Fault-Tolerant SemiFast Implementations
of Atomic Read/Write Registers

Chryssis Georgiol Nicolas C. Nicolaou Alexander A. Shvartsmah’

December 11, 2008

Abstract

This paper investigates time-efficient implementationsitoimic read-write registers in message-passing
systems where the number of readers can be unbounded. loufErtve study the case of a single writer,
multiple readers, and servers, such that the writer, any subset of the readerg@atalt servers may crash.

A recent result of Dutta et al. [3] shows how to obt&&st implementations which both reads and writes
complete inonecommunication round-trip, under the constraint that theaber of readers is less thaﬁﬂ— 2,
wheret < § In that same paper the authors pose a question of whethepdtsisible to relax the bound on
readers, and at what costsiémifasimplementations are considered, i.e., implementatioaistave fast reads
or fast writes.

This paper provides an answer to this question. It is showhdhe can obtain implementations where
all writes are fast, i.e., involving a single communicationnd-trip, and where reads complete in one to two
communication round-trips under the assumption that ncertiant < § servers crash. Simulated scenarios
included in this paper indicate that only a small fractiorredds require a second communication round-trip.
Interestingly the correctness of the implementation da¢slapend on the number of concurrent readers in the
system. The solution is obtained with the help of non-unigu®ial ids assigned to each reader, where the
readers sharing a virtual id formvértual node For the proposed definition of semifast implementations it
shown that implementations satisfying certain assumptare semifast if and only if the number of virtual ids
in the system is less th&fﬁ — 2. This result is proved to be tight in terms of the required oamication. It
is shown that only &ingle completéwo communication round-trip read operation may be necggeaeach
write operation. Itis furthermore shown that no semifagilementation exists for the multi-reader, multi-writer
model.
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1 Introduction

Atomic (linearizable) read/write memory is one of the fumdatal abstractions in distributed computing. Fault-
tolerant implementations of atomic objects in messagseipgsystems allow processes to share information with
precise consistency guarantees in the presence of asyiycaina failures. A seminal implementation of atomic
memory of Attiyaet al. [1] gives a single-writer, multiple reader (SWMR) solutiarhere each data object is
replicated atn message-passing nodes. In this solution memory accesatioperare guaranteed to terminate
as long as the number of crashed nodes is lessthani.e., the solution tolerates crashes of any minority of
the nodes. The write protocol involves a single commuricatound-trip, while the read protocol involves two
communication round-trips, where the second round-trgeesally performs the write of the value obtained in the
first round-trip. Following this development, a folklorelieé developed that in message-passing implementations
of atomic memory “reads must write”. However, recent workDtta et al. [3] established that if the number
of readers is appropriately constrained with respect tantiraber of object replicas, then single communication
round implementations of reads are possible. Such an ingglation given in [3] is callediast Furthermore it
was shown that any implementation with a large, unconstthset of readers cannot have only the single round-
trip reads. Thus when the number of readers can be largeiniteiesting to considesemifastimplementations
where the writes involve a single communication round andrethe reads may involve one or two rounds with
the goal of having as many as possible single round reads.ofeimat a communication round-trip involves two
communication steps, and henceforth we refer to a commtimiceound-trip as a communication round (defined

formally in Section 2.2).

1.1 Background Details

The implementation of atomic SWMR objects in [1] usedue-timestampairs to impose a partial order on read
and write operations. To perform a write operation, theawiiihcrements its local timestamp and sends a message
with the value-timestamp pair to all processes. When a ritygjof processes reply, the write completes. The
process performing a read operation sends out queries dtglfaraa majority of the processes to reply with their
value-timestamp pairs. When a majority of the processdigggphe reader finds the highest timestamp and sends
the pair consisting of this timestamp and its associatedevi all processes. The read completes when the reader
receives acknowledgments from a majority of processeshofitih the value of the read is established after the
first communication round, skipping the second round mag teaviolations of atomicity when read operations
are concurrent with a write.

Subsequent works extended the approach in [1] to multipiersr each involving a two round-trip communi-
cation protocol, and using quorums of replicas instead qbrities [10, 4]. A fully dynamic atomic memory im-

plementation using reconfigurable quorums is given in [9lere the sets of object replicas can arbitrarily change



over time as processes join and leave the system. When tbéregticas is not being reconfigured, the read and
write protocols involve two communication rounds. Ret#igg this work to ad-hoc mobile networks, Dolet

al. [2] formulated the GeoQuorums approach where replicag@pieimented by stationafgcal pointsthat in turn
are implemented by mobile nodes. Interestingly, in thiskasame reads involve a single communication round
when it is confirmed that the previous write of the value oi#diby the read has already completed.

