The Acceptability Semantics
for Logic Programs

A. C. Kakas

Dept. of Computer Science
University of Cyprus
Kallipoleos 75

Nicosia, Cyprus
antonis@jupiter.cca.ucy.cy

P. Mancarella
Dipartimento di Informatica
Universita di Pisa

Corso Italia, 40

56125 Pisa, Italy
paolo@di.unipi.it

Phan Minh Dung

Division of Computer Science
Asian Institute of Thechnology
GPO Box 2754

Bangkok 10501, Thailand
dung@cs.ait.ac.th

Abstract

We present a simple yet powerful semantics for Negation as Failure (NAF) in
logic programming, called the acceptability semantics. This is based on the
idea that NAF literals represent possible extensions of a given logic program,
provided that these satisfy an appropriate criterion, namely the acceptability
criterion. The importance of this semantics and the way it is formulated lies
in the fact that it allows us to abstract away NAF from the object-level syn-
tax of our representation language. This has two significant consequences.
First, it introduces a new more general, yet simpler, style of logic program-
ming which is closer to the logical specification of non-monotonic problems,
with the same basic computational paradigm of logic programming. Ad-
ditionally, the understanding of the NAF principle through acceptability
provides us with a general encapsulation of this non-monotonic reasoning
principle that can be applied to other, richer in language, representation
frameworks.

1 Introduction

This paper is concerned with the semantics of Negation as Failure (NAF') in
Logic Programming [2] and the extension of this non-monotonic reasoning
principle to more general representation frameworks. It proposes a way of
understanding NAF that can be adopted more generally to provide a simple
and natural representation framework close to the logical specification of
problems requiring non-monotonic reasoning.

The basic motivation behind this work is the view that NAF is first and
foremost a reasoning principle rather than a form of object-level negation.
We are thus interested in providing a direct formalization of the intuitive
principle “not p holds iff p fails to hold”. The resulting semantics is called
the acceptability semantics. We will show that this encompasses most of the
existing semantics for NAF and thus it can help to unify and simplify the
study of NAF in logic programming (LP, for short). More importantly, this
formalization of the NAF principle provides a more general encapsulation of
the principle that can be applied to other (richer in language) representation
frameworks outside normal LP. In fact, many of the existing non-monotonic
reasoning frameworks can be understood via this general NAF principle. In
LP itself this allows us to remove NAF from the object-level syntax of the
language, and thus the problem of the existence of two typesof negation
(explicit negation and NAYF') in the language disappears: NAF is elevated
into the semantics.

The work in this paper follows a series of recent works on related ideas.
It builds on the basic idea originating in [6] that NAF can be regarded as
hypotheses that can be added to a given logic program, provided that they
satisfy appropriate criteria. Whereas in [6] the criteria were expressed as
integrity constraints, in later work [3] the basic criterion takes the form of
acceptance relative to other possible conflicting extensions. The new ap-
proach of [3] was extended in [12]. The complexity aspects of this new
approach have been studied in [22]. In particular, the paper [12] ends with
the suggestion of the acceptability criterion as a simple and general seman-
tics for NAF that can encompass other previously studied semantics. The
current paper aims at presenting a proper formalization of the acceptability
semantics for NAF in LP and then at applying it to define more general
non-monotonic reasoning frameworks. The connection of these works to the
notion of acceptability has been studied in [11], where an argumentation
theoretic description of acceptability is proposed which we will be adopting
in this paper. Also, in [5] a weaker notion of acceptability in LP is stud-
ied and shown that it encompasses various semantics for NAF such as the
well-founded model and partial stable model semantics. The possibility of
extending the acceptability semantics outside LP has been studied in [10] us-
ing the argumentation theoretic description of [11]. In particular it is shown
that Default Logic [18] can be understood in this way. Similar results of
understanding Default Logic and other existing non-monotonic frameworks

in terms of different criteria for accepting hypotheses which are closely re-
lated to the acceptability have been obtained in [1]. An abstract framework
for argumentation is proposed in [4], in which it is possible to place these
previous approaches, although the criteria proposed in [4] are different from
the acceptability criterion used in this paper.

2 Acceptability Semantics in Logic Programming

In this section we will present and study the acceptability semantics for
normal LP, as proposed in [12], using the argumentation theoretic view sug-
gested in [11]. Our study starts from the object-level realization of NAF in
LP, which will point out the need of elevating back the NATF principle at the
semantics level, aiming at developing a framework where NAF is not explicit
in the language.

