
Real-time Visualisation of Densely Populated Urban Environments:
a Simple and Fast Algorithm for Collision Detection

Franco Tecchia1* and Yiorgos Chrysanthou†
*Laboratorio PERCRO,

 Scuola Superiore S.Anna,
Pisa, Italy

franco@percro.sssup.it

†Department of Computer Science
University College London

Gower Street
London WC1E 6BT

Y.Chrysanthou@cs.ucl.ac.uk

Abstract
In this paper we present a fast collision detection method with an application to a densely
populated urban environment. The method uses graphics rasterization hardware to discritise the
environment and to create a look-up table with heights which can be used not only for preventing
the humans from walking through buildings but also for determining and adjusting their elevation
on the model without having to query the geometrical database.

Keywords: collision detection, crowd simulation, hardware rasterization, virtual cities

1 This work was carried out while visiting UCL.

1 Introduction
Recently we have seen the appearance of many
geometric models of towns and cities which are
being used in a variety of applications. These
applications range from town planning to
acclimatisation using virtual environments, and
travel rehearsals. However, these models are hardly
ever populated with more than a few individuals.

At UCL we have a polygonal model of London
that covers a large portion of the city, 160 km in
total, with some parts of it modelled in great detail.
This model was originally developed through the
COVEN project [COVEN] with the intention to be
used in Virtual Reality for travel rehearsals where a
person unfamiliar with an area can learn his way to
a particular place – from Heathrow to UCL for
example – or plan what sights to visit before
arrival. In order to maintain the illusion of actually
being there, the model needs to be sufficiently

realistic. Improving the appearance of the buildings
is not enough, we also need to simulate the human
movement around them.

Including the simulation of human crowds in
the static model becomes more expensive not only
for the additional rendering cost, but also for the
cost of the collision detection test required for the
crowd.

As an example, in the busy streets of London
during the day, there can easily be thousands of
people moving around. Trying to perform exact
collision detection using standard methods for
every moving entity is very expensive and in this
case is probably not necessary. If one want to see
all the moving entities at the same time, he would
need to be at a fair distance away, probably looking
down at the model from above. In this case
computing accurate collision is not necessary.

Figure 1. An example of a city model populated with
10,000 particles

In this paper we present an approximate method
based on space discritisation, with the moving
humans represented as single particles. In its
current implementation our algo only detects
interference with the static parts of the environment
(i.e. no inter-particle collision) but the method is
scalable and fast enough to run in real-time with
tenths of thousands of particles.

In Section 2 we review some of the previous
work in collision detection. In Section 3 we present
an overview of the method with the
implementation details following in Section 4.
Experimental results are presented in Section 5
followed by a discussion and some ideas for further
work.

2 Previous work
There are many techniques to detect interference
between geometric objects [Lin98]. Many of them
use hierarchical data structures, for example,
hierarchical bounding boxes [Cohe95, Gott96],
spheres trees [Hubb93], BSP trees [Nayl90] and
Octrees [Same90]. However the majority of them
tries to solve the harder problem of interference
between complex objects. They tend to be much
more precise and involved than what we need for
our application. Due to the large amount of moving
objects and the inherent time constrains of the
application, we need to look at other approaches
which can trade off small errors in exchange of
greater speed and scalability.

Collision detection through discritisation of
space has been used before. The most relevant
work to our method is that of Myskowski
[Mysk95] and Rossignac [Ross92]. Like in our
approach they use graphics hardware to perform
the rasterization necessary in order to find the
interferences in their models, but they focus on
performing this task on a small number of very
complex 3D CAD objects.

When it comes to urban environments, even
though the geometry is still in 3D, the movement of
humans is usually restricted to follow a 2D surface,
or possibly more than one if we consider elements
such as bridges. Bearing in mind this and the fact
that the environment itself is static, simpler
solutions can be developed. Steed [Stee97] used a
planar graph based on the Winged Edge Data
structures for navigation in virtual environments. In
Robotics, the problem was studied extensively for
navigating mobile robots. Lengyel [Leng90], for
example, used raster hardware to generate the cells
of the configuration space used to find an obstacle-
free path. Bandi and Thalmann [Band98a] also
employed discritisation of space using hardware to
allow human navigation in virtual environments.
However they chose a different approach from
ours. They use the information for automatically
computing a motion path for a human in an
environment with obstacles. They used a coarse
subdivision on the horizontal plane and repeated
that on several discreet heights, while in our case
we want to consider the height of the obstacles in a
more continuous way.