The implementation of atomic SWMR objects in [3] assumesesionous message-passing systems with
reliable channels. Here read and write operationdasei.e., involve a single communication round, but under
the constraint thak < % — 2, whereS is the number of servers maintaining object replicdds the number
of readers, such that the writer, any subset of readers, prid tiservers may crash. The general scheme of
the algorithm follows the write operation and the valueastamp pair technique of [1]. The major departure
appears in the execution of a read operation: to decide datiwt value of the replicated object, the read utilizes a
predicate on the number of replicas that maintain the maxitimestamp and the number of readers that witnessed
the maximum timestamp. Note that for any number 1 of failures the number of readers must be strictly less
than the number of servers, and the number of readers is#lygoroportional to the number of server failures. A

fast implementation cannot exist in the case of multiplelees.and multiple writers. For example, it is shown that

in the setting where 2 writers and 2 readers exist in the syaredt = 1, atomicity can be violated.

1.2 Our Contributions

Our goal is to develop atomic memory algorithms where a largaber of read and write operations are fast, i.e.,
involving a single communication round. In particular, wantto remove constraints on the number of readers
(with respect to the number of replicas) while preservirggracity.

We say that an atomic SWMR implementationsamifastif write operations take a single communication
round and where read operations take one or two rounds. We tslad one can obtain semifast implementations
with unbounded number of readers, where in many cases r@aela single round. Our approach is based on form-
ing groups of processes where each group is given a uniqueMdentifier. The algorithm is patterned after the
general scheme of the algorithm in [3]. We show that for eagteveperation at most one complete read operation
returning the written value may need to perform a second cemization round. Furthermore, our implementation
enables non-trivial executions where both reads and vaitefast, i.e., involve a single communication round. We
also provide simulation results for our algorithm, and wasider semifast implementations for multiple writers.

In more detail, our contributions are as follows.

1. We define the notion of aemifastimplementation of atomic objects that specifies what reagtaipns
are required to be fast and what read operations are allowgérform a second communication round

(Definition 2.3). In particular, a read operation must be fa# precedesor succeeds completeread



operation that performs two communication rounds, wheh beads return the value written by the same

write operation. The read operations concurrent with atlead operation, may or may not be fast.

2. We provide a semifast implementation of an atomic redtévabject that supports arbitrarily many readers
(Implementation SF). To accommodate arbitrarily many eesdve introduce the notion weirtual identifiers
and allow multiple readers to share the same virtual identithus forming groups of nodes that we call
virtual nodes We base the determination of the proper return value ondhdirality of the set of virtual
nodes maintained by the servers (this is similar to the dhgarin [3] that uses the cardinality of the set of
the readers maintained by the servers to determine thenadiure) . We prove the correctness (atomicity) of
the new implementation (Theorem 4.11) and we show thatfideed semifast (Theorem 5.3). We note that
our implementation is not a straightforward extension @f [Bhe introduction of virtual nodes raises new
challenges such as ensuring consistency within groupsas@atbmicity is not violated by processes sharing

the same virtual id, and proving the resulting implemeaotatorrect.

3. We consider two families of algorithms, one that does et neader grouping mechanisms, the other that
assumes grouping mechanisms such as our algorithm. Fommo#how that there is no semifast atomic
implementation if% — 2 or more virtual identifiers (groups) exist in the system. Riddally it is shown that
any semifast algorithm must inform no less ttnt+- 1 server processes during a second communication

round (Theorem 6.3).

4. We show that there does not exist semifast atomic impleatiens for multiple writers and multiple readers,

even fort = 1 (Theorem 7.2).

5. We simulated our SWMR implementation and we present samgsiults demonstrating that only a small
fraction of read operations need to perform a second conwation round. Specifically, under reasonable

execution conditions in our simulations no more thiaV% of the read operations required a second round.

1.3 Paper Organization

The paper is organized as follows. In Section 2 we presentnaalel and definitions (including the formal defini-
tion of semifasimplementation). In Section 3 we describe our SWMR semifagtementation, in Section 4 we
prove that it implements atomic read/write registers, an8iection 5 we show that our implementation is indeed
semifast. In Section 6 we show the necessary propertieathamifast implementation must possess in order to
correctly implement atomic registers. In Section 7 we shuat ho semifast MWMR implementation is possible.

