into the DM-Tree of the Receiver

After constructing the single-tree we merge it with the total DM-tree of the receiver. We
use the algorithm for BSP tree merging proposed by Naylor [73] with some modi�cations
to allow for trees not spanning the entire subspace in which they reside. Nodes with
such a property are the boundary edges of the receiver and also the penumbra nodes
of the single-tree. As seen in Figure 5.14 the latter are only expanded after they reach
a cell.

The merging algorithm is recursive and terminates only when one of the trees in-
volved reduces to a cell. The function treeOpCell described in Section 2.1.4 is called to
apply the union operation on the tree and cell with a result depending on the value of
the cell.

In Table 2.1 the cell can have only two values, IN or OUT , indicating the contain-
ment of the cell in a polyhedron. However here, because the trees we are merging are
not de�ned over the whole of 2-D space but rather over the limited subspace enclosed
by the boundary of the receiver, we have an additional value OUT �. This value shows
that the cell is outside of the space of interest and is assigned to those cells lying on the
outside of polygons boundary edges. The other two values are still used and they refer
to the containment of a cell in shadow. In addition each cell carries extra information
showing the list of polygons limiting its view from the light (occluders).

When merging polyhedra, if a cell is in both then it is assigned an IN value. This is
shown in the �rst line of the Table 2.1 where the tree added to an IN cell is compressed.
Here this reasoning is only valid for the umbra cells. For the penumbra we need to keep
the subdivision because it matters if a cell is in one shadow or more.

Actually in our implementation we keep the subdivision even in the umbra regions
since during interaction the occluder of the umbra cell may be removed. So the treeOp-
Cell function has the three cases shown in Table 5.1.
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op Cell Tree Cell <op> Tree

union OUT� t OUT�

OUT t t
IN t t0

Table 5.1: Combining a cell and a tree

The values a cell can take and the result when adding a tree to the cell are:

� OUT�, only for cells lying on the outside of boundary edges
OUT� + tree = OUT�.

� OUT, for unoccluded cells
OUT + tree = tree.

� IN, for occluded cell, along with this is stored a list with the occluding polygons,
umbra ones �rst.
IN+ tree = tree0, where tree0 has the same structure as tree but each of its cells
has the list of polygons in the cell added to its own list.

Optimisations

Since we are building this mesh for interaction and not as a static mesh, we avoid
clipping the critical surfaces as they are processed. However, we can still apply certain
optimisations without a�ecting the possibility for modi�cations. Here are some of the
optimisations we have implemented:

� Any polygon that has its penumbra completely blocked by a receiver R does not
cast shadows on any polygons further away than R. However, it needs to record
these potential relations in case R is moved.

� Any polygon that is completely covered by the umbra of an occluder above it,
casts no shadows. If the occluder of this polygon is removed then we treat it as
new and process it again.

� Using the assumption that the polygons are grouped into objects and that they
will only be transformed as part of them, we can condense the subdivision in
umbra cells that is caused by critical edges from polygons of the same object.
In fact since most often neighboring polygons are part of the same object this
results to a compression of almost all umbra regions. This can be seen in Figure
5.16. Here we see the shadows of a desk on the oor before and after umbra
compression.

5.3.3 Computing Illumination Intensities on the Vertices

An illumination intensity must be calculated for each vertex in the mesh. For this we
use Equation 2.1, described in Chapter 2. This equation assumes that the source is
totally visible from the vertex in consideration. For any vertex vo which may be partly
blocked, the visible parts of the light source must be found.
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Figure 5.16: Discontinuities in the umbra of faces from the same object can be com-
pressed.

For the illumination we need to know, for each vertex, if it is occluded or not, and if
it is, which are the occluders. In existing DM algorithms there is no means of knowing
the state of each vertex (if it is unoccluded, in umbra or in penumbra) so the visibility
of the source from each must be determined. This is done by projecting the potentially
occluding polygons onto the source plane and clipping away any part of the source that
is hidden. The visibility determination is usually the most time consuming operation
of the whole algorithm and is also very wasteful since many of the mesh vertices are
either completely unobstructed or in umbra (see Table 5.3).

In our method, however, not only do we know the state of each vertex but we also
know exactly which occluders block each penumbra vertex before we begin to illuminate
it, so there is no searching and no redundant occluder/source comparisons.

An overview of the illumination step is given Figure 5.17. As a result of using a
Winged Edge Data Structure, each vertex vi holds a pointer to one of the edges of
which it forms the end-point. From this edge the set of mesh cells C sharing vi can be
found. Each of these cells holds an occluder-list (OCj

) which is a list of the faces that
block the light source from its view, either partly or fully. The occluders that block the
source fully, are stored (and agged) at the head of the occluder-list.

Using these occluder lists we determine the visibility of the source for vi. We have
three cases to consider:

1. Any of the OCi
are empty: The vertex is illuminated as unobstructed. This can

happen in three cases: (i) when the vertex is shared only by unoccluded cells,
vertex va in Figure 5.18, (ii) when the vertex is shared by lit and penumbra cells,
vertex vb in Figure 5.18 or (iii) when shared by umbra, lit and maybe penumbra
cells vc in Figure 5.18. To avoid light leaks, because of the later case, umbra cells
are always displayed with ambient light regardless of the vertex colour value.

2. One of the OCj
s contains an umbra element: The vertex is given an ambient

colour value (vertex vd in Figure 5.18). In the rare case where a D0 vertex is
covered by the penumbra caused by a di�erent face then the vertex is treated as
penumbra. These cases can be easily identi�ed by the elements in the occluder
lists.