3 Overview
Given a city model and a set of humans

represented as particles we want to detect any
possible collisions between the particles and the
surrounding environment. Moreover we want to be
able not only to detect an encounter but also to
decide its nature and act accordingly.

The overall idea of the algorithm is to create a
discreet representation of the static part of the
model (the height map) and use it to detect
collisions of the moving particles with the
environment.

This map stores the height at each point in the
environment and it is maintained in memory. For
every frame of the simulation, before moving a
particle to its new position we check its current
elevation against that stored in the height-map for
the target-position. If these values are too different,
it means that the step necessary to climb either up
or down to get to the new position is too big and
cannot be taken, otherwise we allow the particle to
move and update its height according to the value
stored in the height-map.

4 Implementation
Since our objective is the visualisation of a

densely populated urban environment, we use
various polygonal models representing city blocks
and populate them with large numbers of particles.
For each particle, we randomly define an initial
obstacle-free position and a movement direction.
At run-time, the particle positions are updated
considering their movement direction and the
presence of obstacles on their way.

The algorithm is organised in two phases: the
generation of the height map and the run-time
collision test.

4.1 Generating the height map
The height map is generated using standard

OpenGL functions. This is done at the start of the
simulation by positioning the camera over the
center of the model looking down at it with the
view frustum adjusted to match the model
boundaries. The model is then rendered using an
orthogonal projection and the resulting contents of
the z-buffer, that represent a discreet map of the
heights of the model, are copied into the main
memory where they can be accessed in a faster
way. Using OpenGL to generate the height-map
allows our algorithm to be simple and very fast
because of the use of dedicated hardware.

During the generation of the height-map the
complexity and the scale of the model must be
considered; in order to permit collision detection
tests with the right order of precision, the
resolution of the map has to be sufficiently high.

However, it is important to notice here that
although higher resolution maps are more
expensive in terms of memory requirements, the
speed of the height map test for each particle
doesn’t seem to be noticeably affected by the size
of the map (see Section 5).

4.2 Collision detection and avoidance
So far we have used two different approaches

for detecting and avoiding collision of the moving
particles.

The principle is the same in both cases: as each
particle moves in the assigned direction we check
the presence of obstacles in front of it using the
information stored in the height-map.

In the first case we check the position that the
particle is going to occupy after the current
movement; this position is computed and mapped
onto the height map. If the height at this point is
found to be close enough to the current height of
the particle the movement is considered valid and
the particle is allowed to move there. If the
difference in heights is too large then a new
itinerary needs to be found. This is done by
gradually rotating the particle’s direction in small
angle steps until an obstacle-free direction is found.

Figure 2. Particles avoid walls but climb
over the smaller steps

Figure 3. Particle behaviour in presence
of gradual slopes

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

N u m b e r o f p artic e ls

R
en

de
ri

ng
 T

im
e

(m
S)

R e n d e r in g + C D
R e n d e r in g O n ly

0

10000

20000

30000

40000

50000

60000

70000

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Number of particels

R
en

de
ri

ng
 T

im
e

(m
S)

Rendering+CD
Rendering Only

Figure 4. Time to render against increasing number of particles using two models of different
complexity; on the left 2,368 polygons, on the right 32,128 polygons;

In the second case we shift the collision
detection task ahead of the current particle
position. Instead of checking whether our next step
is possible from the current position, we check
whether the ith step is possible from the predicted
(i-1)th position. If not the direction is again rotated
by a small angle as in the previous case, but the
position of the particle is updated anyway so that
the particle starts changing direction gradually
before colliding against an obstacle, producing as a
result a smoother animation. On the other hand, we
now need two access to the height map, making
this method slower than the previous one.

The aim of this simple trial and error strategy to
find a free path is to avoid querying directly the
geometrical database for valid directions, in order
to keep the cost of the collision test low.

In Figure 2, we can see an example of the
particles behaviour. Using the height map the
particles correctly detect the different dimension of
obstacles, climbing on them if the steps are small
enough and updating their elevation without
accessing the geometrical database of the model.

