
EUROGRAPHICS 2001/ A. Chalmers and T.-M. Rhyne Volume 20 (2001), Number 3
(Guest Editors)

 The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Fast Cloth Animation on Walking Avatars

T. Vassilev, B. Spanlang, Y. Chrysanthou

Department of Computer Science, University College London, United Kingdom

Abstract

This paper describes a fast technique for animating clothing on walking humans. It exploits a mass-spring
cloth model but applies a new velocity directional modification approach to overcome its super-elasticity.
The algorithm for cloth-body collision detection and response is based on image-space interference tests,
unlike the existing ones that use object-space checks. The modern workstations’ graphics hardware is used
not only to compute the depth maps of the body but also to interpolate the body normal vectors and velocities
of each vertex. As a result the approach is very fast and makes it possible to produce animation at a rate of
three to four frames per second.

1. Introduction

The main objective of this work is to develop a fast
technique for clothing and animating virtual humans. The
final goal is to implement a system on the WEB, where
customers will be able to upload the 3D virtual
representation of their body, browse different pieces of
clothing, try them on, see themselves walking wearing the
clothing and buy if they are satisfied. The body model is
acquired with a high-resolution 3D scanner, so it
represents very accurately the body shape of a real person.
Because of the accuracy of 3D scanning technology it will
be possible not only to try on different types of clothes,
but also to fit different sizes.

The system is based on an improved mass-spring model of
cloth and a fast new algorithm for cloth-body collision
detection. It reads as input a body file and a garment text
file. The garment file describes the cutting pattern
geometry and seaming information. The former can be
derived from the existing apparel CAD/CAM systems,
such as GERBER. The cutting patterns are positioned
around the body and elastic forces are applied along the
seaming lines. After a certain number of iterations the
patterns are seamed, i.e. the garment is ‘put on’ the human
body. Then gravity is applied and a body walk is
animated.

The main contributions of this work are the velocity
directional modification approach for dynamics and cloth-

body hardware-assisted method for collision detection and
response. The rest of the paper is organised as follows.
Next section reviews previous work on cloth simulation
and collision detection. Section 3 describes the cloth
model and its improvement to cope with super-elasticity.
Section 4 describes the collision detection algorithm in
detail. Section 5 is dedicated to collision response. Section
6 gives results as images and comparison tables and
section 7 concludes the paper and gives ideas about future
work.

2. Background

2.1. Previous work in cloth simulation
Physically based cloth modelling has been a problem of
interest to computer graphics researchers for more than a
decade. First steps, initiated by Terzopoulos et al. 1,2,
characterised cloth simulation as a problem of deformable
surfaces and used the finite element method and energy
minimisation techniques borrowed from mechanical
engineering. Since then other groups have been formed 3 - 6

challenging the cloth simulation using energy or particle
based methods. A more detailed survey on cloth modelling
techniques can be found in the paper by Ng and
Grimsdale7.

Many of the approaches described above have a good
degree of realism simulating the cloth but their common
drawback is low speed. A relatively good result
demonstrated by Baraff and Witkin 6 is 14 seconds per

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

frame for the simulation of a shirt with 6,450 nodes on a
SGI R10000 processor. This is the main reason why these
techniques cannot be applied to an interactive system.

Provot 8 used a mass-spring model to describe rigid cloth
behaviour, which proved to be faster than the techniques
described above. Its major drawback is the super-
elasticity. In order to overcome this problem he applied a
position modification algorithm to the ends of the over-
elongated springs. However, if this operation modifies the
positions of many vertices, it may elongate other springs.
That is why this approach is applicable only if the
deformation is locally distributed, which is not the case
when simulating garments on a virtual body.

The method, described in this work, also exploits a mass-
spring cloth model but it introduces a new approach to
overcome its super-elasticity. Instead of modifying the
positions of end points of the springs that were already
over-elongated, the algorithm checks their length after
each iteration and does not allow elongation more than a
certain threshold modifying velocities of the
corresponding vertices. This approach has been further
developed and optimised for the dynamic case of
simulating cloth on moving objects.

2.2. Mass-spring model of cloth
The elastic model of cloth is a mesh of l×n mass points,
each of them being linked to its neighbours by massless
springs of natural length greater than zero. There are three
different types of springs: structural, shear, and flexion,
which implement resistance to stretching, shearing and
bending, correspondingly.

