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Abstract—This paper presents an evaluation of edge detector TABLE |
performance. We use the task of structure from motion (SFM) as SUMMARY OF EDGE DETECTION COMPARISONMETHODS
a “black box” through which to evaluate the performance of edge — e T M e T B
detection algorithms. Edge detector goodness is measured by how evaluation compared
accurately the SFM could recover the known structure and motion 1, 2ane s g sncl Lovnth o Yes 8
from the edge detection of the image sequences. We use a variety of ™~ Buait = relative & abeoluie Treal | Yes/No 3
. . . . ouldam radin|
real image sequences with ground truth to evaluate eight different Abdou & oroBabTEy ot false/gtru_e detection | T aynth Yes 1
edge detectors from the literature. Our results suggest that ratings ~ —g2 214 B B S .
of edge detector performance based on pixel-level metrics and on S— o direction test_ — . .
{7 €38 €Ol at10]
the SFM are well correlated and that detectors such as the Canny  roseateid 1 [y R edges i °
detector and Heitger detector offer the best performance. Harso 2 115] probapility of fajce alarm Layath - Ves 8
. . ) Peli & contour type, avg squared deviation | 2 synth Yes 5
Index Terms—Edge detection, experimental comparison of algo- Maleh 82 2] mean abs value of deviation 1 X 5
. . - Cl S
rithms, performance evaluation, structure from motion. Bedduss 56 5] Fame as Tichen % Sosente i °
Venkatesh & combined error measures 3 synth Yes 4
Kitchen 92 [4] with quality based weights
Strickland & 6 edge qualities 1 synth Yes 5
Ch: ’93 [5]
| . I NTRODUCTION Jiairglg’gs [1[6% pixel by pixel comparison 80 real Yes 9
. . . . of range images (range)
ABLE | gives a summary of the literature dealing with ~ saear & prvelovel comparison with | Zreal | Yes 7
. ellet * edge classi i
edge detector performance evaluation. Many of the olde™ze: 5 ] oty & Tk [ No 3
. Wl uniformity chec! real
works attempted to evaluate edge detector performance usirmet e o7 ) subjectve Fuman Breal | No 5
object recognition

only synthetic images [1]-[5]. The motivation for USING SYN- Evaration of oz detector s not coutied 55 & separate sdas detoctor compared

theticimages is thatitis easy to have reliable pixel-based ground .. . .
rofation stage was used to independently record accurate motion
truth. More recently, some authors have developed evaluation
. . . round truth. Knowledge of the angle between selected scene
methods using pixel-based ground truth on real images. Use’0

. . L (Fatures is used to independently record ground truth for struc-
real images, rather than synthetic, should inspire greater Cort]ulfe Edge detector goodness is measured by how accurately the
dence in the resultsHeathet al.[6] approach the problem from - =09 9 y y

: . . : SFM motion recovers the known structure and motion from the
a different perspective, rating performance using human eval; . ;
dge detection of the image sequences.

uation of edge det_ector output for_ real images. Howevgr, hls!'J%lﬂ'We have conducted experiments with eight edge detectors.

performance on pixel-based metrics or human evaluation will

. . or all but the Canny and the Sobel detectors, the edge detector

not necessarily translate to high performance on computer vi- . . . o

: : . implementation was obtained from its original authors or was
sion tasks which follow the edge detection step.

. . B o . validated against their results. We have conducted experiments
Our work is the first to focus on “task-based” empirical eval- ..~ ; .
. with different SFM algorithms, due to Taylor and Kriegman [9]
uation of edge detector performance. We use structure from mo- . .
. N N . and Wenget al.[10]. A train-and-test methodology is used for
tion (SFM) as a “black box” through which to evaluate the per- : . ;
: h cgmputmg performance metrics. We have designed a large and
formance of edge detection algorithms [7], [8]. We have creaté : : .
; ap) opriately challenging dataset. The magnitude of the error
18 real image sequences of laboratory scenes. These repres .
. B ... 1N fhe test results shows that the real image sequences we use
three different scenes of each of two types, and three “densities e . : .
. ; .__are sufficiently challenging for the SFM implementations and
of motion sampling§ x 2 x 3 = 18 sequences). A mechanical. " . .
indeed result in meaningful ranking of the detectors. The result
is an objective, quantitative, and fully reproducible comparison
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TABLE I
SUMMARY OF JOURNAL-PUBLISHED EDGE DETECTION ALGORITHMS

anisotropic edge detector was checked against the original by
computing values in [40]. The Canny detector was rewritten at

e of Rl P o P e USF from an implementation obtained from the University of
Hgorithm round iruth | algorithms | comparison | comparison > )
PR Singie flter 0 sk v 7 Yes Nore Michigan. The Sobel was written at USF. Note that nonmax-
T e ] o o o ves None imal suppression and/or hysteresis were added to several detec-
o morphoogie | tre | T v Nowe tors, in order to have all of the detectors produce edge maps with
PR22*95 sin;ple gi:ectgonal 13symlh 0 T Yes None Single_pixel edges
edge detection real .
Vg || el fleme ] %S ’ ’ ”" one The robust anisotropic edge detector [40] applies nonuniform
K isotropical 2- 1 synth ‘es. None . . .
:qus llsi;p"casll;ﬂ? | ie;h Z ; i Z : smoothing to the image and selects the outliers of the robust es-
95 relaxation labeling syntl es uilt . . . . . .
(23] o 4 real Ovn timation framework as edges. It estimates the noise level within
PR 95 ‘multi-resolution 1 synth [ 2/5 1 Yes ‘Abdou . . - . B
e e . ; o Pru the image ¢.) using median absolute deviation (MAD). The
PRMIo | o il 5 . - — detector_is intended to_be “parame_terless,” computing the MAD
N Treal 5 7 Yo o automatically for each image. The implementation we use scales
T i abelin, wn .. .
PRI | Foaey semaming - ve 3 T va Nows the values ofr,, giving one parameter. Nonmaximal suppres-
mgagvae pansion g | 1oy v 1 Ves oo sion (directly taken from the Canny detector implementation)
real ratt .
PRI 5 g s 3 real g 1 Ves None was added to the algorithm.
PRI | comartance models |7 3 7 o No Nene The Bergholm edge detector [41] applies a concept of edge
GMIP 96 [ computational Lsynth 0 ! Yes None focusing to find significant edges. The image is smoothed usin
(34 ro-C g _
35] [ [ [ art- iti ’
Sy || Prebaiete relawation 1 2 ovnth ’ ! e o a coarse resolution (high smoothing) frafty,,.;. In addition
SMC 97 detection on textured 4 synth 0 ] Yes None . . . .
86 || and untextured smages | 2 roa after applying nonmaximal suppression, the edges exceeding a
SMC "95 regularized cubic 2 synth 0 2 Yes Built . . g .
] B-spline fring el Own contrast threshold’ are identified. Then the locations of these
1. 2 algori itatively . . . .
2% ot T edges are refined by tracking them to a finer resolution (less
. no algorithms compared for edge .
3._edge map of Sabel operstor o uncompressed cilr;a.gdetusig 2= ground trth Smoothmg) ofSepd.
fiage 56l includes any {mage mentioned in fhe edge detection wor o _
SAME 2 Tramaptionson Paaen Ansiss sot Maaine otligenc) The Canny edge detector [42] is widely considered the stan-
SMC (BB Tanattions on Systens, Man, and Cyberneics) dard method of edge detection. The image is smoothed with a
Gaussian filter where is the standard deviation of the filter.
TABLE Il Then, the edge direction and strength are computed. The edges

PARAMETER RANGE OF EDGE DETECTORS are refined with nonmaximal suppression for thin edges and hys-

teresis thresholdingdw and high) for continuous edges. The

eigei iitZCt.:r TOT00) parameters implementation used in this work produces at least & 3
1 g (0.0 - 10. . . ...
g;ighl:)lfn oo (05-50) | Sond (05-50) | T (5.0 - 60.0) smoothing window for any positive value.
Canny o (0.01-50) | low (0.0-1.0) | high (0.0 - 1.0) The Heitger edge detector [43] uses a “suppression and en-
Heitger o (0.5 - 5.0) T (0.0 - 50.0) hancement” concept. First, the image is smoothed by odd and
Rothwell 0(05-40) | T(0.0-60.0) |alpha (0.0-1.0) even symmetrical Gabor filters. The filter responses that do not
Ssagll:;r l‘;ugo(‘glo' 51'%)) }Z,’;‘;l(g)'%' 11'%)) high (0.0-10)  correspond to the position and type of a given image curve are
SUSAN T (0.0 - 50.0) suppressed while features that do correspond are enhanced. The

edges are thinned with nonmaximal suppression. The original
implementation contains 14 parameters. We have fixed 12 pa-
peal to the reader’s visual evaluation may be aided by pointipgmeters at the default values, and tuned enlipr Gaussian
out specific differences in some area(s) of the edge images. Bt&elope and the edge strength threshold
lack of an accepted formal method of evaluating edge detectorrhe Rothwell edge detector [44] is similar to the Canny edge
performance is not the result of a lack of possible approachggtector except 1) nonmaximal suppression is not used since it
Table | lists 14 different approaches proposed in the literatuigeclaimed that it fails at junction points, and 2) hysteresis is not
since 1975. The important point here is that to date no methgéed due to the belief that the edge strength is not relevant for the
has become generally adopted by the research community. higher level image processing tasks. Rather than hysteresis, the
detector uses “dynamic thresholding” where the thresholding
for determining the edges varies across the image to improve
We have evaluated eight edge detectors in this framework.the detection of the junctions. The image is smoothed with a
this section, the description of edge detectors, their parametéussian filter using the size of The pixels are classified as
(Table I11), and the source of the implementations are given. \&elges if the gradient is greater thaff’,,,. Then, the edges are
have selected the algorithms so that there is a diversity in the #pinned.
proaches of algorithms. We have used the same implementation§he Sarkar—-Boyer edge detector [45] is an optimal zero
of detectors as other edge detection evaluation frameworks [&lpssing operator (OZCO). In order to obtain a good approx-
[38], [39], so that the results of evaluations could also be corimation and optimal response, the optimal infinite length
pared. The implementations of the Bergholm and SUSAN deesponse is approximated recursively. First, the infinite impulse
tectors were obtained from the original authors. The implemeresponse (lIR) filter (smoothing size determined by is
tation of the Rothwell detector was translated from the4C applied to the image. Then, after computing the third derivative
implementation in the IUE. The implementation of the robustf the smoothed image, the edges with negative directional

A. Edge Detectors
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slopes are eliminated. Then, the false positive edges are furt
reduced by applying hysteresis.

