Multi-Agent Coordination and Cooperation through Classical Planning

Yannis Dimopoulos
Dept. of Computer Science
University of Cyprus
CY-1678 Nicosia, Cyprus
yannis @cs.ucy.ac.cy

Abstract

Multi-agent planning is a fundamental problem in multi-
agent systems that has acquired a variety of meanings in the
relative literature. In this paper we focus on a setting where
multiple agents with complementary capabilities cooperate
in order to generate non-conflicting plans that achieve their
respective goals. We study two situations. In the first, the
agents are able to achieve their subgoals by themselves, but
they need to find a coordinated course of action that avoids
harmful interactions. In the second situation, some agents
may ask the assistance of others in order to achieve their
goals. We formalize the two problems and present algo-
rithms for their solution. These algorithms are based on an
underlying classical planner which is used by the agents to
generate their individual plans, but also to find plans that
are consistent with those of the other agents. The proce-
dures generate optimal plans under the plan length crite-
rion. The central role that has been given to the classical
planning algorithm, can be seen as an attempt to establish
a stronger link between classical and multi-agent planning.

1 Introduction

Multi-agent coordination and cooperation are important
issues in the multi-agent field. Several works have been
proposed, covering different aspects of the problem of co-
ordinating the plans of several agents operating in the same
environment. These include scenarios where plan genera-
tion is distributed, where planning is centralized and plan
execution is distributed, or where both planning and execu-
tion are distributed. However, only few works (e.g. [2], [5])
tackle aspects of the cooperation problem in the context of
multi-agent planning.

In this paper we study both problems of coordination and
cooperation of multiple agents. In particular, we consider
two scenarios that we believe cover an important number

Pavlos Moraitis

Dept. of Mathematics and Computer Science

René Descartes University
75270 Paris Cedex 06, France
pavlos @math-info.univ-paris5.{r

of applications. In the first, agents have individual (pri-
vate) goals that they can achieve by themselves. The agents
can generate and execute their plans independently. How-
ever, as they operate in the same environment, conflicts may
arise. Therefore, they need to coordinate their course of ac-
tion in order to avoid harmful interactions. We will call
this situation multi-agent coordination. In the second sce-
nario, which is a special case of multi-agent cooperation,
an agent can ask some other agent to establish precondi-
tions of actions that appear in his plan. We will call this
situation multi-agent assistance.

We define formally the two problems, and propose
branch and bound algorithms for their solution. The do-
main theories of the agents are represented in the STRIPS
language, and the solution algorithms rely on SATPLAN [6]
for plan generation. The agents generate individual plans
using SATPLAN, which they send to the other agents, that,
again using SATPLAN, attempt to expand to a joint plan.
The procedure iterates over all individual plans until an op-
timal, wrt plan length, joint plan is found. When a new joint
plan is generated, its length serves as an upper bound in the
search for better plans. Apart from plan length, our pro-
cedures can be adapted to other plan quality criteria, pro-
vided that the underlying planner generates optimal plans
wrt these criteria. Finally, our algorithms define the way
agents communicate through the exchange of messages.

On a high level, an important difference of our approach
from other works, is that it handles both coordination and
cooperation in a uniform way. Moreover, the use of a clas-
sical planner, brings recent and future advances in classical
planning into multi-agent planning. On a more technical
level, and as far as coordination is concerned, the works
closer to ours are [3] and [4]. Space limitations do not al-
low a comparison here.

2 Propositional Satisfiability based Planning

We assume that the agents’ planning domain theories are
described in the STRIPS language, and denote by D,, the

set of actions that appear in the domain theory of agent c.
To generate their plans the agents use the SATPLAN system
[6]. The rationale behind choosing the propositional satis-
fiability approach to planning is twofold. First, it is one of
the most computationally effective approaches to optimal
(wrt plan length) STRIPS planning. Second, it can be eas-
ily extended to accommodate the needs of our multi-agent
planning scenarios.

We assume that the reader is familiar with the proposi-
tional satisfiability encoding of STRIPS planning. Among
the several ways to transform a planning problem into a sat-
isfiability one, we adopt the Graphplan-based parallel en-
coding [6].

The SATPLAN procedure is invoked through the call
ComputePlan(T,G, L,C, P), where T is a CNF theory
that includes the agent’s domain theory and initial state, G
is the set of goals of the agent, L is an upper bound on the
length of the generated plan (ie. if I(P) is the length of
the generated plan, [(P) < L holds), and C' is a (possi-
bly empty) set of additional constraints that are taken into
account by the planner in the plan generation phase. The
planner returns a plan P that satisfies these constraints or
reports failure if no such plan exists, by returning fail in the
argument P. Moreover, the procedure Compute NewPlan
is the same as Compute Plan, with the difference that each
time it is invoked, it returns a new plan different than those
generated by the previous Compute NewPlan calls.