3. All the OCj
s are non-empty and contain no umbra elements: The occluder sets

OCj
of all the cells in C are put together using an intersection operation and

the active subset Ocovering of the occluders that cover the vertex, is found. The
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void illuminateVertex(Vertex vi, Light light)
f

C = set of n mesh cells sharing vi
if 9 cj 2 C such that cj is unoccluded

illuminateUnoccluded(vi, light);
else if 9 cj 2 C such that cj is in umbra and

the edge of cj through vi is not D0

illuminateInUmbra(vi);
else

O = set of n occluder lists of the cells in C
Ocovering =

Tn

j=1
OCj

, where OCj
2 O

if Ocovering = ;
illuminateUnoccluded(vi, light);

else

illuminatePenumbra(vi, Ocovering, light);
endif

endif

g

void illuminateUnoccluded(Vertex vi, Light light)
f

vi.intensity += result of Equation 2.1 using vi and light;
g
void illuminateInUmbra(Vertex vi)
f

vi.intensity = ambient;
g
void illuminatePenumbra(Vertex vi, Polygon Ocovering, Light light)
f

lightregions[] = projects the polygons in Ocovering onto the
light's plane to �nd the regions of light visible from vi;

for each region ri in lightregions[] do
illuminateUnoccluded(vi, ri);

endfor

g

Figure 5.17: Illumination of a vertex in the mesh

polygons in set Ocovering are then used to determine the visible parts of the
source, from the vertex, and calculate the intensity using Equation 2.1 on them.
Examples of these cases are vertices ve and vf . In ve all touching cells are covered
by the face 1 of the cube so taking the intersection of the cell occluder-lists gives
Ocovering of ve = face 1. For vf all cells are covered by face 1 but some by face 2
so again Ocovering of vf= face 1.

It is important that the above tests are performed in the given order otherwise
shadow leaks may occur. An example of this is vertex vc in Figure 5.18. If we test
for umbra occlusion before checking for no occlusion, then the vertex will be given an
ambient value causing the umbra to leak into the lit cell on the right.

5.3.4 Further Subdivision

With the mesh created in the above process we can be certain that the major discon-
tinuities in the illumination function are captured. There are cases, however, where
further subdivision is required for the interpolation function to give a suÆcient approx-
imation. This could be caused by several factors like badly shaped cells or the presence
of a maximum or a point of inection not covered by the mesh.

In most radiosity solutions this problem is treated by performing a triangulation on
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Figure 5.18: Possible classi�cations of a vertex during illumination.

the mesh elements and then further adaptively subdividing these until certain termi-
nation criteria are met.

Our method is particularly well suited for this kind of re�nement since the infor-
mation held by each cell (the occluder list) can help to provide better termination
criteria and speed up the illumination of new vertices. But, since we aim for real-time
modi�cations of the mesh, we can not a�ord an expensive subdivision method.

More research is required to �nd an eÆcient dynamic triangulation that can be up-
dated with minimum re-computation. Meanwhile we can eliminate the most important
artifacts by locating the global maximum on each surface.

Given any pair of convex polygons, an emitter and a receiver, the radiance function
on the receiver has some well-de�ned properties. It can have only one maximum and it
is monotonically non-increasing at increasing distance from that maximum [29]. Fur-
thermore, the position of the global maximum depends only on the relative geometries
of the pair. An intervening polygon (an occluder) can only obstruct and make it disap-
pear it or create less signi�cant local maxima [13]. As the receiver is convex, minima
will lie on its vertices, so they will be computed.

The position of the maximum on each source-facing polygon can be located and
stored during the mesh construction. At the end, if the neighborhood of the maximum
is still unoccluded then we can explicitly subdivide the signi�cant region. During
interaction we need to reconstruct this extra triangulation only if the cells in which the
maximum lies change.

Finding the maximum analytically, in the general case, is a very diÆcult task but
a good approximation can be found using a method proposed by Drettakis in [29].

5.4 Dynamic Modi�cations

As the results presented in Section 5.5 indicate, the algorithm constructs the disconti-
nuity meshing with considerable speed. However, that was not the main purpose of this
research. The aim was not just to build another, faster, DM-algorithm but to build one
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that can take advantage of the spatio-temporal coherence in interactive applications
and allow for the necessary modi�cations to be performed in a fraction of the normal
construction time.

Incremental modi�cations are made possible due to a combination of certain aspects
of the algorithm:

1. The space subdivision scheme signi�cantly localises the operations performed to
only a small superset of the a�ected polygons. Drettakis[30] also uses a (voxel
based) space subdivision scheme but as his algorithm traces each discontinuity
surface independently, it fails to identify all polygons concerned during scan-
conversion (small polygons fully in umbra or penumbra are only found on a sep-
arate step).

2. The use of BSP tree merging for adding the discontinuities from an occluder to a
receiver polygon. This induces an explicit classi�cation of the cells which provides
a means for identifying the concerned vertices during interaction.

An example of this in a dynamic sequence can be seen in Figure 5.19. In the
initial scene we have two objects (object-a and oor) as-well as a light source.
The mesh is constructed and the illumination value at each vertex is calculated.
At the second frame a third object moves in. The discontinuities due to this are
found. A traditional method can �nd the newly created vertices and pass them
for illumination, but as it treats each discontinuity edge independently it will have
no fast way of knowing about the three existing vertices that are now covered.

floor

source

floor

light

object-a

(a)

moving
objectlight

floor

object-a

floor

covered vertices 

(b)

Figure 5.19: Merging allows for easy identi�cation of the vertices with changed intensity
when a polygon is added or deleted

As in the previous methods we will perform the object transformation in two steps,
a deletion and an addition of the object.

