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Abstract

Ray tracing and Monte-Carlo based global illumi-
nation, as well as radiosity and other finite-element
based global illumination methods, all require re-
peated evaluation of quantitative visibility queries,
such as (i) what is the average visibility between a
point (a differential area element) and a finite area or
volume; or (ii) what is the average visibility between
two finite areas or volumes.

In this paper, we present a new data structure
and an algorithm for rapidly evaluating such queries
in complex scenes. The proposed approach utilizes
a novel image-based discretization of the space of
bounded rays in the scene, constructed in a prepro-
cessing stage. Once this data structure has been com-
puted, it allows us to quickly compute approximate an-
swers to visibility queries. Because visibility queries
are computed using a discretization of the space, the
execution time is effectively decoupled from the num-
ber of geometric primitives in the scene. A potential
hazard with the proposed approach is that it might re-

quire large amounts of memory, if the data structures
are designed in a naive fashion. We discuss ways for
substantially compressing the discretization, while still
allowing rapid query evaluation. Preliminary results
obtained via a partial implementation demonstrate the
effectiveness of the proposed approach.

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation — Dis-
play algorithms; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism — color, shading,
shadowing, and texture; radiosity; raytracing

Additional Key Words: global illumination, shadow
rays, form-factors, quantitative visibility, discrete
scene representations

The color images of this paper are also available at
higher resolution at
http://www.math.tau.ac.il/�daniel/cgi98/cgi98.html
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1. Introduction

Efficient visibility computations have formed the
core of many algorithms in the field computer graph-
ics. Visibility information is necessary for displaying
a 3D scene from a specified point of view with hidden
surfaces removed, as well as for performing global il-
lumination computations in order to produce photore-
alistic images.

The goal of this paper is to develop an algorithm
that given a complex scene rapidly computes answers
to quantitative visibility queries, such as: (i) what is
the average visibility between a point (a differential
area element) and a finite area or volume; (ii) what is
the average visibility between two finite areas or vol-
umes. We define average visibility as the ratio of un-
occluded rays to the total number of rays in the ray
pencil defined by the query; thus, the answer to such a
query is a real number in the interval [0; 1]. In practice,
computing this ratio exactly is infeasible; we are there-
fore interested in reliable and efficient approximative
algorithms.

Why is this problem important? There are sev-
eral very important applications requiring the efficient
computation of quantitative visibility queries. Two
examples of such applications are: (i) ray tracing
and Monte-Carlo based global illumination algorithms
for photorealistic image synthesis; (ii) radiosity and
other finite-element based global illumination meth-
ods. These applications typically rely on point sam-
pling (ray casting) in order to estimate the average vis-
ibility across a pencil of rays. This solution suffers
from several important drawbacks. First, the resulting
visibility estimates cannot be relied upon, since they
are not accompanied by any kind of an error bound.
Second, ray casting does not provide the means for
trading off accuracy for speed: the only way to speed
up the query is to reduce the number of rays in the pen-
cil; however, this solution does not provide any means
of error control. Third, the asymptotic cost of casting
a ray is O(logN). Thus, ray casting can become quite
computationally burdensome in very complex scenes,
which might contain many millions of geometric prim-
itives.

In this paper, we focus on the third drawback above.
In order for the algorithm to handle extremely com-
plex scenes, it must be relatively insensitive to the

number of geometric primitives comprising the scene.
Since ray-casting algorithms can produce visibility es-
timates in time roughly O(logN), our goal is to de-
velop an algorithm whose observed complexity is sub-
logarithmic in the number of scene primitives. The
actual cost of a quantitative visibility query should de-
pend on the desired accuracy: low accuracy require-
ments should result in very fast queries; when a more
accurate approximation is required the query could
take longer to compute.

We propose a new image-based approach towards
attacking the quantitative visibility problem. The pro-
posed approach utilizes a novel discretization of the
space of bounded rays in the scene, constructed in a
preprocessing stage. Once computed, this data struc-
ture is able to quickly provide approximate answers
to visibility queries. Because visibility queries are
computed using a discretization of the space, the ex-
ecution time is effectively decoupled from the num-
ber of geometric primitives in the scene. A potential
hazard with the proposed approach is that it might re-
quire large amounts of memory, if the data structures
are designed in a naive fashion. We discuss ways for
substantiallycompressing the discretization, while still
allowing rapid query evaluation. Preliminary results
obtained via a partial implementation demonstrate the
effectiveness of the proposed approach.

