
978-1-4244-1841-1/08/$25.00 ©2008 IEEE

Content Classification for Caching under CDNs
George Pallis1,2, Charilaos Thomos2, Konstantinos Stamos2, Athena Vakali2, George Andreadis3

1Department of Computer Science, University of Cyprus
2Department of Informatics, Aristotle University of Thessaloniki

3School of Engineering, Aristotle University of Thessaloniki
gpallis@cs.ucy.ac.cy, {chthomos, kstamos, avakali}@csd.auth.gr, andreadi@eng.auth.gr

Abstract

Content Delivery Networks (CDNs) provide an

efficient support for serving “resource-hungry”
applications while minimizing the network impact of
content delivery as well as shifting the traffic away
from overloaded origin servers. However, their
performance gain is limited since the storage space in
CDN’s servers is not used optimally. In order to
manage their storage capacity in an efficient way, we
integrate caching techniques in CDNs. The challenge
is to decide which objects would be devoted to caching
so as the CDN’s server may be used both as a
replicator and as a proxy server. In this paper we
propose a nonlinear non-parametric model which
classifies the CDN’s server cache into two parts.
Through a detailed simulation environment, we show
that the proposed technique can yield significant
reduction in user-perceived latency as compared with
other heuristic schemes.

1. Introduction

CDNs (Content Delivery Networks) have been
proposed to accelerate the delivery of the Web content.
On a daily basis, users use the Internet for “resource-
hungry” applications which involve content such as
video, audio on-demand and distributed data. For
instance, the Internet video site YouTube hits more
than 100 million videos per day. Estimations of
Youtube's bandwidth go from 25TB/day to 200TB/day.
At the same time, more and more Web content servers
are delivering greater volumes of content but with high
sensitivity to delays. For instance, a delay on financial
data-feed Web site (e.g., USD to EUR currency stock
markets) may cause serious problems to the end-users.

A CDN is an overlay network across Internet,
which consists of a set of surrogate servers (distributed
around the world), routers and network elements.
Surrogate servers are the key elements in a CDN,
acting as replicators. They store copies (also called
replicas) of identical content, such that clients' requests
are satisfied by the most appropriate site. Once a client
requests for content on an origin server (managed by a

CDN), client’s request is directed to the appropriate
CDN's surrogate server.

1.1. Paper’s Motivation & Contribution

While the CDNs result in significant benefits, in
terms of availability, stability and Web transfer speed,
their performance increase is limited due to the facts
that: the storage space in surrogate servers is not used
optimally [1], the content which is replicated in the
surrogate servers remains static for a considerable
period of time.

In order to alleviate the above problems we deploy
caching in conjunction with replication. Specifically,
we consider a CDN whose surrogate servers act
simultaneously both as proxy servers and content
replicators. According to the literature, the resulting
problem of finding which objects’ replicas should be
created where, given that any free space will be used
for caching, is NP-complete [1]. In this context, two
heuristic approaches have been proposed [1, 6] towards
managing the capacity of surrogate servers.
Specifically, the key issue of Hybrid [1] and SRC [6] is
to determine the percentage of storage space of CDN’s
surrogate servers that would be devoted in caching.
However, these approaches are offline and,
consequently, are unable to handle efficiently the
sudden changes in the interest of the end users. This is
a crucial issue if we consider that the most popular
objects remain popular for a short time period [3].
Furthermore, the Hybrid algorithm suffers from
“administratively” tunable parameters which determine
the percentage of storage space for caching [1].

In this context, the ideal content management policy
of surrogate servers should: (a) Handle the sudden
changes of Web users’ request streams; (b) Lack of any
administratively tunable parameters; (c) Achieve a
delicate balance between replication and caching
towards improving the CDN’s performance. The major
contributions of this work are:
• Proposing a CDN framework where the surrogate

servers act both as proxy caches and static content
replicators under a cooperative environment.

• Presenting a method, the so-called R-P (Reward-
Penalty), which partitions the surrogate servers’

cache into two parts: The first part is devoted to
caching and the second one is devoted to
replication. The replicas are classified to one of
the above categories by using a nonlinear model.
The nonlinear model is preferred since it classifies
better the replicas than any linear model [4].

• Providing an experimentation showing that our
method performs better than the examined
algorithms. We evaluate the performance of the
proposed method using a dataset which captures
the workloads of a streaming media Web site.

The rest of this paper is organized as follows. In
Section 2 we present the proposed R-P method.
Section 3 presents the simulation testbed, and section 4
evaluates the experiment results. Finally, the
conclusion of our work is given in section 5.