2.1 Motivation

In the LP framework, NAF is basically a realization of the Closed World
Assumption. Informally, it can be explained by the statement that, given
a logic program P, “not p holds (in P) iff p fails to hold (in P)”. In many
examples of its use in LP we can indeed see that NAF is not an object level
negation. Consider the rule

fly — bird, not abnormal.

Here the negative condition not abnormal is used as a test that abnormal
fails. It is a realization of the statement unless abnormal rather than a
representation of an object-level negative condition needed for fly to hold.
As a result, this negative condition would be absent in any framework that
aims to be closer to the natural representation of this default rule.

On the other hand, there are examples where NAF is used in place of
an object-level negation and therefore negative conditions should need to be
present in the representation. Examples of this are the following programs
for the even numbers and game playing, respectively:

even(0) — win(x) — move(z,y), not win(y)
even(s(z)) «— not even(z).

Using NAF in this way, we cannot represent fully complex problems. For
example, in the even program we do not capture that s(d), for any d which
is not a natural number, is also not even. On the contrary we can conclude
(incorrectly) even(s(d)). Also, we the above game rule we can not represent
games in which there are draw positions. If y is a draw position, and so
not win(y) holds, we will be able to derive (incorrectly) that any position
x from which a move to y exists is a winning position. The problem here
stems from the fact that NAF, which is to be understood as a form of CWA
to form negative assumptions, is used in place of the explicit object-level
negation —win(y). Although it is possible to modify the program suitably

to handle these cases, our aim is to study how this can be done by remaining
as close as possible to the natural representation of the problem.

This discussion indicates that, even in the case of normal LP, there is
the need for two types of negations, which must be properly separated one
at the object level and the other (NAF) at the metal-level. In section 4 we
will see one way to achieve this.

2.2 Acceptability Semantics of Normal Logic Programs

A series of recent works [3, 5, 6, 12] have studied NAF as a form of default
hypothesis that can be used to extend a given logic program. Thus, given a
normal logic program P we regard the set of negation as failure literals (naf
literals, for short)

B* = {not p| p € Herbrand Base of P}
as a set of (default) hypotheses with which we can extend the program P.
(We will assume that a logic program containing variables is a representation
of all its variable-free instances over its Herbrand Universe.)

In an extension PU H, H C B*, we reason using definite Horn logic,
where the naf literals not p appearing in P and H are treated as positive
atoms. The question of whether a subset H of B* can be accepted as an
extension of P depends on whether it obeys the NAF principle “not p holds
if and only if p fails to hold”.

The acceptability semantics, as suggested in [12], can be seen as a pro-
posal for the formalisation of this principle. The first thing to notice is that
the acceptability of the hypothesis not p depends on the possibility of deriv-
ing (or not) the contrary information p. Hence not p is in conflict with any
other set A of naf literals that, together with P, allows one to conclude p.
We say that such a set attacks not p. More generally, the notion of attack
between two sets of naf literals is the following.

Definition 2.1 Let P be a normal logic program and A, H C B*. Then A
attacks H iff there exists not p € H such that PUA + p. |

In the above definition, F stands for the usual provability relation of Horn
clause logic (recall that here naf literals are viewed as positive atoms). Then,
the acceptability of a set H C B* depends on the ability or not to derive con-
flicting information from B*, i.e. it depends on the possible attacks against
it. There are two cases for which it is easy to determine whether a hypoth-
esis not p is acceptable. When the program contains no rules for p, there
are no attacks against not p. Hence, {not p} is acceptable. Conversly, if
p is provable from the rules of the program without any further negative
assumptions, i.e. A = {} is an attack against not p, then {not p} is not
acceptable. In fact, with this interpretation of “p holds” as “there is an
acceptable attack against {not p}” and further with the interpretation of
“p fails to hold” not simply as “there is no attack to {not p}” but rather

as “any attack against {not p} is not acceptable”, we arrive at a recursive
interpretation of the NAF principle as acceptability given by
“H is acceptable iff any attack A against H is not acceptable.”