2. Background

As mentioned above, there are several applications
that require the efficient computation of average visi-
bility across a pencil of rays in a complex scene.

To compute the direct illumination at a point p in
a scene, ray-tracing and Monte-Carlo algorithms must
establish the extent to which each of the light sources
is visible from p. For point light sources, shooting
a single ray from p to each light source is sufficient,
but for handling area light sources, the average visi-
bility across the solid angle subtended by the source
is required. Even with point light sources, in order
to obtained anti-aliased shadow boundaries it is bet-
ter to consider a finite area on the illuminated sur-
face, instead of a single point. This area could be
determined, for instance, by projecting the pixel area
through which the surface is visible back onto the sur-
face. Note that the computed visibility value need not
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be exact: computed pixel colors will be eventually
quantized before they can be displayed, so the required
accuracy is finite.

Ray-tracers typically approximate the visibility to
extended light sources by point-sampling the solid an-
gle that they subtend. Unfortunately, such approxima-
tions converge only as O(

p
n), where n is the number

of ray samples. Thus, a large number of rays may be
required in order to obtain a high enough confidence
that a value is computed to within a small enough vari-
ance [10]. Casting shadow rays can be the most time-
consuming part of the computation is scenes with suf-
ficiently many area light sources. This process can be
sped up by many of the general ray-tracing accelera-
tion schemes that were devised over the years [4]. In
particular, Haines [6] describes an approach, referred
to as the light buffer, specifically to accelerate the cast-
ing of shadow rays.

There were also a few alternative approaches to
shadow ray casting, such as casting beams [9] and
cones [1], but these approaches are not as general as
ray casting, since they impose limiting assumptions on
the geometry of the objects in the scene.

Radiosity and other finite-element based global
illumination methods typically perform very large
amounts of point-to-area and area-to-area form-factor
computations. Again, these algorithms require only
limited accuracy for a given form-factor, and therefore,
various approximations can be used. A common ap-
proximation is to compute the unoccluded form-factor
separately from the visibility and take their product.
Visibility is typically estimated by point-sampling the
areas and casting rays between the points [8]. Casting
more rays normally results in a more accurate estimate
of the visibility, but there are no error bounds on the
resulting approximation.

Many schemes for accelerating visibility computa-
tions in radiosity were proposed by researchers over
the years. These include shaft culling [7], global visi-
bility preprocessing [15], backprojections [2], and the
visibility skeleton [3]. Sillion and Drettakis [12, 14,
13] represent the scene by a hierarchy of clusters. Each
cluster is treated as an isotropic attenuating volume,
allowing to approximate quantitative visibility queries
very quickly. Our approach is similar in spirit to theirs,
but instead of isotropically attenuating volumes we
use a higher-dimensional directional data structure in-

spired by discrete light fields [5, 11].

3. Discrete visibility

As stated in Section 1, our approach consists of
discretizing the space of bounded rays in the scene.
Once such a discretization has been constructed, we
can quickly classify any bounded ray in the scene as
obstructed or unobstructed. Because we use the dis-
cretization of the space instead of the original geom-
etry of the scene, the classification time no longer de-
pends on the number of geometric primitives in the
scene. The price that we pay for this increase in clas-
sification speed is that the result of the classification
is no longer guaranteed to be precise: certain ob-
structed rays might be classified as unobstructed, and
vice versa. However, since our ultimate goal is to han-
dle quantitative visibility queries for finite pencils of
rays, rather than binary ray queries, the accuracy of
individual ray queries is not crucial.

In designing our discrete visibility data structure,
we are guided by the following two requirements: (i)
the data structure should support fast classification of
visibility along a bounded ray; and (ii) the data struc-
ture should be easy to compress. Consider the simplest
possible discretization of the space of bounded rays.
Since each bounded ray is defined by its two 3D end-
points, the space of all such rays is six-dimensional.
We could simply discretize this six dimensional space,
resulting in a 6D binary array. This discretization sup-
ports ray classification in constant time, but it’s high
dimensionality makes it difficult to get the memory re-
quirements down to manageable amounts. It is also
not clear how well we can compress such a volume,
while still providing rapid retrieval of answers to ray
queries.