2. The R-P Method

We consider a CDN framework, where the
surrogate servers act both as dynamic content
replicators (proxy caches) and static ones under a
cooperative environment. During a training time period
the Web objects of each surrogate server are classified
into two categories by using a nonlinear model:
volatile and static. The volatile objects are replicated to
the dynamic part of cache, whereas, the static ones are
replicated to the static part of cache.

In the proposed framework, the available storage
capacity of each surrogate server i, which is denoted by

)(s
iK , is partitioned into two parts: The first one

()(s
iS) is used for replicating content statically and the

second one ()(s
iD) is used for replicating content

dynamically (running a cache replacement policy):

)()()(s
i

s
i

s
i KSD =+ (1)

From the above equation it holds that if 0)(=s
iD the

cooperative push-based scheme is applied where, the
surrogate servers cooperate upon cache misses and the
content of the caches remains unchanged. On the other

hand, if 0)(=s
iS the surrogate servers turn into

cooperative proxy caches (dynamic caching only).
Our proposed method assigns a quality value “q”

for each object which has been replicated in surrogate
servers. In particular, the quality value of replicas is
expressed by the users’ interest (increasing its value by
using equation 2) or the lack of users’ interest
(decreasing its value by using equation 3) for the
underlying replica. The intuition behind is that each
time t an object is requested, it is rewarded by the
function R(t). At the same time, all the other replicas
receive a penalty by the function P(t), since they have

not been requested. Specifically, the following
functions have been defined:

)(11)('
itt

T
tR −−= (2)

)(1)('
itt

T
tP −−= (3)

The '
it expresses the time of the previous user’s

request for the specific object i and T denotes the
training time period. Regarding the relation between t
and '

it , it holds Ttt i ≤− ' . Therefore, it is obviously

occurred that R(t)]1,0[∈ and P(t)]0,1[−∈ . The
quality value of each object i for a specific time T’ is
calculated by the sum of the total reward and penalty
values as follows:

))()((
'

0

' ∑
=

+=
T

t

T
i tRtPq (4)

Taking into account the quality value of each object
(equation 4), we classify them into two categories by
using a classification model. Considering that linear
models do not classify efficiently the Web objects due
to their inefficiency to find correlations among Web
objects’ features [4], we make use of the logistic
sigmoid function. Specifically, the logistic sigmoid
function has been widely used by neural networks [2]
to introduce nonlinearity in the model. Thus, it has
been proven useful in case of two-class classification
[4]. Here, the following model splits the objects’
population into two groups (dynamic and static) with
respect to the equation 4:

T
iq

T
i

e
qN

−−
=

1
1)((5)

Eventually, the above nonlinear model (equation 5)
will classify each object i into one of the two desired
categories: volatile ()0)(≅T

iqN or static

()1)(≅T
iqN . A similar model has also been used in

[4] in order to predict the cache utility value of each
cached object by using features from Web users’
traces.

In this paragraph, a description of the R-P method is
given. Initially, we consider that a warm-up phase for
the surrogate servers’ caches has been preceded where
the replicas of each surrogate server have been
classified into volatile and static with respect to the
equation 5. Furthermore, it is critical to consider a time
period T for resetting the quality values of replicas.
The functionality of the R-P method is depicted by the
flowchart in Figure 1. When a surrogate server receives
a request for an object, the quality values of replicas

are updated with respect to equation 4. Then, a check
to the static cache is performed. If it is a hit, the request
is served; else another check to the dynamic cache is
performed. In case the requested object is in the cache,
it is served and the cache’s content is updated with
respect to the quality values of objects. In case of a
cache miss, the requested object is pulled from another
server (selected based on proximity measures) and
stored into the dynamic cache. Then, the end-user
receives the cached object. The objects of the dynamic
part of cache will be available in surrogate server’s
cache for future requests as long as they are allowed by
the cache replacement policy. According to this policy,
if there is no space to store this object, it is removed
from the dynamic part of cache the object which has
the lowest quality value. The quality value of each
object is calculated by the equation 4. The above
procedure is repeated until the time threshold (T) is
exceeded. In such a case, all the objects, which are
stored in surrogate server, are re-classified according to
the equation 5 and their quality values are reset. Thus,
for small values of T, R-P captures more efficiently the
sudden changes of Web users’ request streams.

Figure 1. An Outline of R-P Approach

3. Simulation Testbed
CDNs host real time applications and they are not

used for research purposes. Therefore, for the
experimentation needs it is crucial to implement a
simulation testbed.