The Sobel detector [46] uses the gradient operators along
x andy direction to compute the gradient magnitude. In the irr
plementation, we added nonmaximal suppression and the h
teresis directly from the Canny detector.

The smallest univalue segment assimilating nucleus [4
(SUSAN) detector calculates the edge strength using t
number of edges with similar brightness within circular mask
The USAN of each pixel is computed by placing the mask
center at the pixel. Then, if the area of the USAN is abol
half the area of the mask, the pixel is considered as an ec
candidate. Then, nonmaxima suppression is used to thin edc

B. Structure from Motion

A structure from motion (SFM) algorithm determines thi
structure (depth information) of a scene and the motion of tl
camera. The Taylor algorithm [9] is a nonlinear algorithm an
requires multiple iterations for convergence of a solution, whi
the Weng algorithm [10] is a linear algorithm. These algorithrr
were tested againSt each otherin [9] Since the Weng algoritl Projection of set of 3-D lines recovered by SFM algorithm (from all frames)
can only handle three-frame sequences, it is tested only on
three-frame sequences. Therefore, the results are preseﬁ’t@g’}% OverieV\ijththe ffameWOfkfi iate“Sity imagesf' Canny edgedmapsy lines
. . . . . . ed for SFM, and the projection of the SFM output for corresponding camera
In two d'ﬁer?m settings: 1) ‘,JS'”Q long sequences with On_&sotion of estimated structure. Note that the edges found on the right boundary
Taylor algorithm, and 2) using three-frame sequences withthe intensity image are due to intensity difference along the background and
both algorithms. We have obtained the implementations of tHe rightmost columns of the image. This did not affect the results as the edges

. found along those columns are not used for the SFM algorithm since they were
Taylor and Weng algorlthms from the authors of [9] not specified as the GT lines for correspondence.

The Taylor (nonlinear) SFM algorithm extracts the 3-D lo-
cation of each line in the camera coordinates, and computes
the motion of the camera givenimages withm corresponded
lines. It solves the problem in terms of an objective functidn
that measures the disparity between the projected 3-D line and he comparison methodology involves four steps:
its corresponding observed two-dimensional (2-D) line. The al- 1) edge detection;
gorithm iterates searching for the structure and motion estimatesy) intermediate processing;
which minimize©. A minimum of three images and six lines  3) sFw;
is required by the SFM algorithm, and more images and lines 4) evaluation of the result.
are allowed. The algorithm generates an initial random guess . . . . -
of camera position for each iteration using the initial motiohAn overview of this process is depicted in Fig. 1.
information. It is found that without providing any initial mo-
tion information, the algorithm usually manages to converge 0 |ntermediate Processing
a solution but after a far greater number of iterations. In order
to speed up the optimization process for our experiments, thdntermediate processing involves extracting and determining
ground truth (GT) rotation angle is provided as a good initidhe correspondence of lines from the edge maps. The algorithms
guess. used are not necessarily the most sophisticated. Since the overall

The Weng (linear) algorithm uses image sequences with thigeal is to compare the edge detectors, it is only important that
frames only. It accepts: corresponded lines that are preserthe intermediate processing algorithms not give any relative ad-
in all three frames. Given the pixel location of the end pointgantage to any particular detector.
of the lines, the SFM algorithm estimates the rigid motion of 1) Line Extraction: Initial pixels of edge chains are found
the camera in terms of rotation and translation. Lines are rap-a raster scan. The eight-connected neighboring edge pixels
resented using parametric form. Theermediate parameters are recursively linked until 1) there are no more neighbors or 2)
(F, F, @) are computed from the set of lines. Then, the mdhere is more than one neighbor, indicating a possible junction.
tion parameters are computed frat ', andG. The structure Then, edge chains are divided at high curvature points. Next,
vector including the sign of the vector is computed using thexlge chains are further broken using the polyline splitting tech-
majority positivez assumptiorwhich states that for the most ofnique [48]. Then, least-squares is used to fit a line to each chain
the lines, the point on the line that is closest to the origin h§&9]. The line segment is represented by its endpoints, found by
positive Z component. It requires minimum of 13 lines. the position of the end pixels in the chain in the line equation.

I1l. FRAMEWORK
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\ f ) f ; f ] 1
A \ 1.0verlapping 2.0ne 3.Partial 4.No
=3 = each other enclosing Overlap overlap
" \l;/,’ another
; bew: \ ,»U/J
LegoHouse image GT lines WoodBlock image GT lines Fig. 3. Four possible orientations of collinear lines.

Fig. 2. Manually selected GT lines of LegoHousel (LH1) and WoodBlock1
(WB1) image sequences. Note that the lines around the LegoHouse roof are n
selected since the lines were not straight due to the bubble of the Lego blocks

Finally, lines shorter thafl};,e_iengtn (50.0 pixels) are elimi-
nated.

2) Line CorrespondenceThe input to the SFM is a set of
line correspondences across a sequence of frames. Manua
matching the lines would provide the most error-free matching
However, it is not practical to manually match lines from 18 . >
image sequences for eight edge detectors where each edge « WoodBlock #1 WoodBlock #2 WoodBlock #3
tector will be tested on a minimum of 177 (for three parameters),
41 (for two parameters), or 17 (for one parameter) parameter set- 4.
tings (see Section llI-E for determining the minimum number

of attempted parameter settings.) Therefore, an automated lind e SFM requires a minimum of three correspondences
matching program was developed (correspondences over minimum of three frames) for each line.

_ . . Lines with fewer than three correspondences are dropped.
1) to provide correct correspondence information to the

SFM algorithm so that the quality of the SFM output i, Imagery Design
due to the quality of the edge map;

2) to make the framework practical since manual matchi
is not feasible;

LegoHouse #1 LegoHouse #2 LegoHouse #3

Image scenes. First images of six original sequences are shown.

Tables | and Il show that almost all previous comparisons
"Whve used only a handful of images (synthetic and real). Ide-

3 t to o ficul dvant disadvant ally an evaluation dataset should be large and thorough in order
) not to give any particular advantage or disadvantage fg’r the users of the methodology to have confidence in the eval-

any edge detector. Lation.

First, the ground truth (GT) lines in all images of the se- 1) | gng Sequencesin this work, image sequences were
quence L;; for image: and line;) are manually defined and captured for two different scene types: LegoHouse (LH) and
corresponded. An example of the GT lines for correspondengg,odBlock (WB) (Fig. 4) For each scene type, three original
is shownin Fig. 2. In GT, we defined the lines that 1) are straighgquences were obtained (two scene typethree original
and 2) have enough separation from other lines since lines thghences per scene type six original sequences). Then,
are too close might lead to wrong correspondences. Second,{}§ shorter “derived” sequences were extracted from each
machine estimated (ME) lineg{ for image: and linek) from  original sequence (six originat two derived per origina=
the line extraction step are corresponded automatically using 1 gerived), resulting in 18 total sequences (six original2
GT lines. If a ME line (;) matches to a GT linel(;;), lix iS1a-  derived). This large dataset of 18 sequences containing 133
beled with the index of,;. Two lines are corresponded if theynique images (278 including the repeated images in derived
following two conditions are met. sequences) is carefully designed considering different aspects

1) Collinearity: If the sum of the perpendicular dis-influencing the edge detectors and the structure from motion

tance between the endpoints bf; to line I, is less task, such as
than Tpe,p_aist (5.0 pixels), they are considered to be 1) number of images in a sequence;

collinear. 2) total rotation angle;

2) Overlap Two line segments could be collinear, yet not 3) number of lines in the scene;
belong to the same part of the object/image. Gp.s 4) average number of correspondences per line;
projected tal;;, resulting inl’, . L;; andl/, could be ori- ~ 5) average line length;

ented in four different ways (refer to Fig. 3). Obviously, 6) number of contrast levels within the image;

the orientation #1 indicates overlap while #4 indicates 7) amount of occlusion, transparency (which results in nat-
nonoverlap. Since one GT line segment could be broken  ural noise) (refer to Table 1V).

down into several ME line segments in one image, if 2) Three-Frame Sequencefn order to compare the Taylor