5.4.1 Removing an Object

As described in Section 5.2, to transform an object, we �rst remove it from the tiling
cube and the BSP tree as we did for the point light sources. Each polygon holds a
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list of references to the receiver polygons upon which it has cast a shadow during the
construction of the mesh. When removing an object polygon, its receivers are added
to a list called invalidDMT-list. The polygons added to this list contain information
in their DM-trees generated by the moving object which must be removed. So after
removing all object polygons the DM-tree of each polygon in the list is traversed and
scanned for two things:

1. Nodes holding discontinuities due to polygons in the removed object. These nodes
are removed using the method described in Chapter 3. As the subdivision de�ned
by these discontinuities is removed, any references to the object in the remaining
cells must also be removed.

2. Subtrees marked as completely covered by a polygon of the removed object. The
cells of such subtrees are visited and any reference to the object in question is
deleted (every vertex of these cells is added to the illumination list).

5.4.2 Adding an Object

Adding an object to the scene requires similar steps to the initial construction of the
mesh but only involves the polygons of the added object. First the polygons are added
to the scene BSP which is the traversed to get the new front-to-back order. Then they
are added to the tiling cube and the other faces sharing tiles with it are found (the
APL). Once the shadow relations are decided upon the castShadow function is used to
generate them.

5.4.3 Illumination of Vertices

After the deletion and/or addition of objects, new vertices will be created and some
of the existing ones will have changed visibility, due to objects covering or uncovering
them. However most of the vertices will remain una�ected and it would be extremely
wasteful to recalculate the illumination for all of them. Instead a list is maintained
during the deletion or addition of objects, which holds the relevant vertices. The
vertices added to this list include the following:

During deletion of an object:

1. Existing vertices on cells that have one or more of their occluders removed from
their occluder-list.

2. New vertices created by restoreWeds, either by extending dangling edges or by
partitioning during merging of subtrees after deletion of a node.
In fact it is not essential to recalculate the illumination value of these vertices
from scratch, since the shadow information remains the same. Their value could
be determined by interpolation from the end-points of the edge they partition,
but we recalculate them for greater accuracy.

During addition of an object:

1. Existing vertices covered by added polygons.

2. All vertices on the mesh of added polygons.
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3. Any other new vertex created by the discontinuities caused by the added polygons
on the existing.

The illumination of the vertices is done in the same way as described in Section
5.3.3.

5.4.4 Optimisations

Several optimisations can be achieved when we consider the fact that, in general in
an interactive application the selected object will move for more than one successive
frame.

� Removing the object from the scene data involves traversing the DM-trees of
the receivers completely from top to bottom. As described in Chapter 3 this is
wasteful since after the �rst iteration the inserted discontinuities will at or near
the leaves. We can take advantage of this by creating a list of pointers to nodes
on the DM-trees during the dynamic insertion of the moving object. This list
points to the top node of each subtree of discontinuities due to the moving object
and to the top node of each existing subtree covered completely by a shadow of
the object.

� One attribute of dynamic environments is that the attention of the user is dis-
tracted by the movement so a lot more imperfections can go unnoticed. In cases
where the performance of the algorithm is not suÆcient such as when the dy-
namic objects are large or moving over complex parts of the scene, a speed up
can be obtained by using only extremal discontinuities for the dynamic objects
(umbra and penumbra). We can return back to the full algorithm on release of
the object.

5.5 Results

In this chapter we have presented an algorithm for calculating and maintaining the
discontinuity meshing in dynamic scenes.

To evaluate the performance of the incremental updates, the same concept is used
as in the two previous chapters: we compute the time taken for updating the DM
after an object transformation has occured, and compare it against the time it takes
to rebuild the whole DM from scratch.

The di�erence from the previous chapters is that the algorithm for building the DM
is not a pre-existing, already tested one. So for our argument to be valid we have to
evaluate the building of the mesh and then compare the incremental changes against
it.

5.5.1 Statistics for Initial Construction of the DM

The algorithm is written in C and implemented on a SUN SparcStation 20, 75MHz,
Model 71 with 160M of RAM. Four di�erent scenes were used in the experiments. The
�rst (15 cubes) consists of 15 randomly placed cubes, the second (oÆceA) of a desk,
a bookcase, a computer and a large polyhedral cursor and the third (oÆceB) of two
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scene scene polygons construct DM
total front facing o�ending (sec)

15 cubes 92 33 20 1.70
oÆceA 114 42 17 1.23
oÆceB 128 51 11 1.77
oÆcecubes 184 82 10 2.24

Table 5.2: Total mesh construction time

desks, one of them raised above the oor, and a bookcase. For the last scene we used
three desks a bookcase and six randomly placed cubes. The desks and bookcases in
these scenes are the same as in the oÆce scenes in Appendix C.

The time for building the mesh (including illumination) for these scenes is given in
Table 5.2. Under scene polygons we show for each scene the total number of polygons,
how many of these are facing the source (front facing) and how many cut the source
with their plane (o�ending). Times are given in seconds.

scene mesh vertices source/occluder comparissons
total lit umbra penum total av. penum av. total

15 cubes 3676 676 21 2979 6239 2.01 1.69
oÆceA 2857 457 716 1684 3830 2.27 1.37
oÆceB 3074 405 464 2185 6421 2.93 2.08
oÆcecubes 4664 822 674 3168 7829 2.47 1.67

Table 5.3: Illumination of the mesh vertices

In Table 5.3 we see the e�ectiveness of the method during the illumination phase.
The �rst four columns for each scene, tell us about the number and type of vertices in
the mesh. The �rst gives the total number while the other three give the number of
unobstructed (lit), in umbra and in penumbra (penum) respectively. A large percentage
of these vertices, the unoccluded and those in umbra, do not need any source visibility
determination. The number of source/occluder comparisons given in the next column
under total were performed entirely for the penumbra vertices. The two last columns
in this table show the number of comparisons performed averaged over the penumbra
vertices (av. penum) and over the total vertices in the scene (av. total). The values
in these last two columns are particularly important since they show that the number
of occluder/source comparisons is not expected to increase very much with an increase
in the model size. The average source/occluder comparisons over the total number of
vertices is smaller for scene oÆcecubes than for scene 15 cubes, even though the number
of polygons in the former is double that of the latter.