This interpretation has been formalised and studied in [5] in terms of the fix
points of an associated monotonic operator. This work has shown that the
least fix point of this operator corresponds to the well-founded model [23]
and the greatest fix points correspond to the preferred extensions [3] (and
therefore to any other semantics equivalent to this, e.g. partial stable models
[19].) This formalization can be generalised to cover extensions of these
semantics while, at the same time, avoiding the need to consider greatest fix
points. In fact, we can define the semantics fully in terms of the least fix
point of a more general acceptability operator, that defines an acceptability
relation satisfying the following specification.

Definition 2.2 (Specification of Acceptability for LP)
Let P be a normal logic program and Hg, H C B*. Then:
Ace(H, Hy) iff for any attack A against (H \ Hp) : mAcc(A, HU Hy). O

It is important to notice that acceptability is a binary relation on B*, i.e.
that the central notion is “H is acceptable w.r.t. Hy”, where Hy is regarded
as a given choice or context of hypotheses. The basic idea is to consider the
acceptability of a set H as a property relative to itself, i.e. in the context
where H is to be assumed. This context is defined non-deterministically
when we choose a set H among the whole set B*of hypotheses. We can
then use the hypotheses in H to justify themselves, i.e. to make themselves
acceptable by rendering attacking sets of hypotheses not acceptable.

Notice also that the attacks A against H that must be considered are
only those that attack the new part of H, namely H \ Hy. This subtraction
of Hgy is important as it is needed to ensure that attacks are not against
hypotheses in Hp, which we are in fact trying to adopt. In other words, the
notion of attack must be relative to a given set of hypotheses (namely “A
attacks H rel. to Hy”) that limits the attacks only to those that are against
the new hypotheses in H (a more detailed discussion regarding this issue
can be found in [12].) Before defining formally the acceptability relation, we
illustrate it with an example.

Example 2.3
P: p < not q
q— notp

Hy = {not p} is an acceptable extension of P, since any attack against H;
must contain {not ¢}. But any set containing not ¢ is counter-attacked by
H, which is trivially acceptable toitself. This shows how a set of hypotheses
is used as its own defence to render itself acceptable. Similarly, Hy = {not ¢}
is also an acceptable extension of P. O

2.3 A fix point definition of Acceptability

The acceptability relation is defined formally as the least fix point of a suit-
able operator F, obtained by unfolding its recursive specification above.

Definition 2.4 §
Let P be alogic program and R be the set of binary relations on 28" Then

F : R — R is defined as follows, for any Acc € R and H, Hy € 9887,

F(Ace)(H,Hy) iff for any attack A against (H \ Hy)
there exists an attack D against (A \ (H U Hy))
s.t. Ace(D, AU H U Hy).

It is easy to show that this operator is monotonic with respect to C.

Definition 2.5 (Acceptability relation and acceptable extensions)
Let P be a logic program and F the operator as in Def. 2.4. Then:

(i) the acceptability relation Acc of P is the least fix point of F

(ii) given H C B*, PU H is an acceptable extension of P iff Ace(H,{}). O

Proposition 2.6 ' Let P be a normal logic program and Acc its acceptabil-
ity relation. Then:

(i) there exists at least one acceptable extension of P
(ii) if H C Hg then Acc(H, Hy)

(iii) if Acc(H,{}) then P U H is consistent, i.e. for no p both not p € H
and PU H p. O

Proposition 2.6(ii) shows how Def. 2.5 effects the desired property of taking
a set of hypotheses Hg as an a-priori given set under which we want to
investigate the acceptability of some other set of hypotheses. Proposition
2.6(iii) shows that inconsistency is understood as self-attack. Let us illustrate
the above definitions with an example that emphasizes the recursive nature
of acceptability.

Example 2.7
P: p «— not q T+ notp
q<—notr ST

L All the proofs are omitted and are reported in [13].

We note here that a program like the previous one can be generated by
the stable-marriage problem presented and discussed in [4] (see also [13]).
The set H = {not p} is not acceptable since, in the context of H, its attack
{not ¢} becomes acceptable. In fact, any attack against {not ¢} must contain
{not r} and therefore can itself be attacked by H (since it derives r) which
is acceptable to itself. Now the set {not s} is acceptable, since its attacks
must contain H = {not p} and hence are not acceptable. O

Theorem 2.8 Let P be a logic program. Then any stable model [8], par-
tial stable model [19], stationary expansion [17], preferred extension [3] and
stable theory [12] corresponds to an acceptable extension of P. |

Furthermore, there are programs for which the acceptability semantics gives
additional extensions which are not captured by these other semantics, such
as example 2.7. Theorem 2.8 deals with the credulous semantics for logic
programs. Turning to the skeptical semantics, it can be shown (see [12])
that the well-founded model [23] of any logic program corresponds to an
acceptable extension. More importantly, we can define a strong form of
acceptability that captures and extends the well-founded semantics.