Let pij(t), vij(t), aij(t), where i=1,… , l and j=1,… , n, be
respectively the positions, velocities, and accelerations of
the mass points at time t. The system is governed by the
basic Newton’s law:

fij = m aij, (1)

where m is the mass of each point and fij is the sum of all
forces applied at point pij. The force fij can be divided in
two categories.

The internal forces are due to the tensions of the springs.
The overall internal force applied at the point pij is a result
of the stiffness of all springs linking this point to its
neighbours:

∑















−−=

lk ijkl

ijkl
ijklijklijklijint lk

,

0)(
pp

pp
pppf , (2)

where kijkl is the stiffness of the spring linking pij and pkl

and l0
ijkl is the natural length of the same spring.

The external forces can differ in nature depending on
what type of simulation we wish to model. The most
frequent ones will be:

• Gravity: fgr(pij) = mg, where g is the gravity
acceleration;

• Viscous damping: fvd(pij) = –Cvdvij, where Cvd is a
damping coefficient.

For more information on how to model wind see Provot 8.

All the above formulations make it possible to compute
the force fij(t) applied on point pij at any time t. The
fundamental equations of Newtonian dynamics can be
integrated over time by a simple Euler method:

)()()(
)()()(

)(1)(

tttttt
tttttt

t
m

tt

ijijij

ijijij

ijij

∆+∆+=∆+
∆+∆+=∆+

=∆+

vpp
avv

fa

 , (3)

where ∆t is a chosen time step. More complicated
integration methods, such as Runge-Kutta 16, can be
applied to solve the differential equations. This however
reduces the speed significantly, which is very important in
our case. The Euler Equations 3 are known to be very fast
and give good results, when the time step ∆t is less than

the natural period of the system KmT π≈0 . In fact

our experiments showed that the numerical solving of
Equations 3 is stable when

K
mt π4.0≤∆ , (4)

where K is the highest stiffness in the system.

2.3. Collision detection cloth-body
Collision detection and response prove to be the
bottleneck of dynamic simulation algorithms that use
highly discretised surfaces. So, if it is necessary to achieve
a good performance then an efficient collision detection
algorithm is essential. Most of the existing algorithms for
detecting collisions between the cloth and other objects in
the scene are based on geometrical object-space (OS)
interference tests. Some apply prohibitive energy field
around the colliding objects 1, but most of them use
geometric calculations to detect penetration between a
cloth particle and a face of the object together with
optimisation techniques in order to reduce the number of
checks.

The most common approaches are voxel or octree
subdivision 9. The space is subdivided either into an array
of regular voxels or into a hierarchical tree of octants and
the detection is performed exploring the corresponding
structure. Another solution is to use a bounding box (BB)
hierarchy 6, 11. Objects are grouped hierarchically
according to proximity rules and a BB is pre-computed for
each object. The collision detection is then performed
analysing BB intersections in the hierarchy. Other
techniques exploit proximity tracking 10 or curvature
computation 11 to reduce the big number of collision

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

checks, excluding objects or parts which are impossible to
collide.

Recently new techniques were developed, based on image-
space (IS) tests 12 - 15. These algorithms use the graphics
hardware to render the scene and then perform checks for
interference between objects based on the depth map of
the image. In this way the 3D problem is reduced to 2.5D.
As a result of using the graphics hardware these
approaches are very efficient. However, they have been
mainly used to detect rigid object interference 12, 15, in
CAD/CAM systems 13, in dental practise 14, but never for
cloth-body collision detection and response.

This paper exploits an image-space approach to collision
detection and response. Its main strength is that it uses the
workstation graphics hardware not only to compute the
depth maps, necessary for collision detection, but also to
generate maps of the normal vectors and velocities for
each point on the human body. The latter are necessary for
collision response. As a result the algorithm is very fast
and the detection and response time do not depend on the
number of faces on the human body.

3. Velocity directional modification

The major drawback of the mass-spring cloth model is its
“super elasticity”. This is due to the fact that the springs
are “ideal” and they have unlimited linear deformation
rate. As a result the cloth stretches even under its own
weight, something that does not normally happen to real
cloth.

3.1. Position modification
Provot 8 proposed to cope with the super-elasticity using
position modification. His algorithm checks the length of
the springs after each iteration and modifies the positions
of the ends of the spring, if it exceeds its natural length
with more than a certain value (10% for example). This
modification will adjust the length of some springs but it
might over-elongate others. So, the convergence properties
of this technique are not clear. It proved to work for
locally distributed deformations but no tests were
conducted for global elongation.