Section 8 contains simulation results. We conclude in 8ed@i



2 Model and Definitions

We consider the single writer, multiple reader (SWMR) modEthe single writer is a distinguished process
There areR readers that are processes with unique ids from th&set{ry,...,rr}. The writer and any subset
of the readers may crash. The object is replicatef aervers with unique ids from the s§t= {s;,...,sg}.
Any proper subset of of at mostt servers can crash %). A virtual nodeis an abstract entity that consists
of a group of reader processes. Each virtual node has a uidgogfier from the se¥V = {v4,...,vy}, where

V < 2 —2. Areaderr; that is a member of a virtual node maintains its own identifier; and its virtual identifier
v(r;) = v;; we identify such process by the péir;, v;). The processes that share the same virtual identifier are
calledsiblings We assume that some external service is used to creatalviddes by assigning virtual ids to
reader processes. (Note that wHén= R and when each virtual node consists of a single unique retusr
our model is essentially that of [3].) We point out that ci@atof virtual nodes can be accomplished by a local
computation. This is due to the fact that the reader paditipare not required to have knowledge of their siblings
or the membership of other virtual nodes. Thus, a simplepaesive assignment of virtual ids to nodes may
utilize the nodes’ own identifiers. In particular, each nedean use the knowledge 6f, t andV = % -3, and
use modulo arithmetic to computér;) = r; mod V (this is what we employ in our algorithm and simulation).
Observe that a uniform distribution of the readers in theugirnodes will be achieved using this technique.

Each procesg is associated with an application. The application askptbeess to invoke an operation and
the process responds to the application with the result. 3&farae a reliable channel between any two processes
and that the messages carry a source and a destination fieldtdte of all channels is represented by theset
that contains all messages sent but not yet delivered; seskages are said to letransit

An algorithm A is a collection of automata, wherg, is the automaton assigned to the progessth an initial
state/nit,. Computation ofd proceeds irstepswhere each step denotes actions of a single process. lowarti

each step is described by an ordered tuple
(st,p,mIn,inv,mOut,res)

wherest is the state of the system,is the process idpIn the messages received by the progessthat step,
inw the invocation submitted to procegdy the applicationmOut the output messages of procesandres is
the response of the process to the application in that step.sttest includes the set of messageset and the
state of each processn the system, denoted by;. Wheninv = L there is no invocation at that step and when
res = 1 there is no response to the application. Wheh = () or mOut = () then there are no messages to be
received or to be sent out in that step respectively.

For a procesp and a stefist, p, mIn,inv, mOut, res), thenext statest’ is determined through the following

actions: (0)st’ is set tost, (1) st’.mset is set tost.mset — mlin, (2) proces®p inputsmin, inv, and its current



statest, to A,, which outputs a new state 0, the messagesOut to be sent, and the responses to the last
invoked operation, and (3)adopts the state!;, as its new state, set¢’.mset to st’.mset UmOut, and responds
with res to the application.

The step(st, p, mIn,inv, mOut, res) is aninvocation stepf inv # L, itis aresponse stef res # L, and a
communication stefp mOut # () and bothinv andres are equal tal.

An execution fragmenp of an algorithmA is a finite or infinite sequence of steps, o1,...,0,,... of A.
An execution fragment is called axecutionof A if the state in the first step i€, the initial state of the system,
wheres0.mset = (), and for each processs0; = Init;. We use the symbd] to denote executions. We say that
an execution fragment’ extendssome finite execution fragmeuntif the last step ofp iso = (st, ., _, ., _, ), and
if the first step iny’ iso’ = (st/, _, _, _, _, ), such thatst’ is the next state following.

A process can crash during any step of an execution. Folfpaicrash the process does not perform any steps.

A process is considered to feulty in executior if it crashes in¢; otherwise the process @drrect

2.1 Atomicity

Our goal is to implement a read/write atomic object in a mgsgaassing system by replicating the value of
the object among the servers in the system. Each replicastomd the valuey, initially L, and the associated
timestampts, initially 0. A read or a write operation at an application consists ofgodation step and a matching
response step. An operationiigcompletein an execution, if the operation’s invocation step doeshate a
matching response step; otherwise the operatiaoisplete We assume that application executions \aedl-
formedin that it invokes one operation at a time: it waits for a resmbefore invoking another operation.

In an execution we say that an operation (read or writerecedesanother operatiomrs, or o succeedsr,
if the response step for; precedes the invocation step of; this is denoted byr; — . Two operations are
concurrentif neither precedes the other.