Definition 2.9 Let P be a logic program and H C B*. Then H is defined
to be strongly acceptable to P, (denoted by Accsr(H)) if:

Acegr(H) iff for any attack A of H : = Acc(A,{}),
where Acc is the (credulous) acceptability relation of Def. 2.5. O

Essentially, a set H is strongly acceptable if there is no possible non-deter-
ministic choice of hypotheses that is acceptable and attacks H.

Definition 2.10 The skeptical acceptable semantics of P is given by its
maximal strongly acceptable extension. |

Example 2.7 shows that the skeptical acceptability semantics can be seen
as an extension of the well-founded semantics. Its skeptical acceptability
semantics is given by H = {not s} whereas the well-founded semantics does
not assign a value to s or not s. Note that to capture the well-founded se-
mantics exactly (see [5]) we need to restrict our notion of strongly acceptable
as follows:
Acewp(H) iff for any attack A of H, ~Acewr(A).

We note here that in many cases it is sufficient to work with approximations
of the acceptability semantics given by the various iterations (or approxima-
tions of these iterations) of the fix point operator defined in Def. 2.4. An
important example of such an approximation is given by admissibility [3].
This will be used in Section 4 to show and motivate the connection between
ordinary LP with NAF in the object-level syntax and the new framework of
LP that we are proposing, where NAF is absent from the language.

3 General Theory of Acceptability

The acceptability semantics for normal LP can be applied to more general
representation frameworks. To do this we need to abstract some of the cen-
tral notions of the semantics, as applied to LP, and then apply the same
ideas referring to a different underlying representation framework. The cen-
tral notions in the LP case are the notions of attack and acceptability. In
our generalization, we keep the notion of acceptability fixed and simply use
the attacking relation as a parameter on which acceptability depends.

Definition 3.1 A non-monotonic reasoning framework is given by a mono-
tonic background logic £ along with a binary attacking relation attack(T,T")
between sets of sentences (theories) in L.]

Given a theory 7 in a non-monotonic reasoning framework, we have the
following defining axioms for acceptability.

Definition 3.2 (Azioms of acceptability)
Let 7 be a theory in a non-monotonic reasoning framework. Then the

acceptability relation Ace on 7 is specified via the following axioms. For
any 1,1, C T :

(al) Ace(T,Ty)if T CTy
(a2) Ace(T,Tp) if for any attack 7' against T rel. to Ty, ~Ace(T', T U Tp).

a

Note that (a2) requires the notion of attack relative to a given subtheory
To of sentences. This is a generalization of the subtraction (H \ Hp) that
we have in the Def. 2.4 for the LP case, where the sentences in H and Hg
are simple assertions of NAF literals. This notion captures the fact that
To should be considered as given, and consequently any attack 7”7 against
T should not at the same time be an attack against Ty. In other words
T’ should not attack 7y in exactly the same way it attacks 7. To see the
importance of this notion consider Ace(7T,{}). For T to be acceptable to
{}, it is necessary, for any attack 7" against 1" (rel. to {}), that T counter-
attacks T’ (rel. to T'). Now, if 77 contains statements that belong to T, the
required counter-attack against 7/ must be a genuine attack against 7', that
is it can not be isolated as an attack against the part of 7’ that also belongs
to T.

We will thus require that this notion of relative attack has the following
properties:

(1) if 7" attacks T and T’ does not attack Ty then 7" attacks T rel. to Ty

(2) if T C T, then there exists no T” s.t. T' attacks T rel. to Tp.

The existence of the acceptability relation and semantics in a general non-
monotonic reasoning framework follows in exactly the same way as for the
special case of normal LP in Proposition 2.6. The associated fix point oper-
ator is defined in the same way as in Def. 2.4, where we replace the specific
form of relative attack with its general form.