In the following we assume that a plan is a set of tempo-
ral propositions of the form A(t), where A is an action and
t is a time point, meaning that action A executes at time ¢. If
D is a domain theory, I an initial state, P a plan and GG a set
of goals, the notation P =p ; G denotes that P is a plan
for goal G in the domain D with initial state I, under the
standard STRIPS semantics. When there is no possibility
for confusion, we simply write P = G.

For the purposes of multi-agent assistance we slightly
extend the STRIPS language to accommodate the repre-
sentational needs of cooperation between the agents. In
the extended language, the preconditions prec(A) of an
action A is the union of the sets norm_prec(A) and
extern_prec(A). The set norm_prec(A) contains nor-
mal action preconditions, ie. fluents that must hold be-
fore the execution of an action for that action to succeed.
The elements of the set extern_prec(A) are fluents that the
agent may request some other agent to bring about in the
world. Therefore, the agent can assume that these fluents
will be true in the world when needed, and ignore them
during planning. In the context of the SATPLAN frame-
work this means that the agent plans by taking into ac-
count only the propositions in the sets norm_prec and
ignores extern_prec. The call to the planner now becomes
ComputePlan(T,G,L,C,< P,R >) where instead of
returning a plan P, a pair < P, R > is returned, where

R = {p(t)|A(t) € P and p € extern_prec(A)}. We call
the elements of the set R, assistance requests.

Note that the domain theory of an agent may contain
different versions of the same action A, say A; and A,
that differ only in the elements they contain in their sets
norm-_prec and extern_prec, ie. prec(A;) = prec(As)
but norm_prec(Ai) # norm_prec(As).

3 Multi-Agent Coordination

In a multi-agent coordination scenario, a number of
agents need to generate individual plans that achieve their
respective goals and are not in conflict with each other. We
restrict ourselves to the case of two agents, o and (3, and
study a multi-agent coordination scenario that is defined by
two main characteristics. The first is that each agent is able
to achieve his goals by himself. This distinguishes coor-
dination from cooperation, which is discussed in the next
section. The second characteristic is that plan length is the
criterion for evaluating the quality of both the individual
and the joint plans, with preference given to the joint plan
length. Therefore, agents seek to minimize the length of the
joint plan, even in the case where this leads to non-optimal
individual plans.

The coordination problem is defined formally as follows.

Definition 1 (Coordination Problem). Given two agents o
and 3 with goals G, and Gpg, initial states I, and Ig, and
sets of actions D, and Dg respectively, find a pair of plans
(Pa, Pg) such that:

o P,)ZD(“[Q Ga and Pg):DBJB G[g

o P, and Pg are non-conflicting

We refer to the plans P, and Py as individual plans, and
to the pair (P,, Pg) as joint plan. Moreover, we use the
term joint plan to also refer to the plan P, U P,. Observe
that if (P,, Pg) is a solution to the coordination problem,
then P, U Ps =p,upg, 1,01, Ga UG s. The plan length of
a joint plan (P,, Pg) is defined as max(I(Py), [(P3)).

The problem we investigate in this section is how to
generate an optimal solution (P,, Pg) wrt plan length in
a distributed manner, where each agent generates its in-
dividual plan using SATPLAN. A solution (P,, P3) to a
coordination problem is optimal wrt plan length if there
is no other solution (P, P}) to the problem such that
maz(l(Py),1(P5)) < max(l(Pa),1(Ps)). We note that
this notion of “distributed” optimality is weaker than plan
length optimality that can achieved by a centralized plan-
ner.

As it is well known, there can be “negative” (i.e. con-
flicts) and “positive” (i.e. redundant actions) interactions
between the actions of the plans of different agents. The
“negative” interactions come from two different sources

that are discussed below. The positive” interactions, and
the way that they are taken into account, are discussed in
section 3.1.

The first source of negative interaction is causal link
threatening, and is well known in the context of partial or-
der planning. Let A;(¢1) and Ax(t2) be two actions of a
plan P such that t; < to and A;(t;1) is the latest action of
the plan P; that adds the precondition p of action As(t2).
Then, we say that there is causal link between time points
t1 and ¢ related to p, denoted by the triple (¢1, t2, p). Fur-
thermore, if p is a precondition of action A(t), p appears in
the initial state, and there is no action in plan P that adds
p and is executed at some time point t' < ¢, then there is a
causal link (0,¢,p) in P. Moreover, if A(t) is the last ac-
tion that adds a goal g, there exists a causal link (¢, ¢, g),
where ¢4, is the plan length. Finally, if p is a proposition
that belongs both to the initial and the final state of plan-
ning problem, and there is no action in plan P that adds p,
then P contains the causal link (0, ¢, p). An action A(t)
threatens the causal link (t1,t2,p) if t; <t < tyand 4
deletes p.