Figure 3, shows the result of the algorithm in
presence of gradual slopes and steep drops. The
particles correctly climb the slope with smooth
updates to their vertical position while still
avoiding to fall over the edge.

5 Results
The system has been implemented on an Intel PC
PentiumII 350 Mhz processor and an OpenGL
compatible video card GeForce256, produced by
NVIDIA.
We evaluated the scalability of the method in terms
of increasing number of particles and geometric
complexity of the urban model by measuring the
following values:
1) the necessary time to render 1,000 frames with

and without the collision detection procedure,
varying the number of particles. Note that even

when the collision detection algorithm is
disabled we still draw the polygons
representing the particles;

2) the necessary time to render 1,000 frames,
keeping the number of particles constant
(10,000) but varying the polygonal complexity
of the model (and varying consequently also
the resolution of the height-map).

The diagrams in Figure 4 show the results of

the first tests. The X-axis reports the number of
particles used while the Y-axis shows the overall
time in milliseconds for the 1,000 iterations. We
repeated the test using two distinct city models, the
first one composed of 2,368 polygons and the
second composed of 32,128 polygons. Assuming
that the minimum theoretical rendering cost for a
moving human is equivalent to a polygon, we have
included it when computing the total rendering
time.

Two important observations can be made from
these graphs: the computation time necessary to
perform the collision detection increases linearly
with the number of humans and when models with
a higher number of polygons are used the relevance
of the collision detection computation becomes less
significant with respect to the graphical rendering
cost.

In the second test we used polygonal models of
city zones with various degrees of complexity,
starting from a very simple one composed of just
267 polygons (public domain model:
www.microsoft.com/vrml) to a fraction of the
London model1 available at UCL composed by
32,128 polygons. The resolution of the height-map
was also varied according to the complexity of the
model. We started with a resolution of 256x256 for

1 The London model was in part created using the
Cities revealed data set licensed from the
GeoInformation Group.

the first model and gradually increased it up to
2048x1536 for the London model.

The results are shown in Figure 5. The area
between the two curves corresponds to the time
taken by the collision test and path finding. As we

can see it is almost constant which indicates
that the collision check for the particle does not
depend on the complexity of the geometrical model
or the map resolution.

During the tests we obtained the height-map
using a 24-bit zbuffer. In this way we can deal with
2^24 different elevation values.

Even when simulating 20,000 particles, the
algorithm proved to be fast enough to reach
visualisation speeds of 15 fps for the complex
model (32,128 + 20,000 polygons) and 22 fps for
the simpler one (2,368 + 20,000 polygons).

6 Discussion and Future Work
With the presented algorithm we are able to
perform a fast collision detection in visualising
densely populated models. However the current
version has several limitations that we will try to
address in the future. For instance, the size of the
city model may be limited by the maximum
resolution of the height-map. Our current OpenGL
implementation does not allow a z-buffer larger
than 2048x1536 pixels which may prove to be
insufficient when dealing with very extensive
models.

A simple way to resolve this problem is to
create the height-maps of sections of the model
separately and then join them together. Because
maps of higher resolution imply high cost in terms
of memory (in our current implementation 4 bytes
are used for each pixel of the image), we could
implement strategies to gain advantage from the
fact that vast regions of the height-map are
inaccessible (e.g. top of buildings or courtyards)
and thus never used for the collision test. To
exploit this we can subdivide the height-map in
clusters which can be stored on the hard-disk,

virtualising the RAM used to store the table.
Another possibility is to implement image
compression algorithms on the height-map. Then,
the clusters can be stored in a much more efficient
way, decompressing them the first time we need to
bring back the data to RAM.

0

10000

20000

30000

40000

50000

60000

267 2008 4518 8032 12550 32128
Number of particels

R
en

de
ri

ng
 T

im
e

(m
S)

Rendering+CD
Rendering Only

As presented here, the problem of inter-human
collision is not addressed by our algorithm. Testing
the inter-proximity of thousands of independent
particles may represent a very expensive process
using traditional approaches. We are investigating
the possibility to make use of another regular map
(not necessarily with the same resolution as the
height-map) as a way to test for particles collision
(we call it collision-map). Every time that the
position of a particle is updated, its corresponding
position in the collision-map is updated as well. By
checking the content of the collision-map while
planning the movement of the particles we can
develop strategies to prevent them from colliding
against each other. This approach, which we have
implemented in a simple form, has given us so far
some good results.