Instead of using a 6D volume, we propose a novel
5D discretization of the space. The reduction of one
dimension is traded off for a slight increase in the
query retrieval time. The 5D data structure can be
thought of as a 2D array of 3D arrays. Each element of
the 2D array corresponds to a direction, which can be
associated with a point on a unit sphere with polar co-
ordinates (�; �). For each direction (�; �), we have a
n�n�d 3D array, which can be thought of as a stack
of n � n binary images. Each image is obtained by
projecting the contents of a slice of the scene perpen-
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dicular to the direction (�; �) (the projection is parallel
to the direction).

Given a bounded visibility ray we first represent the
ray in the form (�; �; i; j; d1; d2), where (�; �) is the
direction of the ray, (i; j) are the Cartesian coordinates
or the point where the ray intersects a plane perpendic-
ular to the direction (�; �) positioned in the middle be-
tween the ray endpoints, and (d1; d2) are the ray end-
points along the the given direction. Intuitively, this
representation allows us to choose the element(s) in
the 2D array, whose direction is closest to that of the
ray. Once the discrete direction has been chosen, we
can classify the visibility of the ray by examining the
(i; j)-th element in all slices between d1 and d2 of the
corresponding 3D array.

Generally, the direction of the visibility ray will not
coincide with one of the directions that we have cho-
sen for our discretization. In this case, we can simply
use the nearest direction. A more sophisticated solu-
tion would be to examine the 3 closest directions on
the sphere, and to combine the results using a weighted
average. Having said that, in the remainder of this pa-
per we will concentrate on the representation of the 3D
array corresponding to one particular direction, since
the compression and the visibility classification is per-
formed in the same manner for each direction.

The 5D discretization described above is a binary
array, in which the ray classification time is O(d),
where d is the number of scene slices along each direc-
tion. In the next section we describe a modification of
this data structure that will allow us to both compress
it effectively, and to classify ray queries faster (in time
O(logd logn), where n is the resolution of the images
in each direction). We refer to the compressed 3D data
structure corresponding to each direction as a depth
tree.

4. Depth Tree

As said above we are now concentrating on the rep-
resentation of the visibility corresponding to a partic-
ular direction. Given a ray (i; j; d1; d2) and a binary
discretization of the scene, the ray visibility can be
classified in time linear in the number of slices by ex-
amining the slices between d1 and d2. Instead we show
how the binary discretization is translated to a binary-
tree of depth images which can be compressed well

and still, the visibility classification is faster.
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Figure 1. The binary and depth image.

In Figure 1 illustrates a 2D example where the slices
are one dimensional - the vertical columns, and the
depth axes is horizontal. We can see in (a) seven bi-
nary slices (columns), and in (b) their corresponding
seven depth columns (slices), where each non-empty
entry in the binary slices gets the depth values associ-
ated with a left-to-right view. Note that the depth im-
age is still spatial coherent as the binary image, and
can be well compressed along the axes perpendicu-
lar to the slices (columns in the figure). However, it
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would be much better to have a representation which
has a 2D spatial coherence, since it could then be com-
pressed even better. Note that depth image consists
of many zero values which guarantee a 2D spatial co-
herency in the slices along the depth axes (or in the
columns in the Figure 1(b)). Thus, the slices can be
compressed using a quadtree which exploits the 2D
spatial coherency. This mean that the access to a par-
ticular depth value requires O(logn), where n is the
resolution of the slices. In Figure 3 shows six binary
slices of the “5trees” scene containing five trees shown
in Figure 2. Figure 4 shows the two depth images and
their corresponding quadtrees.

As can be seen in Figure 1(d), the slices (or columns
in Figure 1) can be regarded as nodes of a perfectly
balanced binary-tree. This suggests that it may be pos-
sible to access the depth values in logarithmic time
rather than linear. As we shall show below, the clas-
sification of a ray requires a search down the depth
tree. That is (O(logd)) steps, where d is the number of
slices. Including the access into the quadtree the clas-
sification of a ray takes O(logd logn). However, as
we shall see, the depth trees are transformed such that
most of the information in the tree is pushed as close
as possible to the root of the tree so that on the average
the number of steps down the binary-tree is better than
logarithmic. See the fourth column in the binary-tree
in Figure 1(f) - it is more loaded than its direct sons
(notes 2 and 6), and much more loaded than the leaves
(notes 1,3,5 and 7). Now we need to show (i) how to
construct the depth tree and (ii) how to answer a query.