Definition 3.3 Let 7 be a theory in a non-monotonic reasoning framework
and R be the set of binary relations on 27. Then F : R — R is defined as
follows, for any Acc € R and T, Ty € 27:

F(Ace)(T,Ty) iff for any attack 7" against T rel. to Ty,
there exists an attack 7" against 7" rel. to (T U Tp)
s.t. Aee(T", T"UT UTy).

a

Definition 3.4 The (credulous) semantics for a theory 7 is the set of ac-
ceptable extensions of 7, i.e. the set of T'C 7 s.t. Ace(T,{}), Acc being the
least fix point of the operator F of Def. 3.3. O

The skeptical semantics of a non-monotonic reasoning framework can be
defined as in the LP case through a strong acceptability relation, as in Def.
2.9 and 2.10. As for LP, the definition of acceptability captures the following
informal abstraction of the NAF principle. Given a theory 7 that may
typically contain incompatible information, the acceptability relation gives
us suitable subsets T of 7 such that Ace(T,{}), which we can reason with.
Such a set 1" has the property that it can defend itself from any subset of 7
that would render it incompatible, i.e. it can defend itself from any attack.
The acceptability semantics for a general non-monotonic reasoning frame-
work is based on an attacking relation among theories. It is important to
relate this attacking relation to the background logic of the framework or,
in other words, to use an attacking relation that is naturally derived from
the background logic itself. For the case of LP, as analysed in the previous
section, the background logic is definite Horn logic and the notion of attack
is the one of Def. 2.1, that is it is defined through the conflict between not p
and p. Like in LP, we often have some natural notion of conflicting informa-
tion and then, roughly speaking, we can say that a theory 7" attacks another
theory T iff they derive conflicting information. The typical example of such
conflicting information is of course the case of a sentence and its explicit (or
classical) negation.

Definition 3.5 (Complements/Consistency)

Let £ be a background logic, ¢ a wif formula and ¢° a complement of ¢. We
say that ¢ and ¢ are in conflict. A theory 7' is inconsistent (or incompatible)
iff '+ ¢, ¢° for some formula ¢. Otherwise, we say that 1" is consistent (or
conflict-free). O

We thus assume that a non-monotonic framework comes with some notion
of complements and consistency of its theories. We then require that the
attacking relation obeys the following properties.

Property 3.6 (Properties of Attacks)
Let T" and T be two theories in L:

(1) if T' attacks T then there exists a wff ¢ such that T + ¢ and T' + ¢°;
(ii) if T' attacks T then T' attacks any superset of T';

(iii) if T is inconsistent, then T attacks T.]

Property 3.6(iii) ensures that any acceptable extension of a given theory T’
is consistent.

Theorem 3.7 Let T be a theory and T'C T such that Ace(T,{}). Then T
is consistent. O

Another important observation is that, if the attacking relation is symmetric,
then the acceptability semantics always reduces to consistency as the follow-
ing result shows. This can occur for example if the complement relation is
symmetric, i.e. (¢°)° = ¢.

Proposition 3.8 Let 7 be a theory in a non-monotonic reasoning frame-
work whose attacking relation is symmetric. Then T C T is acceptable to {}
iff T is consistent. O

The most interesting cases of the acceptability semantics occurs when the
attacking relation is not symmetric. Informally, in order to allow T” to attack
T we need to localise the incompatibility of 7" and 7"’ within 7". For example,
in the case of LP, where the given theory 7 = P U B*, the attacking relation
is not symmetric. We can understand this breaking of the symmetry in
different ways. One simple way is to regard the complement relation as non-
symmetric, namely the complement of not p is p but the reverse does not
hold. This understanding is not completely satisfactory in view of the fact
that it can not be applied to other frameworks where the conflicts are given
through explicit or classical negation (a symmetric form of complement.)
Another way of understanding this asymmetric attacking relation of LP is

based on the separation of any given theory 7 into the program P and the
set B*. This is defined as follows.

Definition 3.9 (Attack for logic programming)

Let P be a normal logic program and < the priority relation on P U B* that
assigns any sentence in B* lower priority than any sentence in P. Then,
for any H, A C P U B*, A attacks H ifI there exist a literal L and A’ C A,
H' C H such that:

(i) H Fuin L and A" k5 LC, and
(ii) there is no rule ¢ in A’ such that ¢ < @ for some rule ¢ in H’

where T F,,;, L denotes the fact that 7"+ L and no proper subset 77 of T’
is such that 77 F,.;, L. O

Notice that L stands for a positive or negative literal (p or not p resp.) and
L¢ denotes its symmetric complement (not p or p resp.). It is easy to see
that this attacking relation is equivalent to the one in Def 2.1.