In this work, we use the CDNsim – a tool that
simulates a main CDN infrastructure. A demo of our
tool can be found at http://oswinds.csd.auth.gr/
~cdnsim/. It is based on the ΟΜΝeΤ++ library which
provides a public-source, component-based, modular
and open-architecture simulation environment with
strong GUI support and an embeddable simulation

kernel. All CDN networking issues, like surrogate
server selection, propagation, queueing, bottlenecks
and processing delays are computed dynamically via
CDNsim, which provides a detailed implementation of
the TCP/IP protocol, implementing packet switching,
packet re-transmission upon misses, objects’ freshness
etc. Here, the CDNsim simulates a CDN with 20
homogeneous surrogate servers which have been
located all over the world. The size of each surrogate
server has been defined as the percentage of the total
bytes of the Web server content. Finally, the
outsourced content has been replicated to surrogate
servers using the il2p algorithm [5]. According to the
il2p, the outsourced objects are placed to the surrogate
servers with respect to the total network’s latency and
the objects’ load. This policy is preferred since it
achieved the highest performance.

Considering that the role of CDNs is primarily
focused on improving the QoS of the “resource-
hungry” applications in Web sites, such as Digital
Television, Interactive TV, Video On Demand (VOD),
etc., streaming media services are of interest in CDNs.
In this context, we used the MediSyn workload
generator described in [7], which generates realistic
streaming media server workloads. Specifically, this
generator reflects the dynamics and evolution of
content at media sites and the change of access rate to
this content over time. Furthermore, the MediSyn
changes the popularity of objects over a daily time
scale within a certain period of time.

In this work, we have generated a data set, which
represents the HP Corporate Media Solutions Server
(HPC) Web site. Table 1 presents the characteristics of
the examined data sets. Finally, concerning the
network topology, we used an AS-level Internet
topology with a total of 3037 nodes. This topology
captures a realistic Internet topology by using BGP
routing data collected from a set of 7 geographically-
dispersed BGP peers.

4. Experimentation
4.1. Examined Policies

The proposed approach (R-P) integrates both
caching and replication in CDNs. Thus, we evaluate
the R-P’s performance with respect to the above stand-
alone approaches. Furthermore, we compare R-P with
SRC. Previous results [6] have shown that SRC is the
leading algorithm in the literature for integrating
caching and replication over CDNs. Specifically, the
following approaches are examined:
• SRC: A placement similarity measure is used in

order to evaluate the level of integration of Web
caching with content replication.

• Caching: All the storage capacity of the surrogate
servers is allocated to caching. The selected cache
replacement policy is LRU since it is used by the
most proxy cache servers (e.g., Squid).

• Replication: All the objects are replicated
statically in each surrogate server using all the
available storage capacity.

Table 1. Parameters for Generated Data Set

Characteristic HPC
Log duration 91 days
Number of requests 1000000
Number of Web objects 1434
Size of Web site 3.8Gbytes

Figure 2. Mean Response Time vs. T

Figure 3. Mean Response Time vs. Cache size

4.2. Evaluation Measures
The measures used in the experiments are

considered to be the most indicative ones for
performance evaluation. Specifically, the following
measures are used:
• Mean Response Time (MRT): the expected time

for a request to be satisfied. It is the summation of
all requests’ times divided by their quantity. This
measure expresses the users’ waiting time in order
to serve their requests and it should be as small as
possible.

• Byte Hit Ratio (BHR): it is defined as the fraction
of the total number of bytes that were requested
and existed in the cache of the closest to the
clients surrogate server to the number of bytes that
were requested. A high byte hit ratio improves the

network performance (i.e., bandwidth savings, low
congestion).

• Hit Ratio (HR): it is defined as the fraction of
cache hits to the total number of requests. A high
hit ratio indicates an effective cache replacement
policy and defines an increased user servicing,
reducing the average latency.

 4.3. Evaluation
Firstly, we investigate the proposed approach R-P

with respect to the mean response time, with varying T.
The results are reported in Figure 2. The x-axis
represents the T which is expressed in days (24 hours
reflect to 1 day), whereas, the y-axis represents time
units according to CDNsim’s internal clock and not
some physical time quantity, like seconds, minutes. So
the results should be interpreted by comparing the
relative performance of the algorithms. This means that
if one technique gets a response time 0.5 and some
other gets 1.0, then in the real world the second one
would be twice as slow as the first technique.

