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Abstract 

 
Content Delivery Networks (CDNs) provide an 

efficient support for serving “resource-hungry” 
applications while minimizing the network impact of 
content delivery as well as shifting the traffic away 
from overloaded origin servers. However, their 
performance gain is limited since the storage space in 
CDN’s servers is not used optimally. In order to 
manage their storage capacity in an efficient way, we 
integrate caching techniques in CDNs. The challenge 
is to decide which objects would be devoted to caching 
so as the CDN’s server may be used both as a 
replicator and as a proxy server. In this paper we 
propose a nonlinear non-parametric model which 
classifies the CDN’s server cache into two parts. 
Through a detailed simulation environment, we show 
that the proposed technique can yield significant 
reduction in user-perceived latency as compared with 
other heuristic schemes. 

 
1. Introduction 

CDNs (Content Delivery Networks) have been 
proposed to accelerate the delivery of the Web content. 
On a daily basis, users use the Internet for “resource-
hungry” applications which involve content such as 
video, audio on-demand and distributed data. For 
instance, the Internet video site YouTube hits more 
than 100 million videos per day. Estimations of 
Youtube's bandwidth go from 25TB/day to 200TB/day. 
At the same time, more and more Web content servers 
are delivering greater volumes of content but with high 
sensitivity to delays. For instance, a delay on financial 
data-feed Web site (e.g., USD to EUR currency stock 
markets) may cause serious problems to the end-users. 

A CDN is an overlay network across Internet, 
which consists of a set of surrogate servers (distributed 
around the world), routers and network elements. 
Surrogate servers are the key elements in a CDN, 
acting as replicators. They store copies (also called 
replicas) of identical content, such that clients' requests 
are satisfied by the most appropriate site. Once a client 
requests for content on an origin server (managed by a 

CDN), client’s request is directed to the appropriate 
CDN's surrogate server.  

 
1.1. Paper’s Motivation & Contribution 

While the CDNs result in significant benefits, in 
terms of availability, stability and Web transfer speed, 
their performance increase is limited due to the facts 
that: the storage space in surrogate servers is not used 
optimally [1], the content which is replicated in the 
surrogate servers remains static for a considerable 
period of time.  

In order to alleviate the above problems we deploy 
caching in conjunction with replication. Specifically, 
we consider a CDN whose surrogate servers act 
simultaneously both as proxy servers and content 
replicators. According to the literature, the resulting 
problem of finding which objects’ replicas should be 
created where, given that any free space will be used 
for caching, is NP-complete [1]. In this context, two 
heuristic approaches have been proposed [1, 6] towards 
managing the capacity of surrogate servers. 
Specifically, the key issue of Hybrid [1] and SRC [6] is 
to determine the percentage of storage space of CDN’s 
surrogate servers that would be devoted in caching. 
However, these approaches are offline and, 
consequently, are unable to handle efficiently the 
sudden changes in the interest of the end users. This is 
a crucial issue if we consider that the most popular 
objects remain popular for a short time period [3]. 
Furthermore, the Hybrid algorithm suffers from 
“administratively” tunable parameters which determine 
the percentage of storage space for caching [1]. 

In this context, the ideal content management policy 
of surrogate servers should: (a) Handle the sudden 
changes of Web users’ request streams; (b) Lack of any 
administratively tunable parameters; (c) Achieve a 
delicate balance between replication and caching 
towards improving the CDN’s performance. The major 
contributions of this work are: 
• Proposing a CDN framework where the surrogate 

servers act both as proxy caches and static content 
replicators under a cooperative environment. 

• Presenting a method, the so-called R-P (Reward-
Penalty), which partitions the surrogate servers’ 



 

cache into two parts: The first part is devoted to 
caching and the second one is devoted to 
replication. The replicas are classified to one of 
the above categories by using a nonlinear model.  
The nonlinear model is preferred since it classifies 
better the replicas than any linear model [4]. 

• Providing an experimentation showing that our 
method performs better than the examined 
algorithms. We evaluate the performance of the 
proposed method using a dataset which captures 
the workloads of a streaming media Web site. 

The rest of this paper is organized as follows. In 
Section 2 we present the proposed R-P method. 
Section 3 presents the simulation testbed, and section 4 
evaluates the experiment results. Finally, the 
conclusion of our work is given in section 5. 
 