Correctness of an implementation of an atomic object is ddfin terms of thderminationand atomicity
properties. The termination property requires that anyatjm invoked by a correct process eventually completes,
provided that failures are constrained by the stated faitobodel. Atomicity is defined as follows [8]: Consider the
setlI of all complete operations in any well-formed executioneifiltior operations il there exists an irreflexive
partial ordering< satisfying the following: (1) For any operation there are finitely many operations such that
7' < m. (2) If for operationst; andmy, m; — w9, then it cannot be the case that < ;. (3) If 7 is a write
operation and’ is any operation, then either < 7’ or #’ < 7. (4) The value returned by a read operation is the

value written by the last preceding write operation acaaydo < (or L if there is no such write).



2.2 Semifast Implementations

We want to define a read or write operatioo befastif it completes in one communication round.

Definition 2.1 A processp performs acommunication round during operations in an execution if all of the
following hold:

(1) p sends the messages € mOut, during the invocation step of operationor a communication step during
m, to a subset of processes,

(2) any proces9’ that receivesn € mIn from p during a stepr, replies top with a message:’ € mOwut within
the same step,

(3) whenp receives at least one reply messagec mIn, it either performs a response step foor inserts a set

of messages imOwut and performs a communication step.
We now formally define fast operations and implementations.

Definition 2.2 Let # be an operation invoked at procegshy an application. Ifp responds to the application
within the first communication round following the invocatiofr (in (3) of the above definition), then we say that

w is fast. An implementation of an atomic objectf&st if all read and write operations are fast in every execution.

A semifast atomic implementation, as suggested in [3],edittplementation that either has all reads that are
fastor all writes that are fast. Here we formalize the notion of gastiimplementations. We use the reading-

functionR(p) [11] that specifies the (always unique) write operation tindtes the value returned by read

Definition 2.3 An implementatiod of an atomic object isemifast if the following are satisfied:

(1) In any executiorg of I, everywrite operation is fast.

(2) In any executiorg of 7, any completeeadoperation performs one or two communication rounds betwieen
invocation and response.

(3) For any executior of I, if p; is a two-round read operation, then any read operatiorwith 5R(p1) = R(p2),
such thatp; — ps or po — p1, must be fast.

(4) There exists an executignof I which contains at least one write operatian and at least one read operation
p1 Which is concurrent withw andfi(p;) = w, such that all read operations with R(p) = w (including p;) are

fast.

Notice that property (4) of the above definition requiresealst a single fast read operation to be concurrent

with the write operation. So trivial solutions that achidast operations only in the absence of read and write

INotice that procesg’ replies top either at the same stepor during a subsequent stef, if p’ does not receive any messages between
o and (inclusively)s’. Intuitively this property is used to forbid processes tatvi@ other messages before replyingpto



concurrency cannot satisfy property (4). In implementatiof atomic objects, we refer to the messages that
contain a value to be written to the objectarITE messages, and we call the messages that request the value of
the object aREAD messages. The messages used to propagate information thighsystem are calladFORM

messages.

Communication Scheme: We make the following observations in light of Definition 2@iven that any subset

of the readers and the writer may fail, in order to guarargemination, we cannot allow any reader or the writer
process to wait for replies from any other such process dwinead or a write operation. Since we require that
the writes are fast, the servers cannot wait for any messsgfere replying to avRITE message. Read operations
on the other hand are allowed to perform two communicatiemds. Two-round reads can have one of the two
forms: (i) the reader process may contact the servers t@icthe reader may send messages to the servers during
the first round, the servers perform a communication stepcanthct other servers in the second round and then
reply to the reader ending the first round. If the servers espansible for the second communication round,
then it may be the case that all read operations need two sowndomplete, violating semifast properties (3)
and (4). Worse yet, a server may fail during its second roumslgmting an operation from completing. Hence
both communication rounds must be performed by the readenviidecides it is necessary to do so according
to the information gathered during the first round. Thus fromw on we assume that the servers in the semifast
implementation, upon receivingREAD Or INFORM message, cannot wait for messages from any other process
before replying. (Alternatively we can construct execasiavhere only th&®EAD, WRITE andINFORM messages
from the invoking processes to the servers and the replies fhe servers are delivered. All the other messages

remain in transit.)