In general, we observe that as the time period (T)
for taking place a reclassification of replicas increases,
the performance of R-P is deteriorated. In other words,
this means that the performance of the R-P captures
better the sudden changes of Web users’ request
streams when the replicas are reclassified in small time
periods. For instance, the lowest mean response time
has been observed when the classification takes place
every two days. This observation is common
independent of the surrogate servers’ cache sizes.
Regarding the cache size of surrogate servers the R-P
presents lower mean response times for small-scale
cache sizes. The cache sizes of surrogate servers are
expressed in terms of the percentage of the total size of
the examined Web site.

Secondly, we test the performance of the examined
integrated approaches (SRC and R-P) with respect to
the cache size. Due to lack of space, we have
considered that the time period T takes the value of two
days. The results are depicted in Figure 3. The x-axis
represents the cache size of each surrogate server. We
observe that the R-P outperforms the SRC approach
achieving a delicate balance between caching and
replication. Furthermore, we observe that as the cache
size of surrogate servers grows, the mean response
time of the examined policies increases in a linear way.

Figure 4 presents the BHR of the examined policies.
The x-axis represents the cache size, whereas, the y-
axis represents the BHR. The R-P is the leading
algorithm, achieving the highest BHR. As we
expected, the BHR of the examined algorithms
increases with respect to the surrogate server’s cache
size. In particular, the larger the cache size is, the
higher the BHR is. As far as the caching approach is

T

concerned, it presents higher BHR than the replication
one. The close performance of SRC and caching is
explained by the fact that a large percentage of storage
space in the SRC is allocated to Web caching (about
85%). On the other hand, the pure replication yields
poor performance and it seems that it is not affected by
the cache size. This behavior was expected since the
pure replication does not manage in an efficient way
the storage space. Quite similar results are also
obtained when we evaluate the HR of the examined
algorithms. The results are reported in Figure 5. As
previous, the R-P is the leading algorithm, indicating
the highest HR comparing with the examined
approaches.

To summarize the experiments, we can conclude
that the integration of replication with caching leads to
improved performance in terms of perceived network
latency, byte hit ratio and hit ratio. The results
reinforce the initial intuition that replicating replicas
statically for content availability along with caching
policies improves the Web performance. The proposed
method outperforms the existing integrating approach,
achieving a delicate balance between replication and
caching. Furthermore, the performance of R-P seems
to handle efficiently the sudden changes of Web users’
request streams.

5. Conclusion

In this paper, we dealt with the potential
performance benefits that can be reaped by combining
both caching and replication in CDNs. The challenge
for such an approach is to determine which objects
would be devoted in caching so as the CDN’s server
may be used both as a replicator and as a proxy server.
In this paper, we propose a nonlinear non-parametric
model which classifies the CDN’s server cache into
two parts. Inspired by the neural networks, we make
use of the logistic sigmoid function in order to split the
outsourced objects into two groups (volatile and static).
The experimentations’ results show that the proposed
approach achieves a delicate balance between
replication and caching towards improving the CDN’s
performance. Furthermore, the R-P approach captures
in an efficient way the sudden changes of Web users’
request streams, which usually occur in streaming
media Web sites.

Figure 4. BHR vs. Cache Size

Figure 5. HR vs. Cache Size

6. Acknowledgments
This work has been supported partially by the Marie

Curie EU project (Contract No. 042467) and by the
Hrakleitos project under the EPEAEK Framework.

7. References
[1] S. Bakiras, T. Loukopoulos: Combining replica

placement and caching techniques in content
distribution networks. Computer Communications,
28(9): 1062-1073, 2005.

[2] C.M. Bishop: Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[3] Y. Chen, L. Qiu,W. Chen, L. Nguyen, R. H. Katz:
Efficient and adaptive Web replication using content
clustering. IEEE Journal on Selected Areas in
Communications, 21(6): 979-994, 2003.

[4] T. Koskela, J. Heikkonen, K. Kaski: Web cache
optimization with nonlinear model using object features.
Computer Networks, 43(6): 805-817, 2003.

[5] G. Pallis, K. Stamos, A. Vakali, A. Sidiropoulos, D.
Katsaros, Y. Manolopoulos: Replication based on
objects load under a content distribution network.
Proceedings of the 2nd WIRI (In conjunction with
ICDE'06), Atlanta, Georgia, USA, Apr. 2006.

[6] K. Stamos, G.Pallis, C.Thomos, A.Vakali: A similarity
based approach for integrated Web caching and content
replication in CDNs. Proceedings of the 10th IDEAS,
New Delhi, India, Sep. 2006.

[7] W. Tang, Y. Fu, L. Cherkasova, A. Vahdat: Modeling
and generating realistic streaming media server
workloads. Computer Networks, 51(1): 336-356, 2007.