4.1. The construction of the depth tree

Given a binary image and a depth image the depth
tree image is constructed by shifting data upwards the
tree while leaving behind zero values. To explain it
let’s look at a given row in the depth images. Denote
h(x) and v(x) the level and the value, respectively, at
the x column in the binary-tree image. Note that the
tree is balanced, x is the in-order index of the tree,
and that h(x) is number of least significant consecutive
zeros in binary representation of x.

Initially v(x) = x if and only if the voxel at x
is not empty. All other values are null (See Figure
1(c)). Now, the value of v(x) is shifted upwards the
tree to the entry of x0, (v(x0) = v(x)) provided that (i)

Figure 2. The “5trees” scene”.

(a) (b)

(c) (d)

(d) (e)

Figure 3. Five binary slices of the 5trees
scence.
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x0 < x, (ii) h(x) < h(x0) and (iii) v(x0) = 0. That is,
a depth value shifts up to an empty entry of a higher
level in the tree, but only form a right subtree. This
pull operation starts from the root of the tree, pulls in
as much information from its right subtree as possible
under the above constrains. Figure 1(b) shows the ini-
tial values of the depth tree before applying the pull
operations. Figure 1(c) shows the values which are
shifted towards the root of the tree.

The final depth tree contains no “duplicate” infor-
mation. Moreover, most of the information tends to be
as close as possible to the root. Thus, the lower levels -
the leaves or close to the leaves (more than half of the
data) are mostly empty and can be well compressed.
Note that columns 3 and 5 in Figure 1(d) are empty.
This is typical to the leaves of the depth tree.

4.2. Retrieving the visibility

Once the depth tree has been constructed it can be
used for fast ray classification. Given a ray (d1; d2) the
visibility is retrieved by descending the tree top down.
Denote by d(tree) the depth of current tree node, and
byC(tree) the value stored in the node. Each node has
two subtrees - the left subtree and the right subtree.

There are two cases to consider: the first case is
when d1, the start-point of the ray is to the left of
d(tree). If d2, the end-point is to the right of the first
occluder, then the ray is occluded. Otherwise we re-
curse in the left subtree, since there is no more useful
information here. The second case is when d1 is on or
to the right d(tree). If the first occluder is null (there
are no occluders to the right of the current node) then
the ray is unoccluded. Otherwise, there is an occluder
at C(tree). Now, the ray may starts to the right of
it (d1 > C(tree)) so we should recurse down to the
right subtree. If the ray ends to the left the first oc-
cluder (d2 < C(tree)) then it is unoccluded. Finally
if the ray’s endpoints are on either side of the occluder
(d1 < C(tree) < d2) then the ray is occluded. Figure
5 shows the pseudo-code for the above procedure.

This visibility classifications requires at most log d
steps, where each step requires at most one access to
C(tree) (O(logn)) and only few comparisons. Note
that the classifications procedure traverses the tree
down to node of d1. If that value is at a leaf then it is
logd levels away, since our tree is perfectly balanced.

(a)

(b)

(c)

(d)

Figure 4. (a) and (c) are two depth images (2
and 4) of the 5trees scence after the pull op-
eration, and their corresponding quadtrees in
(b) and (d).
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However, the value of d1 could be higher up the tree
or we might acquire sufficient information that allow
to conclude the visibility and stop before this value is
actually reached.

5. Results

The data structure that we have presented allows a
fast point sampling of large and complex scenes by ac-
cessing a precomputed compressed representation of
the visibility. We have applied our algorithm to com-
plex scenes like the “pine tree” scene in Figure 6 which
consists of 7,779 polygons, or the “5trees” scene in
Figure 7, which consists of 25,816 polygons. These
type of scenes are complex enough so that a the gen-
eration of their shadows is too expensive to be cre-
ated in real-time by casting shadow rays. Our experi-
mental tests where applied to one direction only. For
the given direction the scenes where discretized, com-
pressed, and the visibility queries where applied only
for parallel rays.