3.2. Velocity modification
The main problem of the position modification approach is
that first it allows the springs to over-elongate and then
tries to adjust their length modifying positions. This of
course is not always possible because of the many links
between the mass points. Our idea was to find a constraint
that does not allow any over-elongation of springs.

The algorithm works as follows. After each iteration it
checks for each spring whether it exceeds its natural
length by a pre-defined threshold. If this is the case, the
velocities are modified, so that further elongation is not
allowed. The threshold value usually varies from 1% to
15% depending on the type of cloth we want to simulate.

p1

p2

v2

v1t

v1n

v2t
v2n

v1

Figure 1: Velocity modification for over-elongated
springs

Let p1 and p2 be the positions of the end points of a spring
found as over-elongated, and v1 and v2 be their
corresponding velocities (see Figure 1). The velocities v1
and v2 are split into two components v1t and v2t, along the
line connecting p1 and p2, and v1n and v2n, perpendicular to
this line. Obviously the components causing the spring to
stretch are v1t and v2t, so they have to be modified. In
general v1n and v2n could also cause elongation, but their
contribution within one time step is negligible. There are
several possible ways of modification:

• Set both v1t and v2t to their average, i.e.

v1t = v2t = 0.5(v1t + v2t). (5)

• Set only one of them equal to the other, but how to
decide which one to change at the current simulation
step?

Our experiments showed that Equation 5 is good enough
for the static case, i.e. when the cloth collides with static
objects. So if we want to implement a system for dressing
static human bodies, Equation 5 will be the obvious
solution, because it produces good results and is the least
expensive. For the dynamics, however, the way of
modifying velocity proved to have an enormous influence
on the cloth behaviour. For example Equation 5 gives
satisfactory results for relatively low rate of cloth
deformations and relatively slow moving objects. In faster
changing scenes, it becomes “clumsy” and cannot give a
proper respond to the environment.

After conducting numerous tests we came up with the
following solution. We introduce a vector called a
“directional vector”, which is computed as:

vdir = vgrav + vobject, (6)

where vobject is the velocity of the object which the cloth is
colliding with, and vgrav is a component called
“gravitational velocity” computed as
vgrav = g∆t. The directional vector gives us the direction,
in which higher spring deformation rates are most likely to
appear at the current step of simulation, and in which the
cloth should resist to modifications. The components of
the directional vector are the sources, which will cause

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

cloth deformation. In our case they are two, gravity and
velocity of the moving object, but in other environments
there might be other sources which have to be taken into
account, such as wind for example.

vgrav

vobject

vdir

Figure 2. Introducing directional vector

Once the directional vector has been determined, the
velocities are modified in the following way. Let p12 = p2-
p1 be the spring directional vector and α be the angle
between p12 and vdir. The cosine of α can be easily
computed as a scalar product of the two vectors.

• If the spring is approximately perpendicular to the
directional vector vdir (|cosα|<0.3) then modify both
velocities using Equation 5;

• Else set the velocity of the rear point (considering the
directional vector) equal to the front one, so that it
can “catch up” with the changing scene. If cosα>0
the rear point is p1 else it is p2.

If this is applied to all springs, the stretching components
of the velocities are removed and in this way further
stretching of the cloth is not allowed. In addition the
“clumsiness” of the model is eliminated and it can react
adequately to moving objects. As the results show this
approach works for all types of deformation: local or
global, static or dynamic.

4. Collision detection

Collision detection is one of the crucial parts in fast cloth
simulation. At each simulation step, a check for collision
with the human model has to be performed for each vertex
of the garment. If a collision between the body and a cloth
point occurs, the response of that collision also needs to be
calculated. In our system we implemented an image-space
based collision detection approach. Using this technique it
is possible to find a collision only by comparing the depth
value of the garment point with the according depth
information of the body stored in the depth maps. We
went even further and decided to use the graphics
hardware to generate the information needed for collision

response, that is the normal and velocity vectors of each
body point. This can be done by encoding vector co-
ordinates (x, y, z) as colour values (R, G, B). Depth,
normal and velocity maps are created using two
projections: one of the front and one of the back of the
model. For rendering the maps we place two orthogonal
cameras at the centre of the front and the back face of the
body’s BB. To increase the accuracy of the depth values,
the camera far clipping plane is set to the far face of the
BB and the near clipping plane is set to near face of the
BB. Both cameras point at the centre of the BB. This is
illustrated in Figure 3. The maps are generated at each
animation step, although if the body movements are
known, they can be pre-computed.