3 Description of Implementation SF

We now present a semifast SWMR atomic object implementatiatted SF, that supports arbitrarily many readers.
We assume that the numbgrof unique virtual ids is such thaf < % — 2. (We show in Section 6 that semifast
implementations are impossible wheén> % — 2.) Recall that each replica consists of a value and its aestsati
timestamp. For simplicity we give the algorithm that regionly the timestamps; then we describe a straight-
forward modification that returns the value along with eaatestamp. The pseudocode of the implementation is
given in Figure 1; line numbers throughout this sectionmré&dehis figure. Also in the same figure, the fields that
are not required are represented by the “*” symbol in the agess.

Briefly, the write protocol involves the increment of the éistamp and its propagation to all the servers. The
operation completes once the writer receigest replies from the servers. The read protocol is more comiglita

Areader sends read messages to all the servers and onaiesst—t replies, determines the value to be returned



by consulting the validity of a certain predicate. The pecatk considers (i) the maximum timestamp witnessed
within the replies, (ii) the number of servers that replielhvthat timestamp, and (iii) the number of virtual
nodes whose members witnessed that timestamp throughgtosss. The idea behind the predicate is presented
in detail later in this section. If the predicate holds thkee teader returns the maximum timestamp{7'S);
otherwise it returns the previous timestampacTS — 1). Each server process maintains an object replica and
updates its object value when it receives a message thaiesrd timestamp greater than its local timestamp.
The server also records the virtual nodes that requestebjist and replies with the information about the object
(timestamp,value) along with the recorded set of virtuales Notice that by the read predicate this information
is essential for the determination of the value of the atambiect.

Before proceeding to the description of the algorithm we fimlsoduce some notation we use throughout this
section and the rest of the paper. For the writer we denote;bihe k" write operation and by, the set of
servers that received messages from the writer dwijndeach read operation is denoted Ay We say that a read
operationp; is invoked by the readelr;, v;,), wherer; is the identifier and, the virtual identifier of the reader.
For each read operatign, let S,, denote the set of servers that received messages from tbespte;, ;) that
invoked p; and replied to those messages. Furthermorédet:S,, be the set of servers that replied with the
maximum timestamp fop;, and thereforeMaxS,, C S,,. The set of messages received frém, v,) for p;
containing the maximum timestamp and sent by the serveigdnS,,, is represented by/S,,. The maximum
timestamp received byr;, v,) for the readp; is represented &55,,. If a read operation; performs a second
communication round, then we denote/as,, to be the set of servers that received the messages fromdtedse
communication round gf; and replied to those messages. In this case we saytifbrmsthe servers inv.s,,, .
Lastly for a procesp we denote ass, the value of the timestamp pfand agostit, the value of the postit variable

atp.

The Writer.  The writerw maintains the timestamp and it performs a write operatidolbsvs. It sends avRITE
message consisting of its current timestamp to all the seifli@e 8). Since of the servers might be faultyy
waits for responses from arfy — ¢ servers (line 9). Upon receipt these acknowledgments titenimcreases its
timestamp and completes the operation (lines 9-10). Thestiamps impose a natural order on the writes since

there is only one writer.

Servers. Each server maintains a replica of the object; this is reqmtesl by the object timestamp. The state of a
server includes the following variables: (k) the greatest timestamp received by the server, (2) treesetvhere

the server records thartual ids of the readers that inquired about the latest timestampeo$éhver, (3) the array
counterof naturals, used to distinguish fresh messages from stedsages from each process (due to asynchrony

messages may arrive out of order), and (4) the varipb#tit used by readers to inform, if necessary, other readers



1. at the writerw
2: Components:
3 ts € NT, wCounter ¢ Nt, v e U

4: procedure initialization:

5 ts < 1, wCounter < 0

6: procedure write(v)

7. wCounter «+— wCounter + 1

8 send(RITE, ts, wCounter,0) to all servers

9 wait until receive(vRITEACK, ts, *, wCounter, ) from S — ¢ servers

10: ts—ts+1 * reserve a new timestamp * /
11: return(OK)
12:

13: at each reader;

14: Components:

15: ts € Nt mazTS € N*, maxPS € N*, rCounter € Nt v € U

16: rcoMsg C M, maxTSmsg C M, maxPSmsg C M

17: procedure initialization:

18:  wid(r;) < r; mod (% —3), ts — 0, rCounter — 0, mazTS «— 0, maxPS «— 0 [* initialize the virtual ID and other params * /
19: rcvMsg < 0, mazTSmsg < 0, mazPSmsg — 0

20: procedure read()

21: rCounter «— rCounter + 1

22: ts «— mazTS

23:  sendReAD, ts, rCounter, vid(r;)) to all servers

24:  wait until receiveREADACK, *, *, Counter, x) from S — t servers s.tCounter = rCounter