This relatively simple alternative view of the attacking relation in LP is
very important as it will motivate the definition of a general non-monotonic
reasoning framework that can extend LP and, at the same time, allows us
to remove NAF from the object-level language.

Before presenting these issues, we mention here that that the general
theory of acceptability developed in this section can be applied in a straight-
forward way (see [13]) to give a semantics to extensions of LP such as dis-
junctive LP and extended LP with classical negation.

4 Logic Programming without negation as failure

In this section we present a concrete framework for non-monotonic reason-
ing, based on the general ideas and theory developed in section 3, which
encompasses and extends the frameworks of normal LP and its various ex-
tensions. We saw in section 3 that, in order to specify a non-monotonic
reasoning framework, we need to define its background logic, complements
and attacking relation.

Definition 4.1 (Background logic)
Formulae in the language of the framework are defined as L «— Ly,..., L,
where L, Ly,..., L, are positive or explicit negative literals. The only infer-
ence rule is the modus ponens rule

LHLl,...,Ln Ll,...,Ln
L

(n>0)]

We assume that, together with the set of sentences 7, we are given a priority
relation < on these sentences (where ¢ < 1 means that ¢ has lower priority
than). The role of the priority relation is to encode locally the relative
strength of rules in the theory, typically between contradictory rules. We
will require that < is irreflexive and antysimmetric.

Definition 4.2 (Non-Monotonic Theory or Program)
A theory (7,<) is a set of sentences 7 in £ together with a priority relation
< on the sentences of 7. O

Let us now proceed to define an appropriate notion of attack on these the-
ories. The only source of conflict that we have in a theory 7 is between a
literal I and its explicit negation =L, which is a symmetric form of com-
plement. The presence of the priority relation < on 7 allows us to define a
notion of attack which is in general non-symmetric.

Definition 4.3 (Attacks)
Let (7,<) be a theory and T,7' C 7. Then T" attacks T iff there exists L,
Ty CT' and To, C T such that

(1) T1 l_mzn L and T2 l_mzn -1
(ii) (I eTy,reTest. v <r) = (I eTy,reTyst. r<r). O

T Foin L means that T F L and that L can not be derived from any proper
subset of T. This definition is a generalization of the corresponding notion
of attack for LP as given in Def. 3.9. Notice also that the property “if T is
inconsistent then T attacks T is trivially satisfied by this attacking relation.

In this way, we have completed the definition of our non-monotonic rea-
soning framework according to Def. 3.1. Its semantics is given by acceptabil-
ity within the argumentation theoretic framework of section 3. As mentioned
in section 3, we can work with any suitable approximation of the acceptabil-
ity semantics. In this spirit, we will now consider the approximation given
by admissibility and show how logic programs with object-level NAF can
be equivalently understood as a specific type of theories in the above non-
monotonic reasoning framework.

Definition 4.4 (Admissibility)
Let (7,<) be a theory and T'C 7. Then T is admissible iff for any T CT
if T" attacks T then T attacks T’ rel. to T. O

This can be expressed equivalently as “T" is admissible iff T" is consistent and
for any TV C 7 if T' attacks T then T attacks T"” which is a form closer to
the original definition in [3].

Given a logic program, P, we define a corresponding theory D(P). This
transformation is motivated (see section 2) from the interpretation of not p
as unless p. For example, if we have a rule “p«— ¢q,not r” then this is
understood as “p holds if ¢ holds unless r holds, in which case this way of
deriving p can not apply”. The rule is then transformed into two sentences
“p—q”and “—p <« r”, and the second is assigned higher priority than the
first.

Definition 4.5 Let P be a logic program and r be a rule in P of the form
A~ Ly,...,L,. Then D(r), the default theory associated to r, is (T}, <,)
defined as follows. T, contains only the sentences generated by 1,2 and 3
below:

(1) A< A, belongs to T};

(2) A, — Aq,..., A, belongs to T, where Aq,..., A, is the conjunction
of all the positive atoms in Lq,..., Ly;

(3) for each not B in the conjunction Lq,..., L,, the rule = A, — B belongs
to T,

where A, is a new propositional letter. The priority relation, <,, contains
only the pairs 7" <, ", where ' is the rule introduced in (2) and r" is any
rule introduced in (3). O

Definition 4.6 Let P be a normal logic program. Then the corresponding
theory, D(P), is the non-monotonic theory (7p, <) defined as follows:

(1) Zp is the union of T, for every rule r in the program P

(2) for any »',r" in Tp, ' < ¢ iff ' <, #" for some rule r in P. O

We assume that the new propositional symbols introduced in D(P) associ-
ated with two different rules are distinct, even when these two rules have
the same head. In fact, this is the reason for introducing these new symbols
so that we can separate different rules in P for the same atom.