I, 1s completely withinZ,; (#2), they are corresponded.and Weng algorithms, sequences consisting of three frames are
Also, if they partially overlap (#3) by at lea®t...., % created. Twelve sequences are created from the LegoHouse
(80.0%) of the GT line, they correspond. Note that coscenes by taking nonoverlapping sub-sequences of original
respondence of many GT lines to one ME line is not al-egoHouse sequences (refer to Table V). For instance, Lego-
lowed. House.3 frame 1.A, B, and C are created by taking three
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TABLE IV
PROPERTIES OFLONG IMAGE SEQUENCES WITHDERIVED SEQUENCES
DENOTED BY “.A” OR"“.B” SUFFIX

image set No. of images total No. of | Avg No. of | Ave line
name in sequence | rotation | lines corres length
angle per line (pixel?)
LegoHousel 18 160° 122 8.8 80.6
LegoHousel A 12 160° 122 5.9 80.3
LegoHousel. B 9 160° 122 4.5 81.4
LegoHouse2 19 355° 104 6.9 89.4
LegoHouse2.A 13 355° 104 4.8 88.4
LegoHouse2.B 10 355° 104 3.6 89.2
LegoHouse3 20 190° 118 7.6 83.3
LegoHouse3.A 14 190° 118 5.3 84.1
LegoHouse3.B 10 180° 118 3.8 82.2
WoodBlockl 18 170° 29 11.0 132.9
WoodBlockl.A 9 160° 29 5.5 133.9
WoodBlockl.B 12 160° 29 7.3 133.7
WoodBlock2 28 275° 36 15.7 110.9
WoodBlock2.A 14 265° 36 7.9 110.6
WoodBlock2.B 17 275° 36 9.5 111.9
WoodBlock3 30 285° 47 18.2 91.9
WoodBlock3.A 15 270° 46 9.2 92.0
WoodBlock3.B 10 260° 45 6.2 92.8
TABLE V
PROPERTIES OFTHREE-FRAME |IMAGE SEQUENCES
image set # of images total # of | avg # of | avg line
name in sequence | rotation | lines | corres length
angle per line | (pixel®)
LegoHouse.3framel. A 3 50.0° 88 2.2 76.4
LegoHouse.3framel.B 3 65.0° 95 1.9 79.4
LegoHouse.3framel.C 3 20.0° 75 2.5 74.4
LegoHouse.3frame2 A 3 40.0° 77 1.7 84.6
LegoHouse.3frame2.B 3 45.0° 61 2.4 81.4
LegoHouse.3frame2.C 3 40.0° 104 1.0 95.7
LegoHouse.3frame3.A 3 50.0° 75 1.4 86.4
LegoHouse.3frame3.B 3 50.0° 88 1.5 89.1
LegoHouse.3frame3.C 3 50.0° 118 1.3 81.2
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Fig. 5. Motion and structure ground truth.

GT Motion ME
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~

T~ N
AME Motion

Initial Position
(1.0, 0.0, 0.0)

Fig. 6. Motion error measurement.

For instance, lines #1 and #3 in Fig. 5 are a pair making®a 90

nonoverlapping subsequences from LegoHousel. The thgggjle.
frames are selected so that 1) the minimum required number of
line segments in the scene is available and 2) the total motion Performance Metrics

is enough to allow accurate estimation (at least)20

C. Ground Truth

The machine estimated (ME) result is compared with GT
in motion and structure. The ME motion of the camera which
SFM produces is converted to the motion of the object by

The ground truth is manually defined in terms of motion anceversing the sign of the rotation angle while keeping the
structure. The motion of the object is described by the rotatisame rotation axis. Two measurements for the motion (rota-
axis and the rotation angle between the frames. Image sequertiogs axis and rotation angle) are combined by the following
are captured by rotating an object on a rotation stage by a predethod (refer to Fig. 6). First, an arbitrary point(at 0, 0)
termined angle between frames. These angles correspond tashset for P, and Py g,. For each camera orientation
GT rotation angles [refer to Fig. 5(a)]. In order to determine th€;7;, is computed by movingPgy, with Anglegr, and
GT rotation axis of the stage in camera coordinates, a cubedisisgr;, while Py g, is computed with Angley g, and
placed on the calibrated rotating stage so that the straight edfjes,; £, . Then the motion error is computed dyigtionError
of the cube is aligned with the rotation axis. Intensity and range M E.,..or. / G nove - 100%), whereM E..,.,..- is the distance
images are taken using &K structured-light range sensor. Theraveled from Por, to Pyg,, and G1,,... is the distance

three—dimensional (3-D) rotation axis is computed by

betweenPsr, and Pgr;. The structure error is measured by

1) picking two points defining the endpoints of the rotatioromputing the absolute angle difference between a ME angle
2) getting the 3-D locations of two points using the rang@nd its corresponding GT angle.

image;

3) normalizing the vector defined by two points. The stru

E. Parameter Training

ture GT is defined by a set of pairs of lines on the object This section describes the automated method of training the

and the angle between them [refer to Fig. 5(b)].

parameters of the edge detectors. The goal is to objectively and

Authorized licensed use limited to: University of Cyprus. Downloaded on January 13,2022 at 06:30:51 UTC from IEEE Xplore. Restrictions apply.



594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

automatically find the parameter setting of the edge detector tipatred to 0.920 of adaptive search (which was better than 25th

yields the best SFM performance. best found by the exhaustive search), the difference was0.610
The evaluation of detectors depends on parameters of the
edge detector (up to three parameters), line extraction (three pa- IV. RESULTS

rameters), and line correspondence (two parameters). Findingl.he results are divided into three major sections:
the best setting of up to eight parameters is computationally in- .
1) long sequence experiment;

feasible. Therefore, the following method was established. _
2) three-frame sequence experiment;

First, good parameter settings for line extraction and line . e
. 3) effect of line characteristics on SFM convergence.
correspondence are found after observing many runs of the

experimentLyoint_to_tine = 5.0 PIXEIS, Thigh curo_angle = Inthe long sequence experiment, the Taylor algorithm has been
90.0°, Tiine_tength = 50.0 PiXelsTe,p_aist = 5.0 pixels, and used as .the task. The section is subdivided into
T,seriap = 80.0%. These values are fixed for all experiments 1) train;
with all detectors. 2) test within the same scene type;

An adaptive method is used to search for the best edge de3) testacross the scene types. _
tector parameter values.Ax 5 x --- x 5 initial uniform sam- In the three-frame sequence experiment, the Taylor and Weng
pling of parameter range is tested. The area around the bestgJgorithms have been used as the task. The goal of the three-
rameter point in this coarse sampling is further subsampledf@me section is to examine 1) the effect of linear and nonlinear
3 x 3 x --- x 3 with the previous best at the center. A minnature of SFM algorithms and 2) the effect of using minimum

imum of two subsamplings is executed, resulting in a minimufimber of frames required in a sequence. The section is divided
of (5x5x5)+ (3x3x3—1)+ (3x3x3—1) = 177 different into 1) train and 2) test within the same scene. The effect of

parameter points for three-parameter edge detectors. Subshf-characteristics on SFM convergence section analyzes how
pling is continued while there is a 5% or greater improvemeﬁpgractenstlcs of edges have influenced the performance. It is

from the previous best. The parameters are trained separafiijded into

for structure and motion. In our experiment, the best parameterl) line input characteristics;

setting was found after an average of 3.46 subsamplings and &) SFM setting;

maximum of six subsamplings. 3) line characteristic analysis for the Sobel detector.

The adaptive search is nguaranteedo find the globally Notice that detailed results of the Sobel are absent. This is
best parameter setting. In fact, in some instances, beti&cause the SFM algorithm could not converge with any of the
motion performance was observed with the structure-train€@bel’s edge output af x 5 parameter settings with Wood-
parameters than with the motion-trained parameters, or vig¥ck #1, #2, and #3 sequences. We loweredhge iengtr.
versa. However, only 18 such occurrences (eight for tfigreshold to 25 pixels, which should result in more lines and
Anisotropic, one for the Bergholm, three for the Canny, orféorrespondences, and the Sobel still did not converge. We low-
for the Heitger, one for the Rothwell, one for the Sarkar arRi€dZine_iengtr €ven further to 15 pixels, and got convergence
three for the SUSAN) were found during 252 (18 sequences©nly with the WoodBlock #1 sequence. The trained motion error
seven edge detectors two error metrics) trainings. In addi- Was 4.92, which is poor compared to the other detectors. An in-
tion, the differences were minimal. The mean difference wa§stigation of the reasons for the poor performance of the Sobel
2.12% (motion) and 1.06(structure). Eleven of 18 instancesdetector is given in Section IV-C.
are from the one-parameter edge detectors (the anisotropic
detector and the SUSAN detector). The maximum motid&' Long Sequences
difference of 8.34% was observed by the SUSAN detectorIn this section, 18 long sequences are tested on seven detec-
trained for WoodBlock #2.B sequence with the motion errdors. First, the “train” section describes the results of training
of 18.04% (motion-trained) and 9.70% (structure-trained). THiee parameters of edge detectors for each sequence. Second, the
maximum structure difference of 3.D6vas observed by the “test within the same scene type” section takes the trained pa-
Anisotropic detector trained for LegoHouse #3.B sequentameters and tests on the sequences within the same scene type.
with the structure error of 2.38(motion-trained) and 5.44 Third, the “test across scene type” section tests the trained pa-
(structure-trained). rameters of a sequence of one scene type on the sequences of