Certain important observations can be made if we examine where exactly the time
given in Table 5.2 is spent. Table 5.4 shows the individual timings for each major
operation of the algorithm, for the scenes used. For each scene under the column
labelled sec the absolute time is shown, and under % the percentage of time each
routine takes of the total is shown. (Notice that the rows and columns of this table
are transposed compared to the earlier tables). The �rst row (build BSP) shows for
each scene the time taken to build the scene BSP tree using the method described in
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15 cubes oÆceA oÆceB oÆcecubes
sec % sec % sec % sec %

build BSP 0.01 1 0.01 1 0.01 1 0.01 0
build mesh 0.57 33 0.62 50 0.60 34 1.07 48

make SVs 0.02 0.03 0.03 0.04
add to TC 0.06 0.02 0.05 0.12
single-DM 0.16 0.22 0.17 0.29
merge DMs 0.32 0.33 0.34 0.60
misc 0.02 0.02 0.01 0.02

illuminate 1.10 65 0.58 47 1.15 64 1.14 51
misc 0.02 1 0.02 2 0.01 1 0.02 1

Table 5.4: Analytical times for the construction of the mesh

Section 3.2. The data here support the claim we made in that section that the time
for building an ordered tree from small areas will not be excessive.

In the second row we have the total time for constructing the mesh, which is analysed
further in the following �ve rows. make SVs is the time to construct the shadow volumes
(create the EV critical surfaces) which is not signi�cant. add to TC is the time taken by
the shadow tiling, to �nd the shadow relations and test for potential obstruction. This
row provides evidence of the eÆciency of our subdivision system. It helps to identify
and process almost only the related pairs of polygons, and yet it takes an amount of
time never exceeding the 4% of the total computation. The next two rows show the
times for building the single DM-trees (single-DM) and for merging them to the total
DM-tree of the receiver (merge DMs). These are both signi�cant values taking up to
almost a half of the total processing in certain scenes (e.g. oÆceA). misc refers to
various secondary routines of the mesh construction.

Figure 5.20: The mesh of 15 cubes scene from (a) a large light source and (b) a source
5 times smaller

The row labelled illuminate shows the illumination computation. Following the
discussion on Table 5.3 one might have expected this to be less expensive than recorded
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here. One of the reasons for this is the matching eÆciency of the rest of the operations,
another is the size of the source. In all the scenes used here the light source is very
large, this can veri�ed by the width of the penumbras in the meshes shown in Figure
5.21 and Figure 5.22.

source mesh vertices source/occluder comparissons
total lit umbra penum total av. penum av. total

large 3676 676 21 2979 6239 2.01 1.69
small 2628 707 213 1708 2750 1.61 1.05

Table 5.5: Di�erence in mesh vertices by making the source smaller

To give an example of how source size inuences the performance, we ran the 15
cubes scene with a source 5 times smaller than the original. The resulting mesh is
less complex (Figure 5.20), with fewer vertices and in particular much fewer penumbra
vertices, the illumination time drops dramatically from 1.10s to 0.35s. The construction
time also drops since there are fewer intersecting edges in the mesh, but it does not
decrease as much since the number of shadow relations remain almost unchanged. The
data are shown in Table 5.5 and Table 5.6. The �rst shows the di�erence in the number
of vertices and the second the times. In both tables large refers to the �rst run, with
large source and small to the second. These tables indicate that the algorithm is output
sensitive, meaning that the amount of computation depends more on the resulting mesh
than in the number and geometry of input polygons.

source total time construct mesh illuminate mesh
sec sec % sec %

large 1.70 0.57 33.5 1.10 64.7
small 0.77 0.41 53.2 0.35 45.4

Table 5.6: Di�erence in mesh computations by making the source smaller

One of the problems reported by other researchers [98] is that the use of DM-
tree creates badly shaped cells with excessive subdivision. This is mainly due to the
construction edges added to the discontinuities when forming the binary subdivision.
One of the bene�ts of our method is that without any user intervention this problem
is very limited. In Figure 5.21 we have the mesh resulting from oÆceA on the left
wall, the oor and the right wall, in that order. Here we can see almost no extra
subdivision than the necessary. Of course this scene is well suited for our example,
since the objects are rectangular with sides parallel to a rectangular source (apart from
the cursor), however this pattern is present in all our experiments. In Figure 5.22(a)
the source is rotated so that it is not parallel to anything and in Figure 5.22(b), which
shows the mesh on the oor from oÆcecubes, some objects are randomly placed. In
both of these again the subdivision is small.