Figure 5. Time to render against increasing
model complexity

To render the virtual humans, we plan to use
Image Based rendering techniques so as to be able
to render complex human figures using a single
textured polygon.

Finally, for dealing with models that have more
levels of overlapping geometry we plan to extend
the method to use several height-maps.

7 Conclusion
In this paper we have described a method for fast
collision detection in complex city models
populated with large number of moving humans.
We used the graphics hardware to produce a
rasterization of space which can be queried in
minimal time. As a result we have shown that we
can achieve collision tests for a population of
thousands of individual in real time.

The algorithm presented proved to be easy to
implement and adaptable to various models with
different complexity.

We envisage our method to be used as part of a
level-of-detail simulation. At the lowest level,
where one has a full view of the city from a certain
height, the interference between the moving objects
might not be noticeable. As the viewer comes
closer and the visible objects are reduced in
number, then an extra test can be employed to
decide for the inter-human collision while our
method can still be used to test for collision against
the static model.

References

[Band98a] Srikanth Bandi and Daniel Thalmann,

Space Discretization for Efficient Human
Navigation, Proc. Eurographics '98, Computer
Graphics Forum, Vol. 17, No3, 1998, pp.195-
206.

[Band98b] Srikanth Bandi and Daniel Thalmann,
The Use of Space Discretization for
Autonomous Virtual Humans, Proceedings of
the 2nd International Conference on
Autonomous Agents (AGENTS-98), pp. 336-
337, ACM Press, May 9-13 1998.

[COVEN] Collaborative Virtual Environments
Project, http://coven.lancs.ac.uk/

[Cohe95] J. Cohen, M. Lin, D. Manocha, and M.
Ponamgi. I-collide: An interactive and exact
collision detection system for large-scale
environments, Proceedings of ACM Interactive
3D Graphics Conference, pages 189-196, 1995.

[Gott96] Stefan Gottschalk and Ming Lin and
Dinesh Manocha, OBB-Tree: A Hierarchical
Structure for Rapid Interference Detection,
SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pp. 171-180,
Addison Wesley, August 1996.

[Hubb93] P. M. Hubbard, Interactive collision
detection Proceedings of IEEE Symposium on
Research Frontiers in Virtual Reality, October
1993.

[LengG90] Jed Lengyel and Mark Reichert and
Bruce R. Donald and Donald P. Greenberg,
Real-Time Robot Motion Planning Using
Rasterizing Computer Graphics Hardware,
Computer Graphics, 24(4), pp. 327-335,
August 1990.

[Lin98] M. Lin and S. Gottschalk, Collision
Detection between Geometric Models: A
Survey, Appeared in the Proceedings of IMA
Conference on Mathematics of Surfaces, 1998.

[Mysz95] Karol Myszkowski and Oleg G. Okunev
and Tosiyasu L. Kunii, Fast collision detection
between complex solids using rasterizing
graphics hardware, The Visual Computer,
11(9), pp. 497-512, Springer-Verlag, 1995

[Nayl90] B. Naylor and J. Amanatides and W.
Thibault, Merging BSP Tress Yields Polyhedral
Set Operations, ACM Computer Graphics,
24(4), pp. 115-124, August 1990.

[Ross92] Jarek Rossignac and Abe Megahed and
Bengt-Olaf Schneider, Interactive inspection of
solids: Cross-sections and interferences,
Computer Graphics, 26(2), pp. 353-360, July
1992.

[Same90] H. Samet, The Design and Analysis of
Spatial Data Structures, Series in Computer
Science, Addison-Wesley, April 1990.

 [Stee97] A. Steed, Efficient Navigation Around
Complex Virtual Environments, Proceedings of
the ACM Symposium on Virtual Reality
Software and Technology (VRST-97), pp. 173-
180, ACM Press, September 15-17 1997.

[Stee99] A. Steed and E. Frecon, Building and
Supporting a Large-Scale Collaborative Virtual
Environment, Proc UKVRSIG99, Salford, UK,
1999.

Figure 6. One of the models used with 1,000 particles

Fig
Figure 7. The same model with 20,000 particles
ure 8. Part of the London model with 5,000 particles