To further check the effectiveness of the adaptive search, @i@er scene type. All the results are divided into four categories
made one comparison against an exhaustive search. SinceOfhe
average number of subsamplings observed was 3.46, we havé) LH-motion;
taken the exhaustive search to a similar resolution by param-2) LH-structure;
eter sampling o020 x 20 x 20. We have trained the Canny 3) WB-motion;
detector on WoodBlock #1.A. The best motion performance 4) WB-structure.
found by the exhaustive search was 3.8@#46 0.272 63 low Each section contains a table containing mean of error and
= 0.63158,high = 0.947 37). Compared to the best of adapeonvergence rate (Tables VI, VIII, and XVII) and a table of rel-
tive search (3.82%), the difference (0.02%) was minor. In factive ranking (Tables VII, XVI, and XVIII). The mean error
it was better than the fourth best found by the exhaustive seaisttomputed from all converging training or testing sequences
(3.90%). For structure, the best exhaustive performance weishin each category. Since the nonconvergence of the SFM
0.310 (¢ = 1.32316Jow = 0.894 74 high = 0.947 37) com- algorithm occurs during training and testing, the convergence
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TABLE VI TABLE VIl
TRAIN RESULTS AND THE CONVERGENCERATE OF THE “ALL” SEQUENCES TESTWITHIN THE SAME SCENE RESULTS AND THE CONVERGENCERATE
WHERE FIRST NUMBER IS MEAN ERROR CONVERGENCERATE IS SPECIFIED BY WHERE BEST IN EACH CATEGORY IS HIGHLIGHTED IN BOLDFACE, MOTION
NUMBER OF CONVERGING SEQUENCE$NUMBER OF SEQUENCE IN THESCENE UNIT IN “DISTANCE % DIFFERENCE” AND STRUCTUREUNIT IN “ANGLE
TYPE. BEST IN EACH CATEGORY IS HIGHLIGHTED IN BOLDFACE. MOTION DIFFERENCE INDEGREES
UNIT IN “DISTANCE % DIFFERENCE AND STRUCTURE UNIT IN “ANGLE
DIFFERENCE INDEGREEZ edge detector | motion (LH) | motion (WB) | structure (LH) | structure (WB) | converge rate
anisotropic | 8.12 (30/72) | 6.15 {72/72) | 3.57 (27/72) 4.08 (54/72) 63.5%
- - bergholm 7.86 (63/72) | 7.13 (12/72) | 4.87 (65/72) 6.30 (72/72) 94.4%
edge detector || motion (LH) | motion (WB) | structure (LH) | structure (WB) cammy 714 (70/72) | 277 (12772 | 498 (71/72) | 2.84 (71/72) 9867
Anisotropic 5.14 (6/9) 4.31 (9/9) 2.36 (6/9) 1.38 (9/9) hcitger 8.82 (60/72) | 4.90 (72/72) | 581 (50/72) | 4.36 (70/72) 50.6%
Bergholm 5.08 (9/9) 3.71 (9/9) 119 (9/9) 0.71 (9/9) roth;vell 14.96 25772; 7.58 572;73; 7.07 25372; 6.16 §6672§ 86.1?
sarkar 16.61 (63/72) | 5.65 (12/7 6.17 (63/72 5.13 (69/72 92.7%
Ca.nny 5.04 (9/9) 3.82 (9/9) 1.48 (9/9) 1.04 (9/9) susan 20.34 (39/72) | 9.06 (30/30) | 8.30 (32/72) | 6.69 (66/72) 58.0%
Heitger 9.01 (9/9) 4.04 (9/9) 2.60 (9/9) 1.12 (9/9) Cconverge rate | 75.8% 51.7% 73.4% 92.0%
Rothwell 5.52 (9/9) 3.87 (9/9) 1.10 (9/9) 0.77 (9/9)
Sarkar 7.90 (9/9) 4.19 (9/9) 4.49 (9/9) 1.54 (9/9)
SUSAN 18.07 (7/9 6.65 (9/9 5.82 (9/9 2.78 (9/9 W . .
{/9) (/9) ©/9) 0/ verged. 4” is the number of times the detector in the row out-
mean 7.97 4.37 2.72 1.33
; performed the detector in the column‘is added in the cell
TABLE VI where the detector in the row “significantly outperformed” the

RELATIVE TRAINING PERFORMANCEWHERE EACH CELL INDICATES a/b deteCtor In th_e column, one _IS better than_ Ot??l’_tW(;)-thlrdS or
WHERE THE EDGE DETECTOR IN THEROW PERFORMED"a” | NCIDENCES more of the times. If the entire row contains,™ it indicates
BETTER THAN THE EDGE DETECTOR IN THECOLUMN OUT OF*b” TIMES AND  that the detector in the row significantly outperformed all other
*" HAS BEEN PLACED IN THE CASES OF THEEDGE DETECTOR IN THEROW  gatactors. If the entire column contains™it indicates that all
SIGNIFICANTLY OUTPERFORMING THE EDGE DETECTOR IN THECOLUMN .
other detectors outperformed the detector in the column.

"

LH - mation 1) Train: First, the training results show that in all 28 in-
___|| aniso | berg | canny | heitger | roth | sarkar | susan stances (four categories seven edge detectors 28), each
aniso | 5 0/6 6% 6 Sl/g 6 8% 6 gég i ‘;ﬁ - edge detector performed better in WoodBlock scenes than Lego-
canngy 6/6% | 3/9 o/9* [9/9% [9/9% [7/T+ House scenes, indicating that the LegoHouse scenes are harder.
Toitger || 5/6 % | 1/9 | 0/9 479 [7/9% [6/7% Second, the Bergholm detector performed the best in two cat-
roth || 8/6 | 1/9 | 0/9 | 5/9 8/9% [ 7/7* egories of WB-motion and WB-structure (refer to Table VI).
sarkar | 2/6 | 0/9 | 0/9 | 2/9 | 1/9 5/7* The Canny detector and the Rothwell detector shared second
susan || 1/5 J O/7 ] 0/7 | 1/7 | O/7 | 2/7 place by each having the best performance in one category. The
LH - struct Anisotropic, the Heitger, and the Sarkar detectors ranked closely
50 076 | 0/6 | 0/6 | 2/6 [ 5/6% [4/i¥ as fourth. The SUSAN detector was last in all four categories.
berg | 6/6 * 6/9% | 7/9*% |6/9%| 9/9* | 6/6* Third, referring to the relative ranking (Table VII), the Bergholm
canny [ 6/6 * | 3/9 6/9* | 3/9 | 8/9% [5/6*% detector was significantly better than other detectors 23 out of
heitger || 6/6 * | 2/9 | 3/9 3/9 | 7/9* |5/6* 24 times (six other detectoss four categories= 24) while the
roth 14/6% 1 3/9 | 6/9% | 6/9 9/9* [ 6/6* SUSAN detector was significantly outperformed by all other de-
sarkar | 1/6 | 0/9 | 1/9 [ 2/9 | 0/9 476 * .
susan | 0/4 | 0/6 | 1/6 /6 [ 0/6 | 2/6 teptors nearly all times (23 out of 24). Though the mean error
might show that the Sarkar detector’s performance was similar
WB - motion to the Rothwell detector, Table VI shows that the Rothwell de-
aniso 2/9 1 2/9 | 4/9 | 4/9 | 4/9 [6/9* tector significantly outperformed the Sarkar detector three out
berg [/ 7/9 * /9T T/9% |6/9% | 8/9% |8/9* of four categories.
canny || 7/9 " | 2/9 6/97 16/97 | 7/9* [8/9 " As can be seen in Figs. 7 and 8, “false positive” edges d
heitger | 5/9 | 2/9 | 3/9 5/9 | 5/9 [8/9* n Figs. S P ges do
roth || 5/0 [ 3/9 ] 3/9 | 4/9 5/9 [ 6/9 not seem to play a significant role since they were usually short
sarkar | 5/9 | 1/9 | 2/9 | 4/9 | 4/9 6/9 * edge chains that were eliminated during the short line removal
susan || 3/9 | 1/9 ] 1/9 | 1/9 | 3/9 | 3/9 step. Also, a general trend of more and longer lines giving better
WE - struct results seems visually verifi_ed in Fig. 7. _ _
per o 25 T 30 [ 20 | 5/9 [7/5* In Tables IX-—XV, the trained parameter settlngs in 18 se-
berg | 8/9 779 % | 7/9% | 49 | 9/9 % | 8/0F quences are shown. Note that the parameter settings are sparsely
canny || 7/9 % | 2/9 479 | 2/9 | 8/9% |7/9* distributed within the parameter space.
heitger || 6/9 * | 2/9 | 5/9 2/9 [ 7/9* | 8/9* 2) Test within the Same Scene Typehe parameters
roth || 7/9*15/9 [7/9*] 7/9* 7/9*19/9* selected by training for one sequence were tested on other
Sﬁsﬁr ;;g %g ;;g fjg 3?3 579 4/9 sequences within the same scene using “leave one out” type