25:  rcuMsg < {m]|r; receivedm = (READACK, x, x, rCounter, *)}

26: mazTS — max{ts’|(READACK, ts’, x, rCounter, *) € rcvMsg}

27: mazTSmsg — {m|m.ts = mazTS andm € rcvMsg} /* gather rcvd messages that contain maxTS */
28: maxzPS « max{postit|(READACK, *, *, rCounter, postit) € rcoMsg}

29:  mazPSmsg «— {m|m.postit = mazPS andm € rcvMsg}

30: fora=1toV +1do /* look for the mina that satisfies the predicate * /
31: if there isM.S C maxT Smsg s.t.(|IMS| > S — at) and (| Nimenrs m.seen| > «) then * check validity of the predicate */
32: if | Nenrs m.seen| = a and (maxPS < mazTS or |maxPSmsg| < t + 1) then

33: send(NFORM, maxT'S, rCounter, vid(r;)) to 3t + 1 servers

34. wait until receive(NFORMACK, *, *, rCounter, x) from 2t + 1 servers

35: end if

36: returnfnazT'S)

37: exit procedure read() /* return maxTS and exit * /
38: end if

39:  end for

40:  if mazPS = maxTS then /* « not found so we check the postit * /
41: if |/maxPSmsg| < t + 1 then I* proceed to &™¢ comm. round if “few” postits found */
42: send(NFORM, mazT'S, rCounter, vid(r;)) to 3t + 1 servers

43: wait until receive(NFORMACK, *, x, rCounter, x) from 2t + 1 servers

44: end if

45: returngnaxT'S)

46: exit procedure read()

47:  else

48: retutngnaxTS — 1)

49: exit procedure read() [*if neither « or postits = maaT'S found returnmaxT'S — 1 */
50: endif

51:

52: at each servey;

53: Components:

54 ts € Nt, counter[0...R] € Nt, v € U, postit € N*
55: msgType € {WRITE,READ,INFORM}, seen C V U {w}
56: procedure initialization:

57: ts — 0, seen «— 0, counter|0...R] < 0, postit — 0
58: procedure serve()

59:  uponreceivetnsgType, ts', rCounter’, vid) fromq € {w,r1,...,rgr} and rCounter’ > counter[pid(q)] do

60: if ts’ > tsthen /* update local timestamp and seen sets as necessary * /
61: ts « ts'; seen — {vid};

62: else

63: seen «— seen U {vid}

64: endif

65:  counter[pid(q)] < rCounter’ I* pid(q) returns 0 ifg = w andi if ¢ = r; */
66: if msgType =READ

67: sendREADACK, ts, seen, rCounter’, postit) to q

68: else ifmsgType =WRITE

69: send(VRITEACK, ts, seen, rCounter’, postit)toq

70: else ifmsgType =INFORM

71: if postit < ts’ then

72: postit «— ts’ * update postit value if necessary * /
73: end if

74. send(NFORMACK, *, *, rCounter’, postit) t0 q

75.  endif 10

Figure 1. Implementation SF.



about the timestamp they are about to return.

We now describe the operation of a servgwhen it receives a messagesgType, ts', rCounter’, vid) from
a non-server procegs (line 59). Upon receipt of this message, servenpdates its timestamys if ¢s’ > ts and
initializes itsseenset to{v(p;)}, the virtual id ofp; (lines 60-61). Otherwise, ifs’ < ts, s; sets itsseenset to be
equal toseen U {v(p;)} (line 63) declaring that; inquireds;’s timestamp. This is a departure from the algorithm
in [3]: we record the virtual identifier g;, using its unique identifier only for message exchange. Byglso we
manage to keefpeen| < % — 2 (required for correctness) without having to bound the nemab readers. Server
s; then sends an appropriate replyptpacknowledging the request. IfREAD, WRITE Or INFORM message was
received then the reply iISREADACK, WRITEACK, OF anINFORMACK, respectively (lines 66-75).

Receiving anNFORM message denotes that procgssvants to inform the rest of the reader processes about
the timestamp it is about to return. Before replying to sudssages; updates itgostit value, provided the
received timestamps’ is greater thamostit (lines 71-73). Otherwispostitis not updated, sinc&’ is an “older”
timestamp thampostit (updatingpostitwith an older timestamp may lead to violation of atomicity).