The second kind of negative interaction between actions
is parallel actions interference, and it was introduced in
Graphplan [1]. Two actions interfere if they are executed
in parallel and one deletes the preconditions or the add ef-
fects of the other.

Given a plan P and a set of actions S, we define the set
of constraints 0;2 that when satisfied by a plan P’ guarantee
that P and P’ are non-conflicting. The set C2 has the form
of negated action occurrence literals that represent actions
that must not be included in the plan P’. It is defined for-
mally as Cp = {=A(t)|A € S and A(t) threatens a causal
link (t1,t2,p) of P} U {-A(t)|A € S and there is some
action A’(t) in P such that A(t) deletes a precondition or
add effect of A’(¢), or A’(t) deletes a precondition or add
effect of A(t)}.

3.1 The Coordination Algorithm

In the coordination algorithm we present in this section,
we assume two agents « and § with goals G, and G, do-
main theories D, and Dg and initial states I, and Ig re-
spectively. To solve the coordination problem as specified
in definition 1, each agent uses the SATPLAN algorithm
for plan generation, and exchanges messages with the other
agent. To simplify the presentation, we assume that all joint
plans are of different length.

The SATPLAN system is employed in two, slightly
different, ways. First it is called, say by agent «, to
compute a new plan P, that achieves his goals G,,
without taking into account possible conflicts with the
plan of agent (3. This task is carried out by the call
ComputePlan(Ty, Gy, L, 0, P,), where L is the length

of the best current joint plan. The individual plan P, is
sent to agent [as a candidate sub-plan of a new joint
plan that must be better (wrt plan length) than the best
joint plan found so far. Similarly, agent o receives candi-
date sub-plans from agent 5. Upon processing a proposed
plan P, agent o invokes the planning algorithm by calling
ComputePlan(T, U Ty U Pg, Go, L, C}?;,Pa), that re-
turns the best plan P, that achieves the goals G, and has
length that is shorter than L, the length of the best current
joint plan. The CNF input theory to the SATPLAN proce-
dure is the union of the set Ty, which encodes the agent’s
domain theory and initial state, and the sets Té and Pé
which account for possible “positive” interactions between
Pjs and the plan that agent o will generate. The set Té
contains (the CNF representation of) implications of the
form A(t) — e1(t+ 1) Aea(t + 1) A .. Aey(t + 1) for
each action A in Dg, positive effect e; of A, 1 < i < n,
and time point ¢ in the plan horizon. The set P} is de-
fined as P; = {A(t)|A(t) € Ps} U{-A(t)|A € Dg and
A(t) € Pg}. The sub-theory T U Py entails all add effects
of actions that are executed by agent 3, and therefore they
do not need to be re-established by agent a.

Moreover, the plan P, returned by the call
ComputePlan(T, U Ty U PA,GQ,L,CIQ;,PQ), sat-
isfies the constraints Cg;, which means that the
two plans P, and Pg are non-conflicting, therefore
Py U Pg Ep,ups, 1,015 Ga U Gp. Furthermore, the joint
plan (P,, Pg) (equivalently P, U Pg) becomes the best
current joint plan.

To simplify the discussion we assume that when an
agent, say «, receives the first plan from agent 3 and in-
vokes SATPLAN by calling ComputePlan(T, U Tj U

Pj, Go,00,C 1]3; , Py), the call always succeeds and returns
a plan that achieves the goals G, while satisfying all the
constraints of C gﬁ °,

The agents exchange messages of the form (Py, P),
where P; and P, are (possibly empty) individual plans.
Messages sent from one agent to the other are placed
in the receiving agent’s incoming message queue and are
processed in a FIFO manner. The coordination algorithm,
the main body of which is presented in detail in figure 1
and refers to agent (3, describes how these messages are
processed by the agents. The messages can be of three dif-
ferent types, each carrying a different meaning. They are
either of the type (P, P2), or (Py,0), or (0,0), where P,
and P, are non-empty plans. The meaning of each of these
messages, and the reaction of the agents to these messages,
are described in the following.

Before moving to the main body of the coordination al-
gorithm (figure 1), the agents go through a phase in which
the algorithm’s variables and data structures are initial-
ized. Moreover, each agent sends a message of the form

(P,D), where P is the (optimal) plan generated by the
call ComputePlan(T, G, 00, (), P), where T and G are the
agent’s domain theory and goals respectively.