Example 4.7 The theory D(P) associated with the program P of example
2.3 is the following:

D(P): p — q —
p o— q g — p
< {lp =)<(p = q), (¢ =)<(~q¢ = p)}

where we have not introduced new symbols here since there is only one rule
for each propositional symbol of the original program. |

We note that a related transformation has been proposed in [14] to trans-
form extended logic programs with explicit negation and NAF to normal
logic programs containing only NAF. With this transformation of logic pro-
grams into non-monotonic theories we can show that admissibility in the two
frameworks coincides.

Theorem 4.8 Let P be a normal logic program, D(P) = (7Tp,>) its corre-
sponding theory, and a any positive atom in the original language of P. Then
for each admissible extension P U H there exists an admissible subtheory T
of Tp such that

(i) PUOHFaiff THa and (71) if not a € H then T If a.
Conversely, for each admissible subtheory T of Tp there exists an admissible
extension P U H such that:

(i))TFaif PUHF a and (i7) if Tt/ a then not a € H. O

In the above example 4.7 the admissible set of hypotheses {not p} corre-
sponds to the admissible subtheory {(q¢ <),(~¢g < p)} of 7p.

Hence LP with NAF in the object language can be simulated exactly in
terms of a subclass of non-monotonic theories that contain only explicit
negation. We also note that we can apply a Closed World Assumption
within an admissible (or more generally acceptable) subtheory T of D(P)
by assuming the negation of any atom a that does not follow from 7. The
resulting theory will always be consistent.

This subclass of theories corresponding to ordinary logic programs is
very specific, since it requires that all conditions of the rules in a theory are
positive atoms and the priority relation on the theory is of the form given
in Def. 4.6. In the new style of LP that we are advocating, both restrictions
can be lifted thus providing a more general representation framework.

Let us illustrate this new framework with a few examples. The usual
non-monotonic problem of “flying birds” can be represented by the theory

r: fly < bird 1 < T3

ro 1 —fly <« penguin 72 < T3

r3: fly «— superpenguin

rq: bird — penguin

Y5 PENGUIN — SUPETPENGUIN
This theory has acceptable extensions that can derive separately fly or —fly.
If we add to the theory “rg : superpenguin « 7 then there is no acceptable
extension that derives —fly.
The theory for representing the even numbers will now be written as

r1: even(0) —

ro : even(s(z)) — —even(x)

r5: —even(s(x)) — even(x)
with an empty priority relation. This does not suffer from the same prob-
lems encountered in the program with NAF as discussed in section 2. The
previous examples can be handled satisfactorily within the admissibility ap-
proximation of the acceptability semantics. There are however problems
where this approximation is not sufficient. One such example is the game
problem with draw positions, as discussed in section 2. The game program
is now represented as

r1 ¢ win(x) — move(x,y), "win(y)

ro : —win(z) — move(z,y), win(y)
with extra rules for move and an empty priority relation. Again this does
not suffer from the problems discussed in section 2. Other examples can be
found in [13].

5 Conclusions

We have proposed a framework for non-monotonic reasoning based on agen-
eral encapsulation, within an argumentation theoretic set up, of the NAF

principle in LP. The semantics of these frameworks is given via the accept-
ability relation. One of the results of adopting this approach is a new non-
monotonic framework based on LP where NAF is elevated to the semantics
with only explicit negation needed in the object-level language. The accept-
ability relation and the corresponding semantics have a naturally associated
proof theory that stems directly from their definition. This has been devel-
oped in [21] and applied to the special case of LP with object-level NAF' as
defined in section 2. This proof procedure shares all the basic characteristics
of the computational model of ordinary LP with NAF.

We believe that a suitable domain of application of the new LP framework
is the area of legislation [20]. This stems from the fact that the specification
of problems in this domain, where some of the rules (laws) act as exceptions
to other rules (laws), has naturally the form of the non-monotonic theories
in the proposed framework.