of testing. Each sequence is tested on all other sequences of
the same type, for motion and structure separately. Therefore,
is shown in {, y) format where %" is the number of conver- for each edge detector we had 72 tests (nine sequerces
gence and ¢" is the number of attempts. The table of relaeight trained parameter settings from other sequences) for
tive ranking is shown to examine the statistical significance &ur categories (motion and structure, and LegoHouse and
training and testing. Each table consists of four subtables corv@eodBlock).
sponding to four categories. Each subtable §swen x seven The test edge maps sometimes resulted in a set of corre-
matrix holding “@/b)” in each cell. 4" is the number of se- sponded lines that the SFM algorithm cowlot convergento
quences that both detectors in the row and the column c@my solution even after 1750 iterations. In order to take this
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TABLE IX
TRAINED PARAMETER SETTINGS FOR THEANISOTROPICEDGE DETECTOR
WHERE n/a INDICATES THAT NONE OF PARAMETER SETTINGS RESULTED
IN SFM CONVERGENCE
Image Sequence || Motion-trained | Structure-trained
LH1 1.25000 2.50000
| LH1.A 1.87500 1.87500
- T LH1.B 3.75000 3.75000
.~ = ( ’\ \TJ LH2 n/a n/a
‘ / E - L B LH2.A n/a n/a
7 —L LH2.B n/a n/a
Lines used for SFM of the Canny LH3 1.87500 1.87500
L LH3.A 2.50000 2.50000
‘ ; LH3.B 1.87500 1.87500
i WB1 6.87500 6.87500
- WBLA 7.50000 7.50000
Edge map of the SUSAN WBI1.B 7.50000 7.50000
WB2 2.50000 2.50000
i b - WB2.A 3.12500 3.12500
N - i///H WB2.B 6.25000 6.25000
[ﬂ | |l | 7D il | WB3 5.00000 5.00000
1 ] WB3.A 1.71875 1.71875
Lines used for SFM of the SUSAN WB3.B 1.56250 1.56250
Fig. 7. Dataset where the least motion error difference between a pair of edge
detector is shown: LegoHouse #2.A. Canny detectoe{ 0.01,low = 1.0, TABLE X

high = 0.812) with 6.82 and the SUSANI(= 12.5) with 68.43. TRAINED PARAMETER SETTINGS FOR THEBERGHOLM EDGE DETECTOR

Image Sequence Motion-trained Structure-trained

LH1 4.69281, 0.01000, 11.25000 9.37562, 0.01000, 5.62500

LH1L.A 3.75625, 0.01000, 22.50000 | 5.00500, 0.01000, 60.00000

LH1.B 5.00500, 2.50750, 15.00000 8.75125, 1.25875, 7.50000

LH2 6.25375, 0.63437, 3.75000 6.25375, 2.50750, 3.75000

LH2.A 8.12688, 3.13187, 0.00000 8.43906, 3.13187, 1.87500

LH2.B 3.75625, 2.50750, 3.75000 8.75125, 1.25875, 7.50000

LH3 6.25375, 2.50750, 7.50000 9.37562, 4.38062, 5.62500
1 | | | LH3.A 7.50250, 2.50750, 45.00000 | 10.62438, 0.01000, 33.75000

' ! LH3.B 8.75125, 2.19531, 5.62500 7.58085, 0.01000, 11.71875
— ‘:J_ K‘ ‘ | WB1 10.00000, 3.75625, 15.00000 | 10.00000, 5.00500, 60.00000

F I .ﬂu L / })J’_ﬁ_f WB1.A 6.87812, 3.75625, 11.25000 | 7.50250, 1.25875, 67.50000
o ‘ 1 \:; \ | ‘Ir } WB1.B 11.24875, 0.01000, 3.75000 | 7.50250, 5.00500, 60.00000
S T WB2 6.87812, 5.62937, 56.25000 | 4.38063, 3.13187, 3.75000
Lines used for SFM of the Canny WB2.A 3.75625, 2.50750, 7.50000 | 8.75125, 3.13187, 13.12500

WB2.B 5.00500, 1.88312, 45.00000 | 9.37562, 2.50750, 13.12500
) @ WB3 11.24875, 2.50750, 22.50000 | 10.00000, 3.75625, 22.50000

ey WB3.A 10.00000, 2.50750, 15.00000 | 8.75125, 0.01000, 22.50000

‘ ‘ WB3.B 10.00000, 7.50250, 0.00000 | 9.37562, 2.50750, 56.25000

I |

Edge map of the Heitger

to Table VIII). Lower convergence rates were observed for
LegoHouse scenes (75.8% for motion and 73.4% for structure)
compared to WoodBlock scenes (91.7% for motion and 92.9%
for structure). This suggests that the LegoHouse scene type is
more difficult than the WoodBIlock, as was also shown in train
results.
Dataset where the least motion error difference between a pair of ed eT.he Canr.]y detector performed the best in three test cate-
ries: motion-LH, motion-WB, and structure-WB (refer to
Table VIII). The Anisotropic detector placed first in struc-
ture-LH. As shown in the training performance, the SUSAN
detector performed the worst in all four categories. The
problem into consideration, 1) the convergence rates are caBergholm detector, which showed the best train performance,
pared and 2) the test results of all converging trials of each edgas behind the Heitger detector. The Canny detector was never
detector are presented. outperformed (significantly) by any other edge detector. In
The Canny detector showed the best convergence ratefaat, the Canny detector outperformed the Rothwell detector
98.6%, while the SUSAN detector had the worst at 58.0% (refend the SUSAN detector in all four categories. The Heitger

1

g
NUE:

o
= o
J ==
. \\ [
Lines used for SFM of the Heitger

Fig. 8.
detector is shown: LegoHouse #3.A. Canny deteator= 0.32188,low =
0.968 75,high = 0.78125) with 6.002. The Heitger (= 1.906 250,T" =
9.375) with 6.005.
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TABLE XI

TRAINED PARAMETER SETTINGS FOR THECANNY EDGE DETECTOR

TABLE XIlI

597

TRAINED PARAMETER SETTINGS FOR THEROTHWELL EDGE DETECTOR

Image Sequence

Motion-trained

Structure-trained

Image Sequence

Motion-trained

Structure-trained

LH1

0.63375, 0.37500, 0.87500

1.88125, 0.75000, 0.75000

LH1

1.37500, 0.00000, 0.81250

0.93750, 3.75000, 0.93750

LH1.A

0.32188, 0.81250, 0.87500

1.88125, 0.37500, 0.81250

LH1.A

0.93750, 3.75000, 0.81250

0.50000, 15.00000, 0.50000

LH1.B

1.88125, 0.00000, 0.62500

2.50500, 0.50000, 0.75000

LH1.B

0.93750, 3.75000, 0.81250

0.28125, 24.37500, 0.71875

LH2

0.01000, 1.00000, 0.81250

0.01000, 0.75000, 0.50000

LH2

1.15625, 3.75000, 0.93750

0.66406, 5.62500, 0.29688

LH2.A

0.01000, 1.00000, 0.81250

4.37625, 0.00000, 0.00000

LH2.A

0.50000, 7.50000, 0.12500

0.93750, 3.75000, 0.43750

LH2.B

0.01000, 0.00000, 0.00000

1.56937, 0.00000, 0.00000

LH2.B

1.15625, 0.00000, 0.93750

0.50000, 30.00000, 0.50000

LH3

0.32188, 0.93750, 0.68750

3.75250, 0.00000, 0.00000

LH3

0.71875, 5.62500, 0.90625

0.50000, 0.00000, 0.75000

LH3.A

0.32188, 0.96875, 0.78125

0.32188, 0.68750, 0.78125

LH3.A

1.81250, 15.00000, 0.56250

0.93750, 7.50000, 0.62500

LH3.B

5.31187, 0.00000, 0.00000

3.75250, 0.00000, 0.00000

LH3.B

0.33594, 7.96875, 0.98438

0.50000, 15.00000, 0.18750

WBI1

0.01000, 0.50000, 0.50000

0.78969, 0.51562, 0.89062

WB1

1.59375, 15.00000, 0.81250

1.37500, 30.00000, 0.00000

WBI1.A

0.63375, 0.12500, 0.62500

0.01000, 0.50000, 0.50000

WB1.A

0.71875, 26.25000, 0.00000

1.59375, 0.00000, 0.56250

WB1.B

0.01000, 0.00000, 0.00000

0.01000, 0.00000, 0.00000

WB1.B

1.59375, 15.00000, 0.53125

3.12500, 0.00000, 0.31250

WB2

1.56937, 0.00000, 0.00000

0.94563, 1.00000, 0.93750

WB2

1.15625, 11.25000, 0.68750

0.50000, 45.00000, 0.50000

WB2.A

1.25750, 0.00000, 0.00000

2.50500, 0.00000, 0.00000

WB2.A

0.71875, 11.25000, 0.93750

0.39062, 43.12500, 0.00000

WB2.B

1.56937, 0.00000, 0.00000

0.63375, 0.00000, 0.00000

WB2.B

0.93750, 22.50000, 0.00000

1.81250, 0.00000, 0.50000

WB3

1.88125, 0.00000, 0.00000

3.28469, 0.00000, 0.00000

WB3

1.15625, 3.75000, 0.75000

0.71875, 3.75000, 0.68750

WB3.A

0.01000, 0.50000, 0.50000

0.94563, 0.00000, 0.00000

WB3.A

0.93750, 7.50000, 0.00000

0.71875, 15.00000, 0.00000

WB3.B

5.00000, 0.00000, 0.00000

0.01000, 0.00000, 0.00000

WB3.B

0.93750, 7.50000, 0.37500

1.26562, 2.81250, 0.57812

TABLE XIl

TRAINED PARAMETER SETTINGS FOR THEHEITGER EDGE DETECTOR

Image Sequence

Motion-trained

Structure-trained

LH1 2.46875, 3.12500 | 3.87500, 25.00000
LH1.A 3.87500, 3.12500 | 1.62500, 6.25000
LH1.B 4.01562, 6.25000 | 4.01562, 6.25000