Along with any reply,s; encloses its timestanip, its seenset, itscounter and the value opostit

Reader. The actions of a reader node with+g and virtual idv(r;) = v; are as follows (lines 13-50). Each
reader maintains the following state: (1) variablexTS, which holds the maximum timestamp that a reader
received from the servers during the reader’s last readatipar (2) variablerCounter to count the number of
read operations performed by the reader (used to distindgigsh messages from stale messages from the reader),
(3) variablemax PS that holds the maximurpostit value that the reader withessed among the responses.

The reader; performs a read operation as follows. Upon invocation,ridsemessages to all servers and waits
for S — t responses (lines 23-24). Each of these responses is ofrthgf@ADACK, ts’, seen, Counter, postit).
While collecting these messageschecksCounter to distinguish fresh messages (witvunter = rCounter)
from stale messages, and then records the maximum timestam'S = ¢s’ (line 26) and the maximum postit
maxPS = postit value (line 28) contained among the received messages.dResthe received information,
readerr; computes the set of messageszT Smsg that contained the maximum timestamp (line 27). Then a key
predicate (line 31) is used to decide the return value: théaesearches for the minimume [1,V + 1] such that
there exists a subs&f S C maxT Smsg with cardinality| M S| > S — at, and the cardinality of the intersection of
the seen sets of the messagesfis is | Ny,enrs m.seen| > a. If such ana exists then the reader returngizT'S.

Else it returngnaxTS — 1. This predicate, informally, asks the following questidhave enough processes seen
maxzT'S timestamp that the reader received?”

In order to visualize the idea behind the predicate consadiénite execution fragmenp; where the writer
performs a complete write operatianthat receives replies from the s8t of servers, such thas,| = S — ¢.

We extendp; by a complete read operatign that misseg servers from those that responded.insuch that
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IMS,, | =18, NS, | =85 —2t, whereS,, is the set ofS — ¢ servers that responded jin. Atomicity requires

p1 toreturnT'S,, = maxT'S. Consider now another executign where the write operatioa is incomplete and
receives replies from exacths, | = S — 2t servers. We extengs with a read operatiop; atr; that receives
replies from|S,, | = S — t servers, including the servers&,. So|MS, | = [S, NS, | = S — 2t and thus

p1 cannot distinguish executiop, from ¢;. Hence, by atomicityp; must returnT'S, = mazTS in o as
well. By extendingy, even further by a second read operatjgnat r; we might get into the situation where
IMSp,| = [Sw, NSy, =S — 3t, with |S,,| = S — t the servers that responded s But in order to preserve
atomicity, the reader; must also retur’S,,, = maxT'S. This scenario can be generalized for more than two read
operations and so the predicate in line 31 of the algorithiFidgire 1 serves to preserve atomicity of the different
read operations.

Note here that the above scenario assumes the recording ahtue ids of the readers in theenset. Our
approach is for the servers to record the virtual ids of tlaelees. So it is possible that after two subsequent read
operations the cardinality of the seen set remains the sderece in the above scenario, if bothandr; belong in
the same virtual nodey, then forp; andps in - it is the case thaitmmeMSp1 m.seen| = | NmeMS,, m.seen| =
{w, v }| = 2. In this case the predicate holds far, so it returnsmaxT'S, but it does not hold fop,, and if it
returnsmaxT'S — 1 it would violate atomicity.

A second communication round is necessary whesatisfies the predicate such that,,c s m.seen| = a.
During the second communication roumgjnforms 3t + 1 servers about the timestamp it is about to return. Since
t servers might be faulty;; completes as soon as it recei&st 1 acknowledgments and returngsazT'S.

In the case where the predicate is false, reagehecks if there was angostit equal tomaxT'S observed,
as advertised within the received messages. If so, then seser (previously or concurrently with) returned
or is about to returmaxT'S. If r; receives more thah+ 1 messages containing that postit, it returngz7'S
without performing a second communication round; othezveisecond communication round is required-pio
ensure that any subsequent reader will receive the samié gosieither postit equalsmaxTS, thenr; returns

maxTS — 1in one communication round.