Each incoming message is processed by the coordination
algorithm in a way that depends on its type. A message of
the form (P, })) that appears in the queue of an agent, means
that the other agent proposes P as a candidate sub-plan of a
joint plan. The receiving agent will check, by invoking the
planning algorithm as explained earlier, whether there exists
aplan P’ that achieves his own goals and is consistent (non-
conflicting) with P. An additional requirement is that the
length of the joint plan PUP’, defined as max(I(P), I(P")),
is shorter than the best joint plan. If such a plan exists, the
agent sends the message (P, P’) to the other agent, meaning
that P can be part of an improved joint plan (P, P’). If the
agent that receives the message (P, () fails to find a plan as
specified above, he sends the message (P, fail), indicating
that P cannot be part of a better joint plan.

A message of the form (P, P2), with P, #) and
P, # (, in the incoming queue of an agent is a reply to
an earlier message of his, where he proposed the plan P; to
the other agent. Upon processing such a message, an agent
deletes the entry P; from the queue sentbox, the structure
that stores the, yet unanswered, proposals (i.e. plans) he
sends to the other agent. As explained earlier, if P> # fail
and the proposal (i.e. plan P%») leads to an improved joint
plan (Py, P»), the variables Pyes; and lpes; are updated ac-
cordingly. Then, the agent attempts to generate a new sub-
plan with length shorter than ljes,;. If such a sub-plan exists,
he sends it to the other agent and appends it to the queue
sentbox. Otherwise, he sends the message (0, (Z]), indicat-
ing that there are no shorter individual plans. Thus, upon
receiving a message (), (), an agent sets his expect variable
to false, meaning he does not expect any further proposals.

The coordination algorithm is a branch and bound one
where each agent generates individual plans that may im-
prove the joint plan length. The algorithm, which is able
to generate optimal solutions with respect to the joint plan
length, terminates when the condition (sentbox = () A
(not continue) A (not expect) becomes true. In such a
case, the agent has received replies to all the sub-plans that
he has proposed, he has no other plan to propose, and does
not expect any further proposals from the other agent.

The proposed coordination algorithm is sound and gen-
erates optimal solutions, as stated formally in the next
proposition.

Proposition 2 The coordination algorithm always termi-
nates. If the input coordination problem is solvable, the
algorithm generates a joint plan of minimum length.

while true do
get_incom_message(P4, P)
if P4 # () and P = () then
ComputePlan(Tg UT} U Py, Gp, lpest, Cgf , Pp)
if Pp # fail and max(I(Pa),l(Pg)) < lpest then
send message (P4, Pp)
lpest := max(l(Pa),(PB)); Pyest := (Pa, Pp)
else send message (P4, fail)
if (sentbox = 0) and (not continue) and (not expect)
then exit(Pyt)
else
if P4 # () and P # () then
delete P4 from sentbox
if P # fail and max(l(Pa),l(P)) < lpest then
lpest := max(l(Pa),l(P)); Poest :== (Pa, P)
if continue then
ComputeNewPlan(Tg, Gg, lpest, 0, Pg)
if Pp # fail then
send message (Pg, ()); add Pg to sentbox
else
send message (), 0); continue:= false
if (sentbox = 0) and (not continue) and (not expect)
then exit(Pycs:)
else (ie. PA=0A P =0)
if (sentbox = ()) and (not continue) then exit(Pyest)
else expect=false

Figure 1: Coordination Algorithm

4 Multi-Agent Assistance

As in the coordination case, in assistance two agents a
and b need to achieve their goals with non-conflicting in-
dividual plans. The difference in this situation is that one
or both agents may request the other agent to achieve spe-
cific subgoals that will enable the requesting agent to attain
his own goals. When an agent receives such a request, he
attempts to generate a plan that, except for his own goals,
also achieves the requesting agent’s subgoals. The assis-
tance problem can be defined formally as follows.

Definition 3 (Assistance Problem). Given two agents «
and 3 with goals G, and G, initial states 1., and Iz and
sets of actions D, and Dg respectively, find a pair of plans
(Pa, Pg) such that:

o P, = P3 U PP and Py = P U Pg
e Py U P§ FED.uDsI.UIL
P? Ep.ubg,1.u1; G

o if P Ep, .1, Ga then P§ =0, and if P} \=p, 1, Gs
then PP =)

o ifc(t) € Py thenc € Dy, andif c(t) € Pa then ¢ € Dg
o P, and Pg are non-conflicting