LH2 3.87500, 12.50000 | 3.87500, 12.50000
LH2.A 5.35156, 3.90625 | 5.35156, 3.90625
LH2.B 3.87500, 37.50000 | 3.87500, 37.50000

LH3 2.75000, 12.50000 | 2.75000, 12.50000
LH3.A 1.90625, 9.37500 | 2.18750, 9.37500
LH3.B 3.03125, 6.25000 | 3.87500, 3.12500
WB1 3.87500, 3.12500 | 2.18750, 18.75000
WBIL.A 2.75000, 3.12500 | 2.18750, 31.25000
WB1.B 3.87500, 6.25000 | 3.03125, 12.50000
WB2 3.03125, 9.37500 | 2.75000, 50.00000
WB2.A 2.75000, 12.50000 | 2.89062, 35.93750
WB2.B 2.46875, 9.37500 | 1.62500, 12.50000
WB3 4.16625, 6.25000 | 1.34375, 9.37500
WB3.A 4.01562, 9.37500 | 1.62500, 6.25000
WB3.B 1.69531, 2.34375 | 0.78125, 15.62500

TABLE XIV

TRAINED PARAMETER SETTINGS FOR THESARKAR EDGE DETECTOR

Image Sequence

Motion-trained

Structure-trained

LH1 0.63375, 0.00000, 0.75000 | 0.94563, 0.06250, 0.81250
LH1.A 1.10156, 0.06250, 0.15625 | 0.94563, 0.43750, 0.50000
LH1.B 0.63375, 0.37500, 0.50000 | 0.63375, 0.25000, 0.37500

LH2 1.2575, 0.00000, 0.25000 | 1.25750, 0.00000, 0.25000
LH2.A 1.25750, 0.00000, 0.25000 | 0.63375, 0.00000, 0.12500
LH2.B 3.12875, 0.37500, 0.50000 | 2.50500, 0.00000, 0.25000

LH3 1.88125, 0.31250, 0.37500 | 1.88125, 0.31250, 0.37500
LH3.A 1.56937, 0.31250, 0.43750 | 1.88125, 0.50000, 0.62500
LH3.B 1.56937, 0.06250, 0.31250 | 2.19312, 0.12500, 0.31250
WBI1 1.88125, 0.00000, 0.12500 | 2.19313, 0.00000, 0.06250
WBILA 0.94563, 0.43750, 0.68750 | 0.32188, 0.00000, 0.06250
WBI1.B 1.88125, 0.00000, 0.12500 | 1.25750, 0.31250, 0.43750
WB2 0.63375, 0.12500, 0.37500 | 1.88125, 0.25000, 0.37500
WB2.A 0.63375, 0.00000, 0.12500 | 0.63375, 0.12500, 0.25000
WB2.B 0.94563, 0.56250, 0.68750 | 2.50500, 0.00000, 0.25000
WB3 0.94563, 0.25000, 0.31250 | 0.78969, 0.03125, 0.15625
WB3.A 2.19312, 0.00000, 0.06250 | 0.94563, 0.18750, 0.43750
WB3.B 0.94563, 0.43750, 0.68750 | 2.03719, 0.00000, 0.15625

detector significantly outperformed the SUSAN detector in alanny detector.

four categories.

The Canny detector significantly outperformed others the

3) Test Across Scene TypeVe also tested the parametersnost number of times (16 out of 24). The Anisotropic detector
trained for all nine WoodBIlock sequences on LegoHouse #1 aodtperformed all other detectors in LH-structure category. The
the parameters trained for all LegoHouse sequences on WoBWSAN detector was significantly outperformed by others 23

Block #1. The results are organized in a similar fashion. Theoait of 24 times.
are four categories:

1) tested on LegoHouse motion;

2) tested on LegoHouse structure;
3) tested on WoodBlock motion;
4) tested on WoodBlock structure.

We present the results of “all” converging sequences.

This section describes the results of using two different SFM
algorithms on three-frame sequences. Due to the difficulty of
convergence for the Taylor algorithm on three-frame sequences,
the adaptive parameter setting started withx 10 x --- x

The Canny detector performed the best in two categories (m®- parameter sampling. The results are using nine LegoHouse
tion-LH1 and motion-WB1) and had the highest convergentieree-frame sequences (Table V). All other experiment methods
rate of 100%. Those two observations are consistent with tbe train, test, and other analysis are identical to the procedure

B. Three-Frame Sequences

observations from testing within scene type. We conclude tHatlowed in long sequence section.

the Canny detector has the “best motion testing performance”) Train: The train results of using three-frame sequences
with the most robust convergence. The Anisotropic, Bergholmre shown in Table XIX. First, note the great performance

and Heitger detectors performed similarly, ranking behind the
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TABLE XV
TRAINED PARAMETER SETTINGS FOR THESUSAN EDGE DETECTORWHERE
n/a INDICATES THAT NONE OF PARAMETER SETTINGS RESULTED
IN SFM CONVERGENCE

Image Sequence || Motion-trained | Structure-trained
LH1 15.62500 18.75000
LH1.A n/a n/a
LH1.B 6.25000 6.25000
LH2 n/a n/a
LH2.A 12.50000 12.50000
LH2.B 6.25000 4.68750
LH3 12.50000 12.50000
LH3.A 17.18750 9.37500
LH3.B 9.37500 n/a
WB1 25.00000 25.00000
WBI1.A 12.50000 25.00000
WBI1.B 12.50000 43.75000
WB2 25.00000 20.31250
WB2.A 25.00000 18.75000
WB2.B 21.87500 18.75000
WB3 10.93750 15.62500
WB3.A 12.50000 12.50000
WB3.B 18.75000 9.37500
TABLE XVI
RELATIVE TESTING WITHIN THE SAME SCENE PERFORMANCE
LH - motion
aniso berg | canny | heitger roth sarkar susan
aniso 16/29 | 17/29 | 19/30 | 18/26 * | 22/30 * | 18/22 *
berg 13/29 22/61 | 33/53 | 39/53 * | 42/56 * [ 32/37 *
canny 12/29 | 39/61 43/58 * | 43/55 * | 51/61 * | 35/38 *
heitger | 11/31 | 20/53 | 15/58 32749 | 39/55 * | 30/34 *
roth | 8/26 | 14/53 | 12/55| 17/49 27]49 | 23/33 *
sarkar 8/30 14/56 | 10/61 | 16/55 22/49 23/36
susan || 4/22 | 5/37 | 3/38 | 4/34 | 10/33 | 13/36
LH - struct
aniso 11/26 | 13/27 | 9727 | 19/26 * | 17/26 | 9/12 *
berg || 15/26 350/64 | 30755 | 34/50 * | 40/58 * | 26/32 *
canny 14727 | 34/64 35/58 | 38/53* | 48/62*|23/32*
heitger || 18/27 * | 25/55 | 23/58 32/46 * | 29/53 17/26
roth 7/26 16/50 | 15/53 | 14/46 25/49 8/15
sarkar | 9/26 | 18/58 | 14/62 | 24/53 | 24/49 13/25
susan 3/12 6/32 | 9/32 | 9/26 12/23 | 11/29
WB - motion
aniso 37/72 | 23/72 | 26/72 | 45/72 | 30/72 {25/30*
berg 35/72 18/72 | 24/72 | 41/72 28/72 16/30
canny || 49/72 % | 5472 * 37]72 | 56/72 * | 48/72 ¥ | 25/30 *
heitger || 46/72 | 48/72* | 35/72 58/72* | 46/72 | 24/30*
roth || 27/72 | 31772 | 16/72 | 14/72 27772 | 19/30
sarkar | 4272 | 44]72 | 24/72 | 26/72 | 45/72 24730 *
susan | 5/30 | 14/30 | 5/30 | 6/30 | 11/30 | 6/30
WB - struct
aniso 31/54 | 21/53 | 27/52 | 36/48 * | 31/51 32/50
berg | 23/54 18/71 | 22/70 | 35/66 | 37/69 | 41/66
canny | 32/53 |53/71 % 42/69 | 48/65* | 51/68 | 55/65 *
heitger || 25/52 | 48/70 * | 27/69 45/64 * | 36/67 | 48/64 *
roth 12/48 | 31/66 | 17/65 | 19/64 32/63 | 35/61
sarkar || 20/51 32/69 | 17/68 | 31/67 | 31/63 39/63
susan 18/50 | 25/66 | 10/65| 16/64 | 26/61 24/63