Returning values with timestamps. A slight modification needs to be applied to the algorithm $soziate
returned timestamps with values. To do this the writer Atadwo values to the timestamp in each write operation:
(1) the current value to be written, and (2) the value writtgrihe immediately preceding write operation (for the
first write this is_L). The reader receives the timestamp with its two attach&gesa If, as before, it decides to
returnmazT'S, then it returns the current value attachedrtez7'S. If the reader decides to returnazT'S — 1,

then it returns the second value (corresponding to the giregevrite).
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4 SF Implements an Atomic Read/Write Register

We now prove the correctness of algorithm SF. Generallyldpgarocesses can fail in any stage of their execution.
We do not assume that in algorithm SF (Figure 1) the lines déare executed atomically: processes may crash
in the middle of a line or between the lines. In particularjlerkending messages to a set of processes, the sending
process may crash after sending messages to an arbitraagtfhbwever each message is sent in its entirety). In
the rest of the section we use the notation presented indBeR:ti

Since the correctness of our implementation depends maimiiye timestamps written and returned, we reduce

the properties of the atomicity presented in Section 2, éddhowing:
Al: If aread operation returns, it returns a non-negative arteg
A2: if areadp is complete and succeeds some wiije thenp returns? such that > &,
A3: if areadp returnsk (k > 1), thenwy, either precedeg or is concurrent wittp,
A4: if some readp; returnsk (k > 0) and a reag, that succeeds; returnst, then? > k.

We will show that implementation SF preserves each and exfahe above conditions in any given execution.
We begin with a lemma that plays a significant role in the amess of our implementation. The lemma

follows from the fact that no more tharservers might fail and that the communication channelseiabte.

Lemma 4.1 Let two readers with actual id§;, v;,) and (r;, ) be siblings and make subsequent reagsind

p2, respectively. Then, for any executioof SF,| [MaxS,, | — |[MaxS,,| | < t.
We now proceed to show atomicity conditiévi.
Lemma 4.2 For any executior§ of SF, if a read operation ig returns, it returns a non negative integer.

Proof. Consider an executiofiof SF. As previously noted the servers initiallygmmaintain a timestamps = 0.
Consider now a read operatipgn in ¢ that is performed by the readér;, v;) and precedes any write operation. It
follows thatp; will receive > S — t replies withT'S,, = 0. Before replying tqg;, each serves; € S,, adds the
virtual id, v;, of the reader in its seen set. Since all the serves,jrwill reply with the same timestamfz = 0
and since the seen set of eaghe S,, contains at least the element it follows thatM S, > S — ¢ and the
predicate will be true forv = 1. Thereforep; will return 7'S,,, = 0 which is not negative.

We now consider the case where a write operation precedesdleoperation, in executions. The writer
invokes awrite(x) operation where: > 1 the timestamp to be written. Sinee-ite(x) is invoked we have that
write(x — 1) is completed and so the operatipnwill receive T'S,, = z orT'S, =z — 1. f T'S,, =z, ;1

will return eitherts = z orts = x — 1 and sots,, > 0. If T'S,, = = — 1, and sincewrite(x — 1) is completed,
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then at leastMaxS,, | = S — 2t servers would reply tod; with timestampts = = — 1. Moreover, every server
s; € MaxS,,, received messages from the write operatiorite(x — 1) and thus added the identifiar of the
writer in their seen set before replying to the write operatiAlso everys; € MaxS,, added the virtual id of the
reader,y;, in their seen set before replying po. Since the writer does not have any sibling process we hate th
w # v; and so the cardinality of the seen set of eaclk M S, is greater or equal t2. Therefore, the predicate

will be true fora = 2 for p; and so the read operation will retutn= 2 — 1 > 0. This completes the proof. O

We now show that the timestamp of any server is monotonidadiseasing.

Lemma 4.3 In any executiorg of SF, if a serves; sets its timestamfx,, to = at stepo, then, given any ste’ of

¢ such thatr < ¢’ andtss;, = y, we have thay > x.

Proof. This can be ensured by line 44 of implementation SF (Figurelfljve consider an executiof of SF,
observe that a servey; only changes its timestamps,,, if the timestamp receiveds,, is ts, > ts,,. If the
condition is true thers; upgrades its timestamp by, = ts,, otherwisets,, remains unchanged. This assures

that the timestamp on the server site increases monottynical O

We now show the monotonicity of the postits for any server.

Lemma 4.4 In any executiorg of SF, if a serveg; sets itspostit,, to x at steps, then, given any steg’ of £ such

thato < o’ andpostits, = y, we have thay > x.

Proof. This is ensured by line 56 of implementation SF (Figure 1). O

Given the above lemmas we prove the second atomicity prop&R):

Lemma 4.5 For any executiorg of SF if a readp; is complete and succeeds some wiite(w, — p1), thenp;

returns/ such that’ > k.

Proof. Suppose that the writes performs av,, operation and precedes the readoperation by readefr;, v;)
during an executioq of SF. LetS,,, be theS — ¢ servers that replied