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Abstract 
In this paper we present a fast collision detection method with an application to a densely 
populated urban environment. The method uses graphics rasterization hardware to discritise the 
environment and to create a look-up table with heights which can be used not only for preventing 
the humans from walking through buildings but also for determining and adjusting their elevation 
on the model without having to query the geometrical database. 
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1 Introduction 
Recently we have seen the appearance of  many 
geometric models of towns and cities which are 
being used in a variety of applications. These 
applications range from town planning to 
acclimatisation using virtual environments, and 
travel rehearsals. However, these models are hardly 
ever populated with more than a few individuals.  

At UCL we have a polygonal model of London 
that covers a large portion of the city, 160 km in 
total, with some parts of it modelled in great detail. 
This model was originally developed through the 
COVEN project [COVEN] with the intention to be 
used in Virtual Reality for travel rehearsals where a 
person unfamiliar with an area can learn his way to 
a particular place – from Heathrow to UCL for 
example – or plan what sights to visit before 
arrival. In order to maintain the illusion of actually 
being there, the model needs to be sufficiently 

realistic. Improving the appearance of the buildings 
is not enough, we also need to simulate the human 
movement around them.  

Including the simulation of human crowds in 
the static model becomes more expensive not only 
for the additional rendering cost, but also for the 
cost of the collision detection test required for the 
crowd.  

As an example, in the busy streets of London 
during the day, there can easily be thousands of 
people moving around. Trying to perform exact 
collision detection using standard methods for 
every moving entity is very expensive and in this 
case is probably not necessary. If one want to see 
all the moving entities at the same time, he would 
need to be at a fair distance away, probably looking 
down at the model from above. In this case 
computing accurate collision is not necessary.  



Figure 1. An example of a city model populated with 
10,000 particles 

In this paper we present an approximate method 
based on space discritisation, with the moving 
humans represented as single particles. In its 
current implementation our algo only detects 
interference with the static parts of the environment 
(i.e. no inter-particle collision) but the method is 
scalable and fast enough to run in real-time with 
tenths of thousands of particles.  

In Section 2 we review some of the previous 
work in collision detection. In Section 3 we present 
an overview of the method with the 
implementation details following in Section 4. 
Experimental results are presented in Section 5 
followed by a discussion and some ideas for further 
work.  
 

2 Previous work 
There are many techniques to detect interference 
between geometric objects [Lin98]. Many of them 
use hierarchical data structures, for example, 
hierarchical bounding boxes [Cohe95, Gott96], 
spheres trees [Hubb93], BSP trees [Nayl90] and 
Octrees [Same90].  However the majority of them 
tries to solve the harder problem of interference 
between complex objects. They tend to be much 
more precise and involved than what we need for 
our application. Due to the large amount of moving 
objects and the inherent time constrains of the 
application, we need to look at other approaches 
which can trade off small errors in exchange of 
greater speed and scalability. 

Collision detection through discritisation of 
space has been used before. The most relevant 
work to our method is that of Myskowski 
[Mysk95] and Rossignac [Ross92]. Like in our 
approach they use graphics hardware to perform 
the rasterization necessary in order to find the 
interferences in their models, but they focus on 
performing this task on a small number of very 
complex 3D CAD objects. 

When it comes to urban environments, even 
though the geometry is still in 3D, the movement of 
humans is usually restricted to follow a 2D surface, 
or possibly more than one if we consider elements 
such as bridges. Bearing in mind this and the fact 
that the environment itself is static, simpler 
solutions can be developed. Steed [Stee97] used a 
planar graph based on the Winged Edge Data 
structures for navigation in virtual environments. In 
Robotics, the problem was studied extensively for 
navigating mobile robots. Lengyel [Leng90], for 
example, used raster hardware to generate the cells 
of the configuration space used to find an obstacle-
free path. Bandi and Thalmann [Band98a] also 
employed discritisation of space using hardware to 
allow human navigation in virtual environments. 
However they chose a different approach from 
ours. They use the information for automatically 
computing a motion path for a human in an 
environment with obstacles. They used a coarse 
subdivision on the horizontal plane and repeated 
that on several discreet heights, while in our case 
we want to consider the height of the obstacles in a 
more continuous way. 



3 Overview 
Given a city model and a set of humans 

represented as particles we want to detect any 
possible collisions between the particles and the 
surrounding environment. Moreover we want to be 
able not only to detect an encounter but also to 
decide its nature and act accordingly.  

The overall idea of the algorithm is to create a 
discreet representation of the static part of the 
model (the height map) and use it to detect 
collisions of the moving particles with the 
environment. 