TABLE XVII
TESTACROSSSCENE OF“ALL” SEQUENCESRESULTS AND THE CONVERGENCE
RATE WHERE THE RESULTS UNDER EACH COLUMN INDICATE THE
PERFORMANCEWHICH WAS “TESTING ON’ THE DATASET AND CONVERGENCE
IS SHOWN BY “# OF CONVERGING SEQUENCES$# OF SEQUENCE IN THE
SCENE TYPE,” AND THE BEST IN EACH CATEGORY IS HIGHLIGHTED IN
BOLDFACE, MOTION UNIT IN “DISTANCE % DIFFERENCE” STRUCTURE
UNIT IN “ANGLE DIFFERENCE INDEGREES

edge detector | motion (LH1) | motion (WB1) | struct (LH1) [ struct (WB1)} || converge rate
amsotropic | 2.30 (9/9) 5.95 (6/9) 2.30 (8/9) | 2.30 (9/9) 81%
bergholm 113 (8/9) 534 (9/9) | 1.43 (6/9) | 6.15 (8/9) 9%
canny 1.36 (9/9) 5.59 (9/9) | 2.11(9/9) | 3.2 (9/9) 100%
heitger 188 (9/9) 6.10 (9/9) 1.96 (7/9) | 2.82 (9/9) 92%
rothwell 6.63 (8/9) 740 (8/9) | 6.32 (5/9) | 9.78 (8/9) 31%
sarkar 3.82 (9/9) 5.75 (9/9) 244 (7/9) 3.77 (9/9) 94%
susan 6.53 (5/9) 5.95 (3/9) 598 (3/9) | 2484 (5/9) 5%
mean 3.89 6.15 2.80 7.64 82
TABLE XV

RELATIVE TESTING ACROSS THESCENE TYPE PERFORMANCEWHERE EACH
CELL INDICATES a/b WHERE THEEDGE DETECTOR IN THEROW PERFORMED
“a” INCIDENCESBETTER THAN THE EDGE DETECTOR IN THECOLUMN OUT OF
“b” TIMES AND “*” HAS BEEN PLACED IN THE CASES OF THEEDGE
DETECTOR IN THEROW “SIGNIFICANTLY OUTPERFORMING THE EDGE
DETECTOR IN THECOLUMN

LH - motion

aniso | berg | canny | heitger | roth | sarkar | susan
aniso 5/6*] 1/6 | 3/6 | 1/6 | 2/6 |2/3°
berg || 1/6 3/9 | 3/9 | 3/8 | 3/9 |2/3*
canny || 5/6* | 6/9* 5/9 |6/8*| 3/9 |3/3*
heitger || 3/6 |6/9* | 4/9 5/8 | 4/9 [3/3*
Toth || 5/6 %] 5/8 | 2/8 | 3/8 3/8 | 3/3%
sarkar || 4/6* [6/9* | 6/9* | 5/9 [6/8* 3/3*
susan 1/3 | 1/3 0/3 0/3 0/3 0/3
LH - struct
aniso 6/6* [ 4/6* | 5/6* |5/6+%] 4/6* | 1/1*
berg || 0/6 179 | 1/9 | 5/8 | 2/9 |2/2*
canny || 2/6 [8/9% 4/9 |7/8* | 6/9* | 2/2%*
heitger | 1/6 |{8/9* | 5/9 6/8*| 5/9 |[2/2%*
roth || 1/6 | 3/8 | 1/8 | 2/3 378 | 2/2 %
sarkar | 2/6 [7/9%*]| 3/9 4/9 [6/8* 2/2*
susan || 0/1 | 0/2 | 0/2 0/2 0/2 0/2
WB - motion
aniso 5/8 | 2/9 4/9 |8/8* | 7/9* |5/5*
berg || 3/8 1/8 | 0/8 |5/7%| 5/8 |4/5%
canny | 7/9%*|7/8%* 4/9 18/8* | 9/9* |5/5*
heitger | 5/9 |8/8* | 5/9 8/8% | 9/9% [5/5*
Toth || 0/8 | 2/7 | 0/8 | 0/8 2/8 | 3/5
sarkar | 2/9 | 3/8 | 0/9 0/9 |6/8%* 5/5 *
susan || 0/5 | 1/5 0/5 0/5 2/5 0/5
WB - struct
aniso 3/5 | 4/8 2/7 3/5 2/6 |3/3%*
berg | 2/5 3/6 | 4/5% [3/4¥ | 4/5* | 1/1*
canny | 4/8 | 3/6 5/T* |4/5% | 4/7 [2/3F
heitger || 5/7 ¥ | 1/5 | 2/7 4/4%| 3/6 [2/2*F
Toth | 2/5 | 1/4 | 1/5 | 0/4 0/3 | 1/1%
sarkar | 4/6 | 1/5 | 3/7 | 3/6 |3/3% 22 %
susan | 0/3 | 0/1 1/3 0/2 0/1 0/2

three-frame sequences, the edge detectors performed better
with the Taylor algorithm than with the Weng algorithm. Third,
the relative ranking among results 1) using Taylor algorithm
with three-frame sequences and 2) using Taylor algorithm
with long sequences, are the same. In addition, for the relative
ranking among all three (including Weng's three-frame), the

degradation between long sequences and three-frame Ganny detector was the first or the second in all three, the
qguences. For the Sarkar detector, the error with three-frai®arkar detector was the worst in all three, and the Canny
sequences was nearly five times greater. Second, given tletector and the Bergholm detector were both close in ranking.
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TABLE XIX TABLE XXI
MOTION TRAINED RESULTS OF THETHREE-FRAME SEQUENCES WITH EFFECT OFLINE CHARACTERISTICS ONCONVERGENCE
MOTION UNIT IN “DISTANCE % DIFFERENCE
LegoHouse ‘WoodBlock
edge detector || Weng (3-frame) | Taylor (3-frame) Taylor (long sequences) 7 Of“’:;'e;fgmg TR 2?"';;":ferg’"]gine 7 Ot.m’;i)’fg"‘g T 2?”':?’;¥erg‘"lgine
(I‘eSUlt from all LH Sequences) line | corr | length || line | corr | length | line | corr | length || line | corr | length
bergholm 72.5 70 45 Anisotropic || 80.1| 7.0 93.1] 141] 35| 533 250 88] 1043 78| 26| 349
canm 1.7 11.4 16 Bergholm 36.5 6.5 94.0 | 20.8 4.9 77.3 | 24.5 8.3 115.0| 14.8 5.3 84.4
Y . ~ . Canny 46.3 6.6 94.2 || 29.8 5.7 95.7 || 27.4 96| 11374 216 821 113.0
rothwell 51.2 21.7 4.9 Heitger 383] 64| 081 241| 57| 0971 237| 84 1174 151| 6.2 103.8
sarkar 86.2 49.8 55 Rothwell 376] 65| 958 180 55| 1009 21.7]| 80| 1162 11.8] 6.1] 1087
Sarkar 38.8 6.0 107.2 | 19.7 4.5 102.8 | 251 9.0 1216 | 144 6.1 92.2
SUSAN 363] 63| 914 188 48| 877 | 226] 70| 1106 104 ] 40| 713
average 390 65| 962] 208] 49| 87.8] 243| 86| 1141] 137] 55] 869
TABLE XX
MOTION TEST RESULTS OF THETHREE-FRAME SEQUENCES WITHMOTION
UNIT IN “DISTANCE % DIFFERENCE TABLE XXII
MEETING MINIMUM CRITERIA WITH NONCONVERGENCE(NUMBERS
edge detector || Weng (3-frame) | Taylor (3-frame) Taylor (long sequences) IN PERCENT)
(result from all LH sequences)
bergholm 87.7 (16.7%) 67.6 (43.1%) 7.86 (87.5%) LegoHouse WoodBlock
canny 67.9 (43.1%) 59.0 (29.2%) 7.41 (97.2%) < corr | < corr | > corr | > corr || < corr | < corr | > corr { > corr
rothwell 95.6 (29.2%) 106.0 (27.8%) 14.96 (79.2%) < line | > line§ < line | > line || < line | > line | <« line | > line
sarkar 76.3 (31.9%) 151.0 (45.8%) 16.61 (87.5%) Anisotropic 46.5 0.0 0.0 53.5 66.7 0.0 0.0 33.3
Bergholm 21.1 0.0 0.0 78.9 26.9 0.0 0.0 73.1
Canny 0.0 22.0 0.0 78.0 0.0 9.6 0.0 90.4
. Heitger 42 1.6 0.0 94.2 7.8 4.9 0.0 87.2
2) Test: The test results are based on 72 test attempts (Nigohwen 08 03T o0l 788 09 25a 66T 70
trained sequences eight test sequences). First, all edge dete(Sarkar 187 69f 00 ™4[ 193] 21| 00| 786
\ SUSAN 16.8 0.0 0.0 83.2 37.0 0.0 0.0 63.0

tors suffered greatly on the convergence rate (refer to Table X>-
All edge detectors went below 50%. Interestingly, the Canny

detector which showed the highest convergence rate in loggy edges. It is possible that the lines that were formed from
sequence study, plunged to nearly the worst convergence raiges could not meet the minimum line length or the minimum
Second, the Canny detector performed the best in all three Gaimber of correspondence criteria. Note the percentage of non-
egories, which again shows that the Canny detector has the %%f\/ergences coming fronmalid SFM inputs_ Except for the
test results. Third, the relative test rankings among results Usmﬂisotropic detector, all edge detectors have greater than 70%
Taylor algorithm with long sequences and using Taylor algef nonconvergences from valid inputs. This raises several ques-
rithm with three-frame sequences, are the same. This indicaigss regarding the SFM algorithm. Practical minimum cri-
that the relative testing rankings are preserved with differe@ria: Even though the theoretical minimum criteria are satisfied,
length of the sequence. Fourth, compared to the results for Iaf@ recovery of motion is not guaranteed P2actical number
sequences, the edge detectors performed much (six to ten tigg3FM global iterations: The current train setting of 50 global
worse. iterations might not be enough for some of the valid inputs.