Another common problem of the existing DM-algorithms is the time complexity. In
general this is more than linear, even when the number of shadows grows linearly. The
only other work that reports close to linear growth is that of Drettakis [30] but even
there the slope is steep. To give a rough idea of the growth rate of our method, we run a
set of experiments using the cube scenes. We computed the construction/illumination
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(a) (b) (c)

Figure 5.21: The mesh of (a) the left wall, (b) the oor and (c) the right wall for oÆceA

times for scenes consisting of one to �fteen cubes, by steps of one. As we can see
from Table 5.7 and Figure 5.23, in the experiments carried out, not only did we have
linear growth but also the marginal cost of adding each extra object is always the same
throughout the range of the data.

cubes 1 2 3 4 5 6 7 8
time (ms) 51 115 177 224 256 290 352 409

cubes 9 10 11 12 13 14 15
time (ms) 423 510 560 614 710 734 766

Table 5.7: Mesh construction times for scenes with one to �fteen cubes

One of the reasons we have such a reduced growth in this particular experiment
is that the cubes are randomly placed without much overlap, as seen from the light
source. We cannot interpret these results as showing the algorithm to be linear in the
worst case. Arrangements could be constructed where all the projections overlap on the
tiling cube and where the number of shadows is quadratic with respect to the number
of scene polygons. We can expect, however, that in a large number of scenes where
the objects are evenly distributed and the number of shadows we be close to a linear
function of the number of polygons, so also will the performance of the algorithm be
linear.

Larger scale experiments are required before we can have any conclusive evidence
on the performance of the method. However, by comparing the present results with the
results reported by other algorithms [61, 30, 37], and especially the rate of growth, we
speculate that this method could be up to an order of magnitude faster. For example
Drettakis [30] reports 6.4s for 55 polygons, going up-to 40s for 187 polygons (these
times include the identi�cation of EEE emitter and EV non-emitter events but no
illumination). In Gatenby's method [37] it takes 1s for 34 polygons jumping up to 116s
for 214 polygons (these times are for two sources, including triangulation).
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(a) (b)

Figure 5.22: The mesh on the oor from (a) two objects and a rotated source and (b)
the oÆcecubes scene

5.5.2 Evaluation of the Incremental Modi�cations

Having established that our method is at least as good as the existing DM methods,
we can now continue with the evaluation of dynamic scenes.

Selected objects from each scene were moved, the results are given in Table 5.8. For
each scene we show the objects that moved followed by the translation times (under
transformation). The transformation is broken into its two components the deletion of
the object (delete) which includes removal from the tiling and from the DM-trees of
the objects receivers, and the addition (add) of the object back to the scene. In the
next two columns we give the times for rebuilding the scene mesh without the moved
object (rebuild without) and the total time to rebuild the whole mesh, including the
object (rebuild total). The values of the latter are taken from Table 5.2. Finally under
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del as %rebuild we give the percentage of time used for removing the object against
rebuilding the mesh with out it.

As already stated the addition of a object in the mesh is performed using the same
method as for the initial creation of the mesh. So the time taken to add the object
(add) should be similar to the di�erence of the columns rebuild total and rebuild without.
This is approximately the case. The important column in this table is the last one.

scene object tranformation rebuild rebuild del as
moved delete (s) add (s) without (s) total (s) %rebuild

15 cubes cube 3 0.02 0.10 1.62 1.70 1
cube 5 0.01 0.11 1.58 1.70 1

oÆceA cursor 0.01 0.09 1.13 1.23 1
bookcase 0.02 1.02 0.45 1.23 4

oÆceB desk1 0.02 0.19 1.52 1.77 1
bookcase 0.02 1.20 0.59 1.77 3

oÆcecubes cube 1 0.02 0.11 2.12 2.24 1
cube 3 0.02 0.11 2.15 2.24 1

Table 5.8: Timings for mesh computation after transforming objects in the scene

Depending on the positions of the discontinuities in the mesh, the �rst deletion of
certain objects may take longer than normal. This issue is discussed in Chapter 3. As
we have seen in Section 5.5.1 in most scenes illuminated by our algorithm the edges
of an object are grouped together without many construction edges extending to split
other objects. This makes it fast even for the �rst deletion.

5.6 Summary

In this Chapter we have presented a new method for discontinuity meshing. It uses a
tiling cube based subdivision for �nding the shadow relations and BSP tree merging
for constructing the mesh. The combination of the two provides a means for fast
incremental updates in the mesh.

Early experimental results suggest that this method not only can be modi�ed in a
fraction of the time of other methods but also it is faster to construct initially and scales
better. However, this statement is tentative and requires further experimentation to
con�rm.



Chapter 6

Conclusion

Shadows are very important in computer generated images. They provide important
spatial clues and enhance realism, particularly for interactive applications. Although
a great deal of research has been carried out into accurate shadow computation, little
has been done concerning interactive applications.

In this thesis we have investigated methods for interactive shadow computation.
We have shown that this is achievable for both point and area light sources. In a
pre-processing step the complete set of shadows is computed which is incrementally
updated on each frame during interaction. Space subdivision methods are used for
speeding-up the pre-processing and, more importantly, the incremental updates.

The algorithms have been implemented and tested on a number of di�erent size
models con�rming that the goal is achievable for scenes of considerable complexity. To
give an example of the frame rates that can be achieved we implemented the Unordered
SVBSP tree algorithm (Section 4.2) on an entry-level Silicon Graphics Indy R4000
100MHz under GL. The scene oÆce3, which has 313 initial polygons and 389 shadow
polygons, was rendered with an average frame rate per second of 7.3. This is just for
repeatedly re-rendering the scene without any changes. If we pick one of the computers
and move it about, with its shadows being constantly updated, then the frame rate
per second drops down to 7.1. As we ca see, the bottleneck of our system here is the
rendering speed of the machine and not the shadow calculations.