Figure 3. Front camera clipping planes

Figure 4: Front depth map: darker shades are near
brighter ones are far

4.1. Generating the depth maps
When initialising the simulation we execute two off-
screen renderings to retrieve the depth values, one for the
front and one for the back. The z-buffer of the graphics
hardware is moved to main memory using OpenGL’s
buffer-read function. The z-buffer contains floating-point

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

values from 0.0 to 1.0. A value of 0.0 represents a point at
the near clipping plane and 1.0 stands for a point at the far
clipping plane.

Figure 4 shows an example depth map.

4.2. Generating the normal maps
During the two renderings for generating the depth, the
normal maps are also computed. We substitute the (Red,
Green, Blue) value of each vertex of the 3D model with
the coordinates (nx, ny, nz) of its normal vector n. In this
way the frame-buffer contains the normal of the surface at
each pixel represented as colour values. Since the
OpenGL colour fields are in a range from 0.0 to 1.0 and
normal values are from –1.0 to 1.0 the coordinates are
converted to fit into the colour fields using
















+=

















5.0
5.0
5.0

5.0 n
Blue

Green
Red

. (7)

We turn on the interpolated-shading option and allow the
graphics hardware to interpolate between the normals for
all intermediate points. Using OpenGL’s read-buffer
function to move the frame buffer into main memory gives
us a smooth normal map. Conversion from (Red, Green,
Blue) space into the normals space then is done using
















−
















=

1
1
1

2
Blue

Green
dRe

n . (8)

Figure 5* (left) shows an example normal map.

4.3. Generating the velocity maps
Similarly to the rendering of the normal maps, we
substitute the (Red, Green, Blue) value of each vertex of
the 3D model with the coordinates (vx, vy, vz) of its
velocity v. Since the velocity coordinate values range from

–maxv to +maxv, they are converted to fit into the colour
fields using
















+=

















maxv
maxv
maxv

Blue
Green
Red

/5.0
/5.0
/5.0

5.0 v . (9)

Again the interpolated-shading option is enabled to allow
the graphics hardware to interpolate the velocities for all
intermediate points. The conversion from (Red, Green,
Blue) space into the velocity space is computed

)
1
1
1Re

2(















−
















=

Blue
Green

d
maxvv . (10)

Figure 5* (right) shows an example velocity map.

4.4. Testing for collisions
After retrieving depth, normal and velocity maps testing
for and responding to collisions can be done very
efficiently. If we want to know whether a point (x, y, z) on
the cloth collides with the body, the point’s (x, y) values
need to be converted from world coordinate system into
the map coordinate system (X, Y) as shown

bboxheight
mapsizey

Y
*= ;

mapsize
bboxheight

bboxheightx
X back

















 +
−= 21 ; (11)

mapsize
bboxheight

bboxheightx
X front

















 +
= 2 .

Figure 5*: Colour maps
Left - Normal map: colours indicate different direction

Right - Velocity map: colours show direction and magnitude

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

First the z value is used to decide which map to use. If the
z value is lower than 0 the back-map is used otherwise the
front-map is taken. The corresponding z value of the depth
map is compared with the z value of the pixel’s
coordinates using

),(:
),(:
YXdepthmapzfront

YXdepthmapzback

front

back

>
<

(12)

If a collision occurred, we retrieve the normal and velocity
vectors from the colour maps indexed by the same
coordinates (X, Y) used for the collision check. These
vectors are necessary to compute a collision response.

4.5. Estimating the error of discretisation
Considering the fact that most of the modern workstations
use a 24 bit z-buffer and that bboxdepth<100 cm for an
average person, then the following estimation applies for
discretisation error in z

cmbboxdepthz 6
2424

10.6
2

100

2
−<<=∆ . (13)

This is more than enough in our case, bearing in mind that
the discretisation error of the 3D scanner is of the order of
several millimetres. The errors in x and y are equal and can
be computed as

cm
mapsizemapsize

bboxheightyx 180 to160≈=∆=∆ , (14)

where we consider the average person to be 160 to 180 cm
tall. This means that we have control over the error in x
and y direction varying the size of the maps. However
bigger map size also means bigger overhead, as buffer
retrieval times will be higher. A reasonable trade-off is
∆x=∆y=0.5 cm, so mapsize=320 to 360 pixels.

5. Resolving collisions

After a collision has been detected, the algorithm has to
compute a proper response of the whole system. Our
approach does not introduce additional penalty,
gravitational or spring forces; it just manipulates the
velocities, as proposed by Eberhardt et al 4, which proved
to be very efficient. However, we had to do some
modifications for the dynamic case.