Figure 6. A pine tree casting shadow on a
curved surface.

These scenes were discretized employing conven-
tional rasterization hardware, which also yields the
depth images on the z-buffer. For each slice, the scene
was rendered with a front and back clipping planes
defining the slice width. The non empty pixels of the
slices (see Figure 3) where given their depth value by
rendering the scene where the back clipping plane lay
on the slice and no front clipping plane. Our imple-

mentation of the technique is not optimized. We use
no culling technique which could trivially reject most
of the scene at each slice, so we re-render everything
for every image. Also our implementation of the quad-
tree is rather naive. But still the construction of a
511x512x512 buffer and its compression takes about
5 minutes only. Almost half of that time is spent on
rendering and most of the rest on the construction of
the quad-trees.

slice resolution 128 256 512
number of slices

127 130 410 758
255 164 510 906
511 202 610 1,119

Table 1. The number of KBytes of memory re-
quired for “pinetree” scene, 7,779 polygons.

slice resolution 128 256 512
number of slices

127 178 258 829
255 250 716 1,118
511 336 962 1,506

Table 2. The number of KBytes of memory re-
quired for the “5 trees” scene, 25,816.

Tables 1 and 2 show the number of Kbytes required
for the “pinetree” and the “5 trees” scenes. Note the
direct effect of the resolution of the slice, and the sub-
linear dependency in the number of slices. This sug-
gests that it pays off to have more slices. On the other
hand, as can be seen in Figure 7, the slice resolution is
not that visually critical to the quality of results. One
should account the fact that typically such a ray query
is only one sample out of many in a ray pencil so that
it must not be accurate or in other words, the slice res-
olution must not be high. Note also that the size of
the compressed depth tree is sublogarithmic in the vol-
ume resolution. A 5123 volume of 128Mbytes is com-
pressed down to 1,506Kbytes, about the same size as a
2563 volume of 16Mbytes which is compressed down
to 1,118Kbytes.

To measure timings we sent 1x106 (1 million) ran-
dom rays through the two different scenes at differ-
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classify ray(tree, (d1; d2)
f

if (d2 < d(tree)) /* totaly to the left of the root */
return classify ray(tree->left, (d1; d2));

else
docc = C(tree); /* get position of first occluder */

if ( d
occ

== 0 or d2 < d
occ

) /* either there is no occluder */
/* or the ray ends before it */

if (d1 < d(tree)) /* starts to the left of the root */
return classify ray(tree->left, (d1; d2));

else
return UNOCCLUDED;

else if (d1 > d
occ

) /* totaly to the right of the first occluder */
return classify ray(tree->right, (d1; d2));

else /* d1 and d2 are on either side of the occluder */
return OCCLUDED;

g

Figure 5. Pseudo-code for classifying a ray against the depth tree.

ent resolutions and they alway seem to take the same
amount of time (see Figure 8). For example, the “pine-
tree” at resolution 128x128with only three slices took
4.4sec for all the million rays, and the “5trees” at res-
olution 512x512 with 511 slices took only 5.5sec. We
can see that as we increase the resolution the increase
in the time taken to classify the rays is much less than
logarithmic, even though our data structures have a
logarithmic bound. This is because most rays are clas-
sified very high up near the root of the tree and only
few are traced down to the leaves.

6. Future work

We have presented a mechanism for rapidly reply-
ing to ray visibility queries. Since it is based on the
discretization of both the scene and the ray, the vis-
ibility of a single ray is just an approximation. As
we mentioned in the paper, our final goal is quanti-
tative visibility queries for finite pencils of rays, rather
than binary ray queries. When the pencil of rays is
very large it would require many ray queries where
the accuracy of each individual ray is less significant.
Thus, we intend to extend this work and construct a
hierarchy of discretization of the scene on which we

would be able to query on low resolution rays. Such
coarse rays will yield a quantitative visibility that ap-
proximates the results of several finer rays. However,
the success of replacing many finer rays by a single
coarser ray is very much scene dependent. Thus, we
can associate with each ray a confidence value which
will indicate the probability that the approximation is
successful. Such mechanism will provide means for
trading off speed for accuracy.
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