2. The R-P Method 

We consider a CDN framework, where the 
surrogate servers act both as dynamic content 
replicators (proxy caches) and static ones under a 
cooperative environment. During a training time period 
the Web objects of each surrogate server are classified 
into two categories by using a nonlinear model: 
volatile and static. The volatile objects are replicated to 
the dynamic part of cache, whereas, the static ones are 
replicated to the static part of cache.  

In the proposed framework, the available storage 
capacity of each surrogate server i, which is denoted by 

)(s
iK , is partitioned into two parts: The first one 

( )(s
iS ) is used for replicating content statically and the 

second one ( )(s
iD ) is used for replicating content 

dynamically (running a cache replacement policy): 
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From the above equation it holds that if 0)( =s
iD  the 

cooperative push-based scheme is applied where, the 
surrogate servers cooperate upon cache misses and the 
content of the caches remains unchanged. On the other 

hand, if 0)( =s
iS  the surrogate servers turn into 

cooperative proxy caches (dynamic caching only). 
Our proposed method assigns a quality value “q” 

for each object which has been replicated in surrogate 
servers. In particular, the quality value of replicas is 
expressed by the users’ interest (increasing its value by 
using equation 2) or the lack of users’ interest 
(decreasing its value by using equation 3) for the 
underlying replica. The intuition behind is that each 
time t an object is requested, it is rewarded by the 
function R(t). At the same time, all the other replicas 
receive a penalty by the function P(t), since they have 

not been requested. Specifically, the following 
functions have been defined: 
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The '
it expresses the time of the previous user’s 

request for the specific object i and T denotes the 
training time period. Regarding the relation between t 
and '

it , it holds Ttt i ≤− ' . Therefore, it is obviously 

occurred that R(t) ]1,0[∈  and P(t) ]0,1[−∈ . The 
quality value of each object i for a specific time T’ is 
calculated by the sum of the total reward and penalty 
values as follows:  
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Taking into account the quality value of each object 
(equation 4), we classify them into two categories by 
using a classification model. Considering that linear 
models do not classify efficiently the Web objects due 
to their inefficiency to find correlations among Web 
objects’ features [4], we make use of the logistic 
sigmoid function. Specifically, the logistic sigmoid 
function has been widely used by neural networks [2] 
to introduce nonlinearity in the model. Thus, it has 
been proven useful in case of two-class classification 
[4]. Here, the following model splits the objects’ 
population into two groups (dynamic and static) with 
respect to the equation 4:  

T
iq

T
i

e
qN

−−
=

1
1)( (5) 

Eventually, the above nonlinear model (equation 5) 
will classify each object i into one of the two desired 
categories: volatile ( )0)( ≅T

iqN  or static 

( )1)( ≅T
iqN . A similar model has also been used in 

[4] in order to predict the cache utility value of each 
cached object by using features from Web users’ 
traces. 

In this paragraph, a description of the R-P method is 
given. Initially, we consider that a warm-up phase for 
the surrogate servers’ caches has been preceded where 
the replicas of each surrogate server have been 
classified into volatile and static with respect to the 
equation 5. Furthermore, it is critical to consider a time 
period T for resetting the quality values of replicas. 
The functionality of the R-P method is depicted by the 
flowchart in Figure 1. When a surrogate server receives 
a request for an object, the quality values of replicas 



 

are updated with respect to equation 4. Then, a check 
to the static cache is performed. If it is a hit, the request 
is served; else another check to the dynamic cache is 
performed. In case the requested object is in the cache, 
it is served and the cache’s content is updated with 
respect to the quality values of objects. In case of a 
cache miss, the requested object is pulled from another 
server (selected based on proximity measures) and 
stored into the dynamic cache. Then, the end-user 
receives the cached object. The objects of the dynamic 
part of cache will be available in surrogate server’s 
cache for future requests as long as they are allowed by 
the cache replacement policy. According to this policy, 
if there is no space to store this object, it is removed 
from the dynamic part of cache the object which has 
the lowest quality value. The quality value of each 
object is calculated by the equation 4. The above 
procedure is repeated until the time threshold (T) is 
exceeded. In such a case, all the objects, which are 
stored in surrogate server, are re-classified according to 
the equation 5 and their quality values are reset. Thus, 
for small values of T, R-P captures more efficiently the 
sudden changes of Web users’ request streams. 