6.1 Main Contributions

Then main contributions of this thesis are as follows:

6.1.1 BSP Tree Representation for non-Static Scenes

A study into the use of BSP representation of dynamic scenes has been carried out.
The results led to the conclusion that BSP trees are suitable for interactive applications
where only a small part of the model is changing. Of course BSP trees are also eminently
suitable to changes in view, their original and major purpose. Assuming that, in
general, in such applications the moving object will be the same over several frames then
only in the �rst frame is there any time spent on rearranging the tree. In subsequent
frames the time needed for updating the tree is mainly dependent upon the proportion
of the model changing. Three methods were proposed in Section 3.1 for minimising the

108



Shadow Computation for 3D Interaction and Animation 109

time taken in removing the selected object in its �rst frame. The suitability of each
one depends on the application.

Polygons inserted into a BSP tree may be split into several fragments. During
interaction, as the structure of the tree changes polygons may be further split or have
their fragments come together under the same node. A method was suggested, using
a 2-D BSP tree and a Winged Edge Data Structure on each of the scene polygons, for
keeping the number polygons in the tree under control by joining up any fragments
coming together on the same node.

6.1.2 Point Light Sources in non-Static Scenes

Using the results of the methods mentioned above, two existing point source shadow
algorithms are extended to support dynamic transformation of objects (Chapter 4).
Both are object space algorithms, one based on a regular space subdivision and the
other on Shadow Volume BSP trees.

Experimental results have shown that savings of greater than 90% are achievable
during interaction, depending on the size and complexity of the objects involved. This
makes the methods suitable for interactive applications with fairly complex scenes, even
on low-end workstations.

6.1.3 Visibility Ordering

Experimental results suggested that the problem of �nding an invariant order for a set
of polygons as seen from an area light source is solvable. A BSP tree based algorithm
was developed that can �nd such an ordering, if it exists, or indicate a minimal splitting
set of planes for reducing the viewing area into regions that allow invariant ordering
(Section 3.2).

The implementation of the algorithm has shown that indeed for the relatively small
polygonal light source and the set of scenes tested, the ordering was always possible.

6.1.4 Area Light Sources in non-Static Scenes

In Chapter 5 a fast discontinuity meshing algorithm was presented. A spatial sub-
division based on the tiling cube, along with the ordering produced by the method
mentioned above, were used for identifying potential shadow relations between model
polygons.

While traditional DM algorithms trace each discontinuity surface separately through
the model, our algorithm traces the whole set of surfaces (shadow) from an occluder
together. The intersections of this set of surfaces with the plane of each receiver are
found and they are connected together to form a DM-tree which is merged into the
DM-tree of the receiver. This process has several advantages over previous methods,
such as: reduced time complexity, increased accuracy and explicit classi�cation of each
resulting mesh cell in respect to its occluders leading to faster illumination calculations.

Due to the structured creation of the DM, incremental updates are made possible.
The shadow information for moving objects can be computed using only a fraction of
the computation required to compute the whole shadow information.
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6.2 Future Directions

In this thesis solutions to the dynamic shadow problem have been given. Even though
these were shown to be suÆcient for the requirements of a large class of applications,
they by no means o�er a complete or optimal solution to the general problem. There
are numerous ways in which this research could be extended or improved.

6.2.1 BSP Trees

EÆciency of Dynamic BSP Trees

The method used throughout this thesis for dynamically changing a BSP tree of the
scene polygons was the �rst of the methods described in Section 3.1. Even though this
algorithm has proved to be very fast, it does not address the problem of maintaining
the eÆciency of the tree when an internal node is deleted. In our implementation this
eÆciency issue was not apparent since the trees we used were not optimised. In other
applications however a great deal of e�ort may go into building the tree eÆciently. An
alternative, which will maintain the eÆciency of the tree is the third method. Further
investigation and experimental evaluation of this method is required. In particular an
additional evaluation of the cost function is needed.

Visibility Ordering

The algorithm presented in Section 3.2 for ordering the model polygons with respect
to an area can be expanded to produce a set of orderings that together can account
for the whole of 3-D space. For example by subdividing space and using one order for
each subspace.

6.2.2 Point Light Sources

Unordered Shadow Tiling

The shadow tiling method used for interaction, Section 4.1, was found to perform less
eÆciently than the unordered SVBSP tree algorithm. The main reason for this is that
we used the BSP tree for ordering the scene polygons, which considerably increased
the number of input polygons. This is not a requirement of the algorithm. We suspect
that performance comparable to the unordered SVBSP tree algorithm can be achieved
by using an unordered tiling, while at the same time retaining the extra bene�t of the
tiling (i.e. no internal nodes to delete). The methods used in Chapter 5 for speeding
up the shadow tiling could be used here, i.e. building a BSP without splitting and
ordering the polygons based on their �rst and last positions and marking completely
blocked polygons to avoid unnecessary shadow generation. Implementation and further
experimental evaluation is required to test this idea.

SVBSP for Large, Densely Occluded Environments

Currently the SVBSP algorithm builds a single tree for the whole model, regardless of
the model data. This can be extremely wasteful when used for a large densely occluded
environment such as an architectural building, where most of the objects are hidden
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from the source. Methods used for visibility pruning in walkthroughs can be applied
here [1, 36, 102, 101]. The model can be partitioned into cells (rooms) connected by
portals with an adjacency graph giving information on which cells are visible. Hence
their objects can have shadow relations.

A di�erent SVBSP tree can be built for each cell (assuming there is a source in
each) with the portals added as special entities connecting the neighboring trees.

6.2.3 Area Light Sources

Building Single DM-Trees

From Table 5.4, where the timings for each module of the DM-algorithm were given,
we can see that a signi�cant percentage of the time was taken by the construction of
the single DM-trees. Some observations on the structure of the single DM-tree were
made in Section 5.3.2. These led to a faster implementation of the single tree but the
initial goal for which the study was made was not achieved. Further study and a more
accurate implementation are needed to produce parameterised DM-trees. Using these
parametrised trees, we can eliminate the time taken in the individual construction of
the tree.