This map stores the height at each point in the 
environment and it is maintained in memory. For 
every frame of the simulation, before moving a 
particle to its new position we check its current 
elevation against that stored in the height-map for 
the target-position. If these values are too different, 
it means that the step necessary to climb either up 
or down to get to the new position is too big and 
cannot be taken, otherwise we allow the particle to 
move and update its height according to the value 
stored in the height-map. 

4 Implementation 
Since our objective is the visualisation of a 

densely populated urban environment, we use 
various polygonal models representing city blocks 
and populate them with large numbers of particles. 
For each particle, we randomly define an initial 
obstacle-free position and a movement direction. 
At run-time, the particle positions are updated 
considering their movement direction and the 
presence of obstacles on their way.  

The algorithm is organised in two phases: the 
generation of the height map and the run-time 
collision test. 

4.1 Generating the height map 
The height map is generated using standard 

OpenGL functions. This is done at the start of the 
simulation by positioning the camera over the 
center of the model looking down at it with the 
view frustum adjusted to match the model 
boundaries. The model is then rendered using an 
orthogonal projection and the resulting contents of 
the z-buffer, that represent a discreet map of the 
heights of the model, are copied into the main 
memory where they can be accessed in a faster 
way. Using OpenGL to generate the height-map 
allows our algorithm to be simple and very fast 
because of the use of dedicated hardware.  

During the generation of the height-map the 
complexity and the scale of the model must be 
considered; in order to permit collision detection 
tests with the right order of precision, the 
resolution of the map has to be sufficiently high. 

However, it is important to notice here that 
although higher resolution maps are more 
expensive in terms of memory requirements, the 
speed of the height map test for each particle 
doesn’t seem to be noticeably affected by the size 
of the map (see Section 5). 

4.2 Collision detection and avoidance 
So far we have used two different approaches 

for detecting and avoiding collision of the moving 
particles. 

The principle is the same in both cases: as each 
particle moves in the assigned direction we check 
the presence of obstacles in front of it using the 
information stored in the height-map.  

In the first case we check the position that the 
particle is going to occupy after the current 
movement; this position is computed and mapped 
onto the height map. If the height at this point is 
found to be close enough to the current height of 
the particle the movement is considered valid and 
the particle is allowed to move there. If the 
difference in heights is too large then a new 
itinerary needs to be found. This is done by 
gradually rotating the particle’s direction in small 
angle steps until an obstacle-free direction is found.  

Figure 2. Particles avoid walls but climb 
over the smaller steps 

Figure 3. Particle behaviour in presence 
of gradual slopes 
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Figure 4. Time to render against increasing number of particles using two models of different 
complexity; on the left 2,368 polygons, on the right 32,128 polygons;  

In the second case we shift the collision 
detection task ahead of the current particle 
position. Instead of checking whether our next step 
is possible from the current position, we check 
whether the ith step is possible from the predicted 
(i-1)th position. If not the direction is again rotated 
by a small angle as in the previous case, but the 
position of the particle is updated anyway so that 
the particle starts changing direction gradually 
before colliding against an obstacle, producing as a 
result a smoother animation. On the other hand, we 
now need two access to the height map, making 
this method slower than the previous one. 

The aim of this simple trial and error strategy to 
find a free path is to avoid querying directly the 
geometrical database for valid directions, in order 
to keep the cost of the collision test low.  

In Figure 2, we can see an example of the 
particles behaviour. Using the height map the 
particles correctly detect the different dimension of 
obstacles, climbing on them if the steps are small 
enough and updating their elevation without 
accessing the geometrical database of the model. 

Figure 3, shows the result of the algorithm in 
presence of gradual slopes and steep drops. The 
particles correctly climb the slope with smooth 
updates to their vertical position while still 
avoiding to fall over the edge. 

 

5 Results 
The system has been implemented on an Intel PC 
PentiumII 350 Mhz processor and an OpenGL 
compatible video card GeForce256, produced by 
NVIDIA.  
We evaluated the scalability of the method in terms 
of increasing number of particles and geometric 
complexity of the urban model by measuring the 
following values: 
1) the necessary time to render 1,000 frames with 

and without the collision detection procedure, 
varying the number of particles. Note that even 

when the collision detection algorithm is 
disabled we still draw the polygons 
representing the particles;  

2) the necessary time to render 1,000 frames, 
keeping the number of particles constant 
(10,000) but varying the polygonal complexity 
of the model  (and varying consequently also 
the resolution of the height-map). 