 
Figure 1. An Outline of R-P Approach 

3. Simulation Testbed 
CDNs host real time applications and they are not 

used for research purposes. Therefore, for the 
experimentation needs it is crucial to implement a 
simulation testbed.  

In this work, we use the CDNsim – a tool that 
simulates a main CDN infrastructure. A demo of our 
tool can be found at http://oswinds.csd.auth.gr/ 
~cdnsim/. It is based on the ΟΜΝeΤ++ library which 
provides a public-source, component-based, modular 
and open-architecture simulation environment with 
strong GUI support and an embeddable simulation 

kernel. All CDN networking issues, like surrogate 
server selection, propagation, queueing, bottlenecks 
and processing delays are computed dynamically via 
CDNsim, which provides a detailed implementation of 
the TCP/IP protocol, implementing packet switching, 
packet re-transmission upon misses, objects’ freshness 
etc. Here, the CDNsim simulates a CDN with 20 
homogeneous surrogate servers which have been 
located all over the world. The size of each surrogate 
server has been defined as the percentage of the total 
bytes of the Web server content. Finally, the 
outsourced content has been replicated to surrogate 
servers using the il2p algorithm [5]. According to the 
il2p, the outsourced objects are placed to the surrogate 
servers with respect to the total network’s latency and 
the objects’ load. This policy is preferred since it 
achieved the highest performance. 

Considering that the role of CDNs is primarily 
focused on improving the QoS of the “resource-
hungry” applications in Web sites, such as Digital 
Television, Interactive TV, Video On Demand (VOD), 
etc., streaming media services are of interest in CDNs. 
In this context, we used the MediSyn workload 
generator described in [7], which generates realistic 
streaming media server workloads. Specifically, this 
generator reflects the dynamics and evolution of 
content at media sites and the change of access rate to 
this content over time. Furthermore, the MediSyn 
changes the popularity of objects over a daily time 
scale within a certain period of time.  

In this work, we have generated a data set, which 
represents the HP Corporate Media Solutions Server 
(HPC) Web site. Table 1 presents the characteristics of 
the examined data sets. Finally, concerning the 
network topology, we used an AS-level Internet 
topology with a total of 3037 nodes. This topology 
captures a realistic Internet topology by using BGP 
routing data collected from a set of 7 geographically-
dispersed BGP peers. 
 
4. Experimentation 
4.1. Examined Policies 

The proposed approach (R-P) integrates both 
caching and replication in CDNs. Thus, we evaluate 
the R-P’s performance with respect to the above stand-
alone approaches. Furthermore, we compare R-P with 
SRC. Previous results [6] have shown that SRC is the 
leading algorithm in the literature for integrating 
caching and replication over CDNs. Specifically, the 
following approaches are examined: 
• SRC: A placement similarity measure is used in 

order to evaluate the level of integration of Web 
caching with content replication.  



 

• Caching: All the storage capacity of the surrogate 
servers is allocated to caching. The selected cache 
replacement policy is LRU since it is used by the 
most proxy cache servers (e.g., Squid). 

• Replication: All the objects are replicated 
statically in each surrogate server using all the 
available storage capacity.  

 
Table 1. Parameters for Generated Data Set 

Characteristic HPC 
Log duration 91 days 
Number of requests 1000000 
Number of Web objects 1434 
Size of Web site 3.8Gbytes 

 
Figure 2. Mean Response Time vs. T 

 
Figure 3. Mean Response Time vs. Cache size 

4.2. Evaluation Measures 
The measures used in the experiments are 

considered to be the most indicative ones for 
performance evaluation. Specifically, the following 
measures are used: 
• Mean Response Time (MRT): the expected time 

for a request to be satisfied. It is the summation of 
all requests’ times divided by their quantity. This 
measure expresses the users’ waiting time in order 
to serve their requests and it should be as small as 
possible. 

• Byte Hit Ratio (BHR): it is defined as the fraction 
of the total number of bytes that were requested 
and existed in the cache of the closest to the 
clients surrogate server to the number of bytes that 
were requested. A high byte hit ratio improves the 

network performance (i.e., bandwidth savings, low 
congestion). 