The framework we have proposed relies heavily on the existence of a
priority relation on its theories. The use of priorities and preference relations
for non-monotonic reasoning has been the subject of study of many other
previous works, e.g [7, 9, 15, 16] and further work is needed to study the
relation between our work and these earlier works.

Acknowledgements

The authors have benefited from discussions with R. A. Kowalski and F.
Toni, and from comments and suggestions of the anonymous referees. This
research was partly supported by the ESPRIT BRA 6810 (Compulog 2), and
PFT Sistemi Informatici e Calcolo Parallelo under grant no. 92.01564.PF69.
The second and third author acknwoledge support from the EEC activity
KIT011 - LPKRR. The third author was partly supported by the abduction
group at Imperial College, under a grant from Fujitsu.

References

[1] Bondarenko A., Toni F. and R.A. Kowalski. An assumption-based
Framework for Non-monotonic Reasoning. Proc. 2nd Int. Workshop
on Logic Programming and Non-Monotonic Reasoning, Lishon, 1993.

[2] Clark K.L. Negation as Failure. Logic and Databases (H. Gallaire and
J. MInker, eds.), Plenum, New York, 1978.

[3] Dung P. M. Negation as Hypothesis: An Abductive Foundation for
Logic Programming. Proc. 8th ICLP, MIT Press, Paris, 1991.

[4] Dung P. M. On the Acceptability of Arguments and its fundamental
role in Non-Monotonic Reasoning and logic programming. Proc. 13th
LJCAI 1993.

[5] Dung P. M., Kakas A.C. and P. Mancarella. Negation as Failure Revis-
ited. Technical Report, University of Pisa, 1992.

[6]

Eshghi K. and R. A. Kowalski. Abduction Compared with Negation by
Failure. Proc. 6th ICLP, Lisbon, (1989) 234-255.

Geffner H. Default Reasoning: Causal and Conditional Theories. MIT
Press, 1992.

Gelfond M. and V. Lifschitz. The Stable Model Semantics for Logic
Programming. Proc. 5th ICLP, MIT Press, Seattle, 1988.

Hunter A. Using priorities in non-monotonic proof theory. Technical
report, Imperial College, London, 1993.

Kakas A.C. Default Reasoning via Negation as Failure Proc. FCAI’92
Workshop on The theoretical foundations of Knowledge Representation
and Reasoning, (G. Lakemeyer and B. Nebel, eds), 1993.

Kakas A.C., Kowalski R.A. and F. Toni. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719-770, 1993.

Kakas A.C. P. Mancarella. Stable theories for Logic Programs. Proc.
Int. Symp. of Logic Programming, MIT Press, San Diego, 1991.

Kakas A.C., Mancarella P. and P.M. Dung. The Acceptability Semantics
for Logic Programming. Technical Report, University of Cyprus, 1994.

Kowalski R.A. and F. Sadri. Logic Programs with Exceptions. Proc.
7th ICLP, MIT Press, Jerusalem, 1990.

Laenens E., Sacca D. and D. Vermeir. Extending Logic Programming.
Proc. ACM SIGMOD Conference, Atlantic City, 1990.

Pereira L.M., Aparicio J.N. and J.J. Alferes. Non-Monotonic Resoning
with well-founded semantics. Proc. 8th ICLP, Paris, 1991.

Przymusinski T.C. Stationary Semantics for Disjunctive Logic Pro-
grams and Deductive Databases Proc. NACLP 90 (S. Deabray and M.
Hermenegildo, eds.), MIT Press, 40-60, 1990.

Reiter R. A Logic for Default Reasoning. Journal of Al 13:81-132,
1980.

Sacca D. and C. Zaniolo. Stable Models and Non-Determinism for Logic
Programs with Negation. Proc. ACM SIGMOD-SIGACT Symp. on
Principles of Database Systems, 205-217, 1990.

Sergot M.J. et al. The British Nationality Act as a Logic Program,
Communication of the ACM, 29, 1986.

Toni F. and A. C. Kakas. Computing the Acceptability Semantics.
Technical report, Imperial College, 1993.

A. Torres. Negation as Failure to Support. Proc. 2nd Int. Workshop on
Logic Programming and Non-Monotonic Reasoning, Lisbon, 1993.

Van Gelder A., Ross K.A. and J. S. Schlipf. Unfounded sets and the well-
founded Semantics for General Logic Programs. Proc. ACM SIGMOD-
SIGACT Symp. on Principles of Database Systems, 221-230, 1988.