Another way of speeding up the construction of the tree, as well as the merging and
the illumination, is to use the contour lines of the object, as seen from the source instead
of individual polygons, for generating shadows. However, in this case self-shadows can
be a problem if the objects are not convex.

Dynamic Triangulation

The DM-algorithm presented in this thesis provides an eÆcient way for �nding and
maintaining the discontinuity information during interaction. In addition to these
discontinuities, the illumination function contains other important information, such
as maxima that are usually captured by further triangulation at the DM-cells. In our
implementation the triangulation method used for interaction is very straight forward.
For every cell that changes, even in the slightest, its whole triangulation is recalculated.
A better approach could be found.

Di�use Inter-reections

Finally, as one would expect from a DM-algorithm, we can extend this method to a
full radiosity solution ([51, 62]). The heart of our method is the propagation of the
discontinuities in groups, forming shadows. This could be very useful when dealing with
secondary sources. In general a secondary source S will be subdivided into cells along
some discontinuity edges. Instead of processing each cell separately we can process S
as one source generating one single DM tree that includes all the information of the
cells. The discontinuities on S, of course, are enclosed by the boundary of S. So when
creating the shadow volumes from S and an occluder, the PSV and USV are made
entirely using boundary edges and vertices of S. We can then use a selection of the
important discontinuity edges and vertices to create additional shadow planes which
are added to the ISV of the occluder. In this way all cells on S can be added to the
tiling together and generate one single DM-tree on each receiver which at the same
time will encode the information about their individual geometry.
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6.3 Conclusion

In this thesis we have presented methods for rapidly incrementally updating the repre-
sentation and shadow information of a scene model.

No matter how fast computer hardware becomes the desire for more complex and
more realistic models will always overtake the speed advantage. Probably the only way
of keeping up with model complexity and providing interaction is with techniques like
those presented here. We hope this work will be useful and stimulate further research
in this area.



Appendix A

Pseudocode Notation

The pseudocode used in this thesis is presented in a C-like syntax. All operators have
the same functionality and structure as in the C language. Those that di�er or do not
exist in C are listed below.

list[] square brackets indicate that list is a list or an array
fa1; ::; ang curly brackets denote a set
for (condition) do the repeating statements in a for loop are

statements enclosed between the do and the endfor
endfor

if (condition) multiple statements are allowed between the
statements condition and the else and the else and

else statements endif , the else may be omitted
endif

Functions can have as return value any structure, list, array or set.
Which one it is should be clear by the context.

Also the following set operators were used with the usual meaning:
9 there exists
8 for all
2 is an element ofT

intersectionS
union

; empty set
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Appendix B

Pseudocode for the Unordered

SVBSP Tree

In the implementation described here the tree consists of a collection of shadow trees.
A shadow tree is a set of (n + 1) nodes one at the back of the other, where n is the
number of edges in a polygon. The �rst n nodes hold the shadow planes of the the
polygon while the last node holds the polygon itself.

The empty cells have a NULL value rather than an IN or OUT value because these
are trivial to compute when required: cells lying in front of any node are OUT cells
and cells behind a node holding a polygon are IN. Note that it is not possible to have
empty cells at the back of a shadow plane node.

typedef struct svbsp f
struct svbsp front;
struct svbsp back;
Plane rootplane;
Polygon face1;
Polygon below1;
/* this holds the reference to the last polygon it came infront */
Polygon INregion[]1;
/* the list of polygons falling into the node's IN region */

g Tree ;
/* 1 these �elds are only relevant for PP-Nodes */

Polygon initial(Polygon poly)
f

returns the initial scene polygon of whose poly is a fragment,
poly == initial(poly) if it was not split while inserting in svbsp

g

void castShadow(Polygon occluder, Polygon receiver)
f

uses the initial polygons of occluder and receiver for casting
the shadows

g

void addShadowPolygon(Polygon receiver, Polygon shadowpoly)
f

shadowpoly is added as a detail polygon ontop of the receiver
g
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Tree shadowTree(Polygon poly, Polygon below)
f

the shadow volume of poly is build into an SVBSP with a node
for each shadow plane followed by a node for poly
the shadow planes used are those of initial(poly) which are
calculated only once at the begining
the below �eld of the polygon node is set to below

g

Building the tree

Tree builtUSVBSP(Polygon faces[], Light light)
f

svbsp = NULL;
for each polygon pi in faces[] do

if (pi is facing the light)
svbsp = addPolygonToTree(svbsp, pi, NULL);

endif

endfor

g

Tree addPolygonToTree(Tree svbsp, Polygon p, Polygon below)
/* below is the polygon of the last PPNode p came infront */
f

if (empty(svbsp))
if (below != NULL)

if (notAlreadyCasting(p, below))
castShadow(p, below);

endif

endif

return shadowTree(p, below);

c = classifyPolygon(svbsp.rootplane, p, pf, pb);
if (polygonNodeRoot(svbsp))

if (c == FRONT)
svbsp.front = addPolygonToTree(svbsp.front, p, svbsp.face);

else /* p is behind the root polygon */
addToInRegion(svbsp.INregion, p);
addShadowPolygon(initial(p), p);

endif

else /* root de�ned by a shadow plane */
if (notNull(pf))

svbsp.front = addPolygonToTree(svbsp.front, pf, below);
endif

if (notNull(pb))
svbsp.back = addPolygonToTree(svbsp.back, pb, below);

endif

endif

return svbsp;
g

Using the tree for incremental changes

Tree transformObject(Tree svbsp, Object obj)
f

markFacesOnSVBSP(svbsp, obj);
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svbsp = restoreSVBSP(svbsp, NULL);
getNewObjectGeometry(obj);
for each polygon pi in obj do