 
The diagrams in Figure 4 show the results of 

the first tests. The X-axis reports the number of 
particles used while the Y-axis shows the overall 
time in milliseconds for the 1,000 iterations. We 
repeated the test using two distinct city models, the 
first one composed of 2,368 polygons and the 
second composed of 32,128 polygons. Assuming 
that the minimum theoretical rendering cost for a 
moving human is equivalent to a polygon, we have 
included it when computing the total rendering 
time. 

Two important observations can be made from 
these graphs: the computation time necessary to 
perform the collision detection  increases linearly 
with the number of humans and when models with 
a higher number of polygons are used the relevance 
of the collision detection computation becomes less 
significant with respect to the graphical rendering 
cost. 

In the second test we used polygonal models of 
city zones with various degrees of complexity, 
starting from a very simple one composed of just 
267 polygons  (public domain model: 
www.microsoft.com/vrml) to a fraction of the 
London model1 available at UCL composed by 
32,128 polygons. The resolution of the height-map 
was also varied according to the complexity of the 
model. We started with a resolution of 256x256 for  

                                                 
1 The London model was in part created using the 
Cities revealed data set licensed from the 
GeoInformation Group.  



the first model and gradually increased it up to 
2048x1536 for the London model. 

The results are shown in Figure 5. The area 
between the two curves corresponds to the time 
taken by the collision test and path finding. As we  

can see it is almost constant which indicates 
that the collision check for the particle does not 
depend on the complexity of the geometrical model 
or the map resolution. 

During the tests we obtained the height-map 
using a 24-bit zbuffer. In this way we can deal with 
2^24 different elevation values.  

Even when simulating 20,000 particles, the 
algorithm proved to be fast enough to reach 
visualisation speeds of 15 fps for the complex 
model (32,128 + 20,000 polygons) and 22 fps for 
the simpler one (2,368 + 20,000 polygons). 

6 Discussion and Future Work 
With the presented algorithm we are able to 
perform a fast collision detection in visualising 
densely populated models. However the current 
version has several limitations that we will try to 
address in the future. For instance, the size of the 
city model may be limited by the maximum 
resolution of the height-map. Our current OpenGL 
implementation does not allow a z-buffer larger 
than 2048x1536 pixels which may prove to be 
insufficient when dealing with very extensive 
models. 

A simple way to resolve this problem is to 
create the height-maps of sections of the model 
separately and then join them together. Because 
maps of higher resolution imply high cost in terms 
of memory (in our current implementation 4 bytes 
are used for each pixel of the image), we could 
implement strategies to gain advantage from the 
fact that vast regions of the height-map are 
inaccessible (e.g. top of buildings or courtyards) 
and thus never used for the collision test. To 
exploit this we can subdivide the height-map in 
clusters which can be stored on the hard-disk, 

virtualising the RAM used to store the table. 
Another possibility is to implement image 
compression algorithms on the height-map. Then, 
the clusters can be stored in a much more efficient 
way, decompressing them the first time we need to 
bring back the data to RAM.  
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As presented here, the problem of inter-human 
collision is not addressed by our algorithm. Testing 
the inter-proximity of thousands of independent 
particles may represent a very expensive process 
using traditional approaches. We are investigating 
the possibility to make use of another regular map 
(not necessarily with the same resolution as the 
height-map) as a way to test for particles collision 
(we call it collision-map). Every time that the 
position of a particle is updated, its corresponding 
position in the collision-map is updated as well. By 
checking the content of the collision-map while 
planning the movement of the particles we can 
develop strategies to prevent them from colliding 
against each other. This approach, which we have 
implemented in a simple form, has given us so far 
some good results.  

Figure 5. Time to render against increasing 
model complexity 

To render the virtual humans, we plan to use 
Image Based rendering techniques so as to be able 
to render complex human figures using a single 
textured polygon.  

Finally, for dealing with models that have more 
levels of overlapping geometry we plan to extend 
the method to use several height-maps. 

7 Conclusion 
In this paper we have described a method for fast 
collision detection in complex city models 
populated with large number of moving humans. 
We used the graphics hardware to produce a 
rasterization of space which can be queried in 
minimal time. As a result we have shown that we 
can achieve collision tests for a population of 
thousands of individual in real time. 

The algorithm presented proved to be easy to 
implement and adaptable to various models with 
different complexity.  

We envisage our method to be used as part of a 
level-of-detail simulation. At the lowest level, 
where one has a full view of the city from a certain 
height, the interference between the moving objects 
might not be noticeable. As the viewer comes 
closer and the visible objects are reduced in 
number, then an extra test can be employed to 
decide for the inter-human collision while our 
method can still be used to test for collision against 
the static model. 
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Figure 6. One of the models used with 1,000 particles 

Fig
Figure 7. The same model with 20,000 particles 
ure 8. Part of the London model with 5,000 particles 