2) SFM Setting: There were instances where the algorithm
C. Effect of Line Characteristics on SFM Convergence was able to converge with more iterations. We examined three

This section analyzes reasons behind the performance levedlferent aspects of whether 50 iterations for training and 1750
edge detectors for the task of SFM. Two factors could affect tff testing are “good enough.”
SFM algorithm: the input for the SFM and the SFM setting. The First, the feasibility of executing the algorithm for a large
line input is characterized by the number of lines, the number@mber of iterations needs to be examined. With 50 global it-
correspondences for each line, and the length of the lines. Teiations, the algorithm consumes up to 10 min of CPU time on
SFM algorithm’s setting is the number of global iterations. @ Sun Ultra Sparc. The training attempts on the average nearly

1) Line Input Characteristics:The average line charac-200 parameter settings on 18 image sequences for each edge
teristics of converging and nonconverging points are show#gtector in two different metrics (motion and structure), cor-
in Table XXI. Note thatin averageover all edge detectors, responding ta200 x 18 x 2 = 7200 executions of the SFM
converging cases have more than twice as many lines as @@orithm and about 1200 h of CPU time. This could be multi-
nonconverging cases. In addition, higher numbers of corf@lied by a factor of two for every 50 extra global iterations for
spondences and line lengths are observed with convergRigry edge detector. Without tremendous computing power, in-
cases. The Bergholm detector has the least difference betwgtfsing the global iterations would be infeasible.

convergences and nonconvergences. In fact, the average lineecond, consider the average number of iterations used in
length is actually higher with nonconvergences. cases that did converge. The average of SFM attempts during the

In order to examine the role of minimum criteria on nontrain for allimage sequences is computed for each edge detector:

convergence, the points in nonconvergences are organized irl) Anisotropic (3.4);
four categories as shown in Table XXII. Obviously, all the con- 2) Bergholm (3.5);
verging cases met the minimum criteria. Since the line corre- 3) Canny (3.3);
spondence program deletes the lines with less than minimum4) Heitger (3.6);
correspondences, the categorykotorr and< lineis the cases  5) Rothwell (3.6);
where no lines were used as the input of the SFM algorithm. 6) Sarkar (3.4);
This doesnot indicate that the edge detectors did not detect 7) Sobel (4.4).
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TABLE XXIlI the Canny detector had the best performance with all image se-
EFFECT OFLINE CHARAC\;FTF::?FEESSSE‘ECLONVERGENCECOMF’ARED quences for motion (Table VIII). Theoretically, it can be con-
cluded that oncéhe optimalparameter setting for the image se-
WoodBlock #1, #2, #3 guences is found, the Bergholm detector can achieve the best
_ i performance, since it was the best performer in the test-on-
= Ofm;v‘:fgmg T #r;ofn-(;;n;lfe e train. However, in practice, the Canny detector performed better
line | corr | length | line | corr | length  With any deviation from the training sequence. The SUSAN de-

Anisotropic 215 84 1141 73] 271 377  tector consistently was the worst performer in all categories in
Bergholm 26.5 | 101 1149 271 99| 11564  training, testing within same scene type, testing across scene
Canny 29.1| 120 | 11324 149 6.6 90.8 type, and convergence rates.
Heitger 272|108 1167 61| 28] 412 The results obtained by varying length of dataset to the min-
Rothwell 254 10.0 | 1155 | 75| 40| 578 . : : : .
Sarkar 578 1131 or0 T 641 331 4 imum 3) sh.ows 'Fhat the relative rankings of train and tes.tmg re-
SUSAN 200 72 12051 129 49| sis  Sults wereidentical. When the “SFM algorithm” was varied by
average 2541 1001 11651 1.7 49| 664 using the Weng's algorithm, the results were not as consistent.
Sobel (Tiine tength = 50) 1899 | 607 | s6.7r  However, the Canny detector was still the best in test results.
Sobel (Tiine tongth = 25) 24.11 | 8.39 | 61.37

The average of all attempts for all edge detectors is 3.46. Note ACKNOWLEDGMENT

that the previous number is different from the average of all ) _
edge detectors’ average, since the edge detectors have a differehf'® authors would like to thank C. Tayor and D. Kriegman
number of parameter attempts during the train. This indicati¥ Willingly answering numerous questions regarding the SFM

that if the SFM input is to converge, it will converge with ven@!gorithms. The authors would also like to thank M. Heath, S.
few iterations. Dougherty, C. Kranenburg, and S. Sarkar for many valuable dis-

Third, the effect of a high number of iterations on the traifUssions; and the authors of the edge detectors for making the

and test performance is examined. We have tested the BerghBlRlementations available. Early results of this work appear in
detector, which tends to have the most overlapping betwel [8]-
convergence and nonconvergence, by performing the adaptive
parameter searching with 100 iterations on a sequence (Wood-
Block1.A). It is verified that the best parameter setting did not

change with 100 iterations; therefore, no change of train and tesfi] L. Kitchen and A. Rosenfeld, “Edge evaluation using local edge coher-
performance. ence,”|[EEE Trans. Syst., Man, Cyberniol. SMC-11, pp. 597-605,
. . . Sept. 1981.
3) Line Cha_raCter!St'C AnaIY_S|S_f0r the Sobel Detectd_ks [2] T.Peliand D. Malah, “A study of edge detection algorithm&gmput.
we have mentioned in the beginning of the results section, the  Graph. Image Processvol. 20, no. 1, pp. 1-21, Sept., 1982.

; ; : ; s i [8]1 W. Lunscher and M. Beddoes, “Optimal edge detector evaluatiBiiE
Sobel did not converge into any solu'qon during the trgmmg with ™% 4one Syst., Man, Cybetnol., SMC-16, pp. 304312, Apr. 1986.
three WoodBlock sequences. We will compare the line charac{4] s. Venkatesh and L. Kitchen, “Edge evaluation using necessary compo-
teristics for the Sobel with other edge detectors. nents. CYGIP: Graph. Models Image Understanbl. 54, pp. 23-30,
. . an. .
First, the data from the only three image sequences that thes) r.N. Strickland and D. K. Chang, “Adaptable edge quality met@gt.

Sobel detector was tested with (WoodBlock #1, #2, #3) are | Eng, volr.]32, pp. 344—951, Mayli 1993. . |

; ot _ [6] M. Heath, S. Sarkar, T. Sanocki, and K. W. Bowyer, “A robust visua
shown in Table XXIll. The characteristic of the nonconver method for assessing the relative performance of edge detection
gences of the Sobel falls between the mean of the convergences algorithms,” [EEE Trans. Pattern Anal. Machine Intelivol. 19, pp.
and nonconvergences of other five edge detectors. Even with_ 1338-1359, Dec. 1997.

. - [7] M. Shin, D. Goldgof, and K. W. Bowyer, “An objective comparison
the Tiine_tength lowered to 25, the line characteristic could methodology of edge detection algorithms for structure from motion

not reach the mean convergences. Though the reason for the Lask," inProc. IEEE Conf. Comput. Vision Pattern Recogr8anta Bar-
) ; ; ara, CA, 1998, pp. 190-195.
Sobel's p.erform_ance C_annot be totaIIy explalned by the IIne[8] ——, “An objective comparison methodology of edge detection algo-
characteristics, it certainly strengthens the argument of more "~ rithms for structure from motion task,” iEmpirical Evaluation Tech-
lines, longer lines, and more correspondences tend to converge niques in Computer Visiork. W. Bowyer and P. J. Phillips, Eds.  Los
Alamitos, CA: IEEE Comput. Soc. Press, 1998, pp. 235-254.
more often. [9] C. Taylor and D. Kriegman, “Structure and motion from line segments
in multiple images,'|EEE Trans. Pattern Anal. Machine Inteltol. 17,
V. CONCLUSION pp. 1021-1032, Nov. 1995.
[10] J.Weng, Y. Liu, T. Huang, and N. Ahuja, “Structure from line correspon-
The Canny detector had the best test performance and the best dences: A robust linear algorithm and unigueness theorem#ldo.

robustness in convergence. It is also one of the faster-executirtﬁ] IEEE Conf. Comput. Vision Pattern Recognit988, pp. 387-392.

. J.R.Framand E. S. Deutsch, “On the quantitative evaluation of edge de-
detectors. Thus we conclude that it performs the best for th tection schemes and their comparison with human performategg

task of structure from motion. This conclusion is similar to that Trans. Comput.vol. C-24, pp. 616-628, June 1975.

r h H I. inth ntext of a human vi | [12] D. J.‘ Bryant and D. W. B_ouldin, “Evaluation of edge operators using
eached by eatbta [6] the contextof a huma sua edge relative and absolute grading,”Rroc. IEEE Comput. Soc. Conf. Pattern

rating experiment, and by Bowyet al. [38] in the context of Recognit. Image Proces<hicago, IL, Aug. 1979, pp. 138-145.
ROC curve analysis. [13] I. E. Abdou and W. K. Pratt, “Quantitative design and evaluation of

The Bergholm detector had the best “test-on-training” perfor- ;’ggagggm&ggtg@sgo'dmg edge detectoPsdc. IEEE vol. 67, pp.
mance in three categories (Table VI) while the Canny detECtO["14] G. B. Shaw, “Local and regional edge detectors: Some comparison,”

and the Rothwell detector were second. With separate test data, Comput. Graph. Image Processol. 9, pp. 135-149, Feb. 1979.
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