svbsp = addPolygonToTree(svbsp, pi, NULL);
endfor

return svbsp;
g

void markFacesOnSVBSP(Tree svbsp, Object obj)
f

using pointers created during the building of the tree, the
position(s) of each object polygon are found on the tree
if the polygon isin an IN region, it is deleted otherwise the
nodes where the polygon and its shadow planes are held are
marked

g

Tree restoreSVBSP(Tree svbsp, Polygon newbelow)
f

if (empty(svbsp))
return NULL;

endif

if (marked(svbsp))
if (polygonNodeRoot(svbsp))

if (svbsp.below && notDeleted(svbsp.below))
removeShadowFrom(svbsp.face, svbsp.below);
newbelow = svbsp.below;

endif

temp = restoreSVBSP(svbsp.front, newbelow);
for any polygon pi in svbsp.INregion[] do

temp = addPolygonToTree(temp, newbelow);
endfor

return temp;
else /* root is from a shadow plane */

large = restoreSVBSP(largest subtree of svbsp, newbelow);
return insertTree(large, other subtree of svbsp, newbelow);

endif

else /* not marked */
if (polygonNodeRoot(svbsp))

if ((newbelow != svbsp.below) && notAlreadyCasting(svbsp.face, newbelow))
castShadow(svbsp.face, newbelow);
svbsp.below = newbelow;

endif

svbsp.front = restoreSVBSP(svbsp.front, svbsp.face);
else /* root is from a shadow plane */

svbsp.front = restoreSVBSP(svbsp.front, newbelow);
svbsp.back = restoreSVBSP(svbsp.back, newbelow);

endif

return svbsp;
endif

g

Tree insertTree(Tree large, Tree small, Polygon newbelow)
/* large has already been restored, marked nodes removed, but not small */
f

if (empty(small))
return large;

else if (polygonNodeRoot(small))
if (marked(small))

if (small.below && notDeleted(small.below))
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removeShadowFrom(small.face, small.below);
endif

large = insertTree(large, small.front, newbelow);
for any polygon pi in small.INregion[] do

large = addPolygonToTree(large, newbelow);
endfor

return large;
else /* root of small is not marked */

small.below = newbelow;
return inserPolygonNode(large, small, newbelow);

endif

else /* root of small holds a shadow plane */
insertTree(insertTree(large, small.back, newbelow), small.front, newbelow);

endif

g

Tree inserPolygonNode(Tree large, Tree small, Polygon newbelow)
/* root of small is a polygon node while root of large can be anything */
f

if (empty(large))
if (newbelow != small.below)

castShadow(small.face, newbelow);
endif

small.front = restoreSVBSP(small.front, small.face);
return shadowTree(small, newbelow);

else if (polygonNodeRoot(large))
return insertPPNodeToPPNode(large, small);

else /* root of large holds a shadow plane */
if (fromSamePolygon(small, large))

joinTrees(large, small);
return large;

else

c = classifyNode(large.rootplane, small, sf, sb);
if (c == FRONT)

large.front = inserPolygonNode(large.front, small, newbelow);
else if (c == FRONT)

large.back = inserPolygonNode(large.back, small, newbelow);
else /* CUT */

large.front = inserPolygonNode(large.front, small, newbelow);
large.back = inserPolygonNode(large.back, small, newbelow);
large = insertTree(large, small.front, newbelow);

return large;
endif

endif

g

void joinTrees(Tree large, Tree small)
/* the subtrees are de�ned by fragments of the same polygon */
/* root of small is a polygon node, root of large can be either */
f

the polygon held at small is merged with the polygon on large;
the polygons in the IN region of small are added to the IN region
of large and the front subtree of small is added to the front
of the polygon node of large

g

Tree insertPPNodeToPPNode(Tree large, Tree small)
/* since the two subtrees are de�ned in mutually exclussive spaces this */
/* should never be called, the only reason it may be is because we used the */
/* shadow volumes of the initial polygons. Whatsmore it will only happen */
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/* when subtrees have been re-arranged after restoring the tree, so small */
/* must hold, in an INregion[], a fragment of the same polygon as root */
/* of large */
f

if (fromSamePolygon(small, large))
joinTrees(large, small);
return large;

else

c = classifyPolygon(large.rootplane, small.face);
if (c == BACK)

add small.face and small.INregion[] to large.INregion[];
return insertTree(large, small.front, large.face);

else

if (notAlreadyCasting(small.face, large.face))
castShadow(small.face, newbelow);

endif

compare small.INregion[] against large.rootplane,
if any of them are from same initial polygon as
large.face then remove that shadow, if any of them
are behind large then move them from small.INregion[]
to large.INregion[]
return inserPolygonNode(large, small, large.face);

endif

endif

g



Appendix C

Images

The oÆce images of Figures C.1 to C.5 are those used throughout this thesis for evaluation of the
methods. These scenes were generated using the Unordered SVSBP algorithm (Section 4.2) using one
point light source located near the center of the ceiling. Special thanks should go to Mel for coding the
original model (oÆce1) himself and making it freely available.

Figure C.1: oÆce1, a room with a bookcase, two books, a desk and a computer; 136
polygons

Figure C.2: oÆce2, a room with 2 bookcases, two books, two desks and a computer;
211 polygons
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Figure C.3: oÆce3, a room with 3 bookcases, two books, three desks and two computers;
333 polygons

Figure C.4: oÆce4, a room with 3 bookcases, two books, ten desks and ten computers;
745 polygons

Figure C.5: oÆce4�, the same as oÆce4,but with each object randomly rotated by a
small degree
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