Let v be the velocity of the point p colliding with the
object s and let vobject be the velocity of this object (Figure
6). The surface normal at the point of collision is denoted
by n. First, the relative velocity between the cloth and the
object has to be computed as vrel = v - vobject. If vt and vn
are the tangent and normal components of the relative
velocity vrel, then the resultant velocity can be computed
as:

vres = Cfricvt – Creflvn + vobject, (15)

where Cfric and Crefl are a friction and a reflection
coefficients, which depend on the material of the colliding
objects.

vrel

n vt

vn

p
s

Vobject

Figure 6: Resolving collisions manipulating velocities

A similar approach can be implemented to detect and find
the responses not only to vertex-body, but also to face-
body collisions. For each quadrangle on the cloth we
compute its midpoint and velocity as an average of the
four adjacent vertices. Then we check for a collision of
this point with the body and if so, compute its response
using Equation 15, and apply the same resultant velocity
to the surrounding four vertices. If there is more than one
response for a vertex, then an average velocity is
calculated for this vertex. As the results section shows,
this approach helps to reduce significantly the number of
vertices, which speeds up the whole method.

Our tests showed that the velocity collision response did
not always produce satisfactory results. For example,
when heavy cloth was simulated there were penetrations in
the shoulder areas. In order to make the collision response
smoother, an additional reaction force was introduced for
each colliding point on the cloth (see Figure 7).

fp

n ft

fn

p
s

freaction

Figure 7: Introducing reaction forces

Let fp be the force acting on the cloth vertex p. If there is a
collision between p and an object in the scene s, then fp is
split in its two components: normal (fn) and tangent (ft).
The object reaction force is computed

freaction = – Cfricft – fn, (16)

where the first component is due to the friction and
depends on the materials.

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

6. Results

The algorithms were implemented on a SGI workstation
(R12000 processor) and on a modern PC (Pentium III, 1
GHz) using the Open Inventor library for rendering the
images.

Figure 8: Tablecloth draping over a moving sphere

Figure 8 shows the results of a tablecloth draping over a
moving sphere. The left image depicts the original mass-
spring model with no restriction to elasticity. The cloth is
too elastic and the model cannot respond fast enough to
the moving sphere. The right image is obtained by
applying the elasticity restriction approach with velocity
directional modification as described in Section 3. The
elasticity threshold is 5%.

In order to compare the performance of our collision
detection algorithm with the existing ones, we
implemented a classic BB approach using OS interference
tests. The body is subdivided into five parts: torso, arms
and legs. For each part a quad tree of BBs is constructed
with the leaves being the faces on the body with their
normal vectors. The algorithm checks for collisions
between a vertex of the cloth and a face on the body and
computes the response using the technique described in
the previous section.

shirt dress
IS OS IS OS

No of vertices 1800 1800 3840 3840
Time/iteration (ms) 15.8 30.8 33.0 52.0
CD&R time (ms) 7.6 22.5 15.1 34.2
CS time (ms) 8.2 8.3 17.9 17.8
CD&R time (%) 48.1 73.0 45.7 65.7
CS time (%) 51.9 27.0 54.3 34.3

Table 1: Comparison between a traditional OS collision
detection and the IS one for two products

Table 1 shows the results of applying both techniques to
simulate a shirt and a dress on a SGI workstation. The
times shown do not include the rendering of the maps for
the IS method and the generation of the BB tree for the OS
method. CD&R stands for “collision detection and
response”, and CS means “cloth simulation”. As one can
see the IS approach improves the speed of the collision
detection and response with a factor of 2 to 3. The table
compares the results only for a static body since our object

space algorithm was implemented only for this case. This
means that in dynamics additional time will be spent for
computing the velocity of each body point. In our IS
algorithm this is done by rendering the velocity map and
the graphics hardware interpolates the velocities for the
intermediate points. For the OS algorithm, however, these
velocities need to be computed at each frame and
interpolated when a collision occurs, so we expect that the
advantages of our technique will be even more obvious in
the dynamic case.

Skirt Dress with
sleeves

No of vertices 672 2300
Sec/frame 0.244 0.294
Frames/sec 4.1 3.4

Table 2: Frames per second for animating two different
pieces of clothing

Figure 9 illustrates two different frames of a walking body
shown from two different viewpoints. Additional videos
are supplied demonstrating walking female body dressed
in different pieces of clothing: skirt, trousers, dress and
shirt. The code was compiled on a state of the art PC, 1
GHz, 512 MB RAM and a graphics acceleration card
GeForce2. Table 2 shows the results for a skirt and a dress
with sleeves. The simulation ran at a speed of 3 to 4
frames per second (250 to 300 ms per frame), depending
on the complexity of the garment. Note that at each frame,
apart from rendering the maps, cloth simulation and
collision detection and response, we also need to read the
open inventor file, describing the body mesh, and to
render the scene graph on the screen. The technique can be
speeded up further, if the maps for each frame are pre-
computed and stored in advance, so that we do not have to
generate them at each frame. This however will require a
lot of memory and will restrict it to pre-defined animation.

Figure 9: Animating dressed people

Vassilev, Spanlang and Chrysanthou / Fast Cloth Animation

 The Eurographics Association and Blackwell Publishers 2001.

7. Conclusions and Future work

An efficient technique for dynamic cloth simulation has
been presented. It uses a mass-spring model with a new
velocity directional modification method for coping with
the super-elasticity of the original model. New image-
based method for cloth-body collision detection and
response has been presented. The graphics hardware is
used not only to produce depth maps but also to
interpolate normal vectors and velocities of the body,
which are used for collision response. As a result the
speed is good enough for an almost real time simulation of
garments on walking virtual humans. One further possible
step to improve the quality and speed of the collision
detection algorithm is to render the cloth at each iteration
step and read the collision positions directly from the
frame buffer or the stencil buffer. The current system does
not implement cloth-cloth collision detection and
response. Future work will explore the possibilities of
applying an image-based approach to cloth-cloth collisions
too.

8. Acknowledgements

This work is a part of the Foresight LINK award project
“3D Centre for Electronic Commerce” at the University
College London. Many thanks to Laura Dekker and
Ioannis Douros for supplying the 3D body models and to
Prof. Philip Treleaven and Franco Tecchia for their help
and ideas.

References

1. Terzopoulos D, Platt J, Barr A and Fleischer K.
Elastically Deformable Models. Computer Graphics
(Proc. SIGGRAPH 1987); 21 (4): 205-214.

2. Terzopoulos D and Fleischer K. Deformable
Models. Visual Computer1988; 4:306-331.

3. Breen D E, House D H and Wozhny M J. Predicting
the drape of woven cloth using interacting particles.
Computer Graphics (Proc. SIGGRAPH 1994);
28:23-34.

4. Eberhardt B, Weber A and Strasser W. A fast,
flexible, particle-system model for cloth-draping.
IEEE Computer Graphics and Applications1996;
16:52-59.

5. Carignan M, Yang Y, Magnenat-Thalmann N and
Thalmann D. Dressing animated synthetic actors

with complex deformable clothes. Computer
Graphics (Proc. SIGGRAPH 1994); 28:99-104.

6. D. Baraff and A. Witkin, Large Steps in Cloth
Simulation, Computer Graphics (Proc. SIGGRAPH
1998); 43-54.

7. Ng N H and Grimsdale R L. Computer graphics
techniques for modelling cloth. IEEE Computer
Graphics and Applications 1996; 16:28-41.

8. Provot X. Deformation constraints in a mass-spring
model to describe rigid cloth behaviour.
Proceedings of Graphics Interface 1995; 141-155.

9. Badler N I, Glassner A S. 3D object modelling.
Course note 12, Introduction to Computer Graphics.
SIGGRAPH 1998; 1-14.

10. Pascal V, Magnenat-Thalmann N. Collision and
self-collision detection: efficient and robust solution
for highly deformable surfaces. Sixth Eurographics
Workshop on Animation and Simulation 1995; 55-
65.

11. Provot X. Collision and self-collision detection
handling in cloth model dedicated to design
garments. Proceedings of Graphics Interface 1997;
177-189.

12. Shinya M and Forque M. Interference detection
through rasterization. Journal of Visualization and
Computer Animation 1991; 2:131-134.

13. Rossignac J, Megahed A, Schneider B O.
Interactive inspection of solids: cross-section and
interferences. Computer Graphics (SIGGRAPH
1992); 26(2): 353-360.

14. Myszkowski K, Okunev O, Kunii T. Fast collision
detection between complex solids using rasterizing
graphics hardware. The Visual Computer 1995; 11
(9): 497-512.

15. Baciu G, Wong W S, Sun H. RECODE: an image-
based collision detection algorithm. The Journal of
Visualization and Computer Animation 1999; 10
(4): 181-192.

16. Press W H, Flannery B P, Teukolsky S A and
Vetterling W T. Numerical Recipes in C: the Art of
Scientific Computations. Cambridge University
Press 1992.