G. and Pg U

Note that coordination is a special case of assistance,
where P? and Pg are empty. The assistance algorithm for
agent J is given in figure 2. It is very similar to the coor-
dination algorithm, with the main differences being in the
invocation of the classical planner and the form of the mes-
sages that the agents exchange. In the assistance algorithm
agents generate their individual plans by invoking the al-
gorithm ComputePlan(T, G, 1,0, < P, R >) which given
the CNF encoding T of the domain theory (represented in
the extended STRIPS language described in section 2), a set
of goals G and a bound [, generates a plan P together with
a (possibly empty) set of assistance requests R. The plan P
succeeds only if the propositions of the set R are true at their
specified time points. This more general form of generated
plans necessitates a slightly more complex form of mes-
sages. The messages are now of the form (< P,R >, P'),
where P and P’ are plans and R is a set of assistance re-
quests. When an agent generates a new individual plan
< P, R >, he sends out the message (< P, R >,).

As in the coordination case, each incoming message is
processed by the assistance algorithm of the receiving agent
in a way that depends on its type. A message of the form
(< P,, Ry >,0) in the incoming message queue of agent
0, is interpreted as a request to search for a plan that is con-
sistent with P, and achieves R,. Upon processing such a
message, agent /3 invokes the SATPLAN algorithm by call-
ing ComputePlan(TgUT! U P!, GgU Ry, lpest, Cgf, <
Pg,0 >). The empty set in the last parameter < Pg, >
of the call, enforces the generation of a plan that does not
contain assistance requests. This means that agent 5 must
achieve his goals without the assistance of agent o. In a
more general version of the assistance algorithm, one could
allow a call of the form Compute Plan(TgUT. UP!, GgU
Ro, lpest, C’?f, < Pg, R >), where agent § may reply to
agent v with a plan Py but also a set IZ3 of assistance re-
quests. In the general case, we may end up with a situation
of “nested assistance”, where an agent can reply to an as-
sistance request with a new assistance request. Such a sit-
uation terminates successfully if one of the agents achieves
his goals without the need for further assistance. However,
handling the general case requires more complicated data
structures, and it is not discussed further.

All other message types are processed by the assistance
procedure in a manner similar to the way they are handled
by the coordination algorithm.

5 Conclusions

In this paper we studied some aspects of the problems of
coordination and cooperation of multiple agents that have
individual goals and operate in the same environment. We
formalized the coordination problem in a general way, and
modelled a special case of multi-agent cooperation called

while true do
get.incom_message(< P4, R4 >, P)
if P4 # () and P = () then
ComputePlan(Tp UT) U Py,GpURA, lpest, Cgf, <
Pg, 0 >)
if Pg # fail and max(Pa, Pg) < lpes: then
send message (< Pa, Ra >, Pg)
lpest := max(l(Pa),(PB)); Pyest := (Pa, Pp)
else send message (< P4, R >, fail)
if (sentbox = () and (not continue) and (not expect)
then exit(Pyt)
else
if P4 # () and P # () then
delete < P4, Ra > from sentbox
if P # fail and max(l(Pa),l(P)) < lpest then
lpest := max(l(Pa),l(P)); Poest :== (Pa, P)
if continue then
ComputeNewPlan(Tg, G g, lpest, 0, < Pg, Rg >)
if Pp # fail then
send message (< Pg, Rp >,0)
add < Pp, Rp > to sentbox
else
send message (< (), >, 0); continue= false
if (sentbox = 0) and (not continue) and (not expect)
then exit(Pyt)
else (ie. PA=0AP=0)
if (sentbox = ()) and (not continue) then exit(Pyest)
else expect=false

Figure 2: Assistance Algorithm

assistance. For both problems we presented algorithms that
rely on a classical planner and generate optimal solutions.
The multi-agent assistance algorithm we propose is an in-
novative approach to dealing with the problem of mutual
assistance among agents with complementary capabilities,
whereas our coordination procedure can be seen as a step
towards establishing a stronger link between classical and
multi-agent planning.

References

[1] A.Blum and M. Furst. Fast planning through planning graph
analysis. Artificial Intelligence Journal, 90(1-2), 1997.

[2] G. Boutilier and R. Brafman. Partial-order planning with con-
current interacting actions. JAIR, 14, 2001.

[3] J. Cox and E. Durfee. An efficient algorithm for multiagent
plan coordination. In AAMAS05, 2005.

[4] E. Ephrati and J. Rosenschein. Divide and conquer in multi-
agent planning. In AAAI94, 1994.

[5] A. El Fallah-Seghrouchni and S. Haddad. A recursive model
for distributed planning. In /ICMAS96, 1996.

[6] H. Kautz, D. McAllester, and B. Selman. Encoding plans in
propositional logic. In KR96, 1996.