• Hit Ratio (HR): it is defined as the fraction of 
cache hits to the total number of requests. A high 
hit ratio indicates an effective cache replacement 
policy and defines an increased user servicing, 
reducing the average latency. 

 4.3. Evaluation 
Firstly, we investigate the proposed approach R-P 

with respect to the mean response time, with varying T. 
The results are reported in Figure 2. The x-axis 
represents the T which is expressed in days (24 hours 
reflect to 1 day), whereas, the y-axis represents time 
units according to CDNsim’s internal clock and not 
some physical time quantity, like seconds, minutes. So 
the results should be interpreted by comparing the 
relative performance of the algorithms. This means that 
if one technique gets a response time 0.5 and some 
other gets 1.0, then in the real world the second one 
would be twice as slow as the first technique. 

In general, we observe that as the time period (T) 
for taking place a reclassification of replicas increases, 
the performance of R-P is deteriorated. In other words, 
this means that the performance of the R-P captures 
better the sudden changes of Web users’ request 
streams when the replicas are reclassified in small time 
periods. For instance, the lowest mean response time 
has been observed when the classification takes place 
every two days. This observation is common 
independent of the surrogate servers’ cache sizes. 
Regarding the cache size of surrogate servers the R-P 
presents lower mean response times for small-scale 
cache sizes. The cache sizes of surrogate servers are 
expressed in terms of the percentage of the total size of 
the examined Web site. 

Secondly, we test the performance of the examined 
integrated approaches (SRC and R-P) with respect to 
the cache size. Due to lack of space, we have 
considered that the time period T takes the value of two 
days. The results are depicted in Figure 3. The x-axis 
represents the cache size of each surrogate server. We 
observe that the R-P outperforms the SRC approach 
achieving a delicate balance between caching and 
replication. Furthermore, we observe that as the cache 
size of surrogate servers grows, the mean response 
time of the examined policies increases in a linear way.  

Figure 4 presents the BHR of the examined policies. 
The x-axis represents the cache size, whereas, the y-
axis represents the BHR. The R-P is the leading 
algorithm, achieving the highest BHR. As we 
expected, the BHR of the examined algorithms 
increases with respect to the surrogate server’s cache 
size. In particular, the larger the cache size is, the 
higher the BHR is. As far as the caching approach is 

T



 

concerned, it presents higher BHR than the replication 
one. The close performance of SRC and caching is 
explained by the fact that a large percentage of storage 
space in the SRC is allocated to Web caching (about 
85%).  On the other hand, the pure replication yields 
poor performance and it seems that it is not affected by 
the cache size. This behavior was expected since the 
pure replication does not manage in an efficient way 
the storage space. Quite similar results are also 
obtained when we evaluate the HR of the examined 
algorithms. The results are reported in Figure 5. As 
previous, the R-P is the leading algorithm, indicating 
the highest HR comparing with the examined 
approaches. 

To summarize the experiments, we can conclude 
that the integration of replication with caching leads to 
improved performance in terms of perceived network 
latency, byte hit ratio and hit ratio. The results 
reinforce the initial intuition that replicating replicas 
statically for content availability along with caching 
policies improves the Web performance. The proposed 
method outperforms the existing integrating approach, 
achieving a delicate balance between replication and 
caching.  Furthermore, the performance of R-P seems 
to handle efficiently the sudden changes of Web users’ 
request streams. 

 
5. Conclusion 

In this paper, we dealt with the potential 
performance benefits that can be reaped by combining 
both caching and replication in CDNs. The challenge 
for such an approach is to determine which objects 
would be devoted in caching so as the CDN’s server 
may be used both as a replicator and as a proxy server. 
In this paper, we propose a nonlinear non-parametric 
model which classifies the CDN’s server cache into 
two parts. Inspired by the neural networks, we make 
use of the logistic sigmoid function in order to split the 
outsourced objects into two groups (volatile and static). 
The experimentations’ results show that the proposed 
approach achieves a delicate balance between 
replication and caching towards improving the CDN’s 
performance. Furthermore, the R-P approach captures 
in an efficient way the sudden changes of Web users’ 
request streams, which usually occur in streaming 
media Web sites. 

 

 
Figure 4. BHR vs. Cache Size 

 
Figure 5. HR vs. Cache Size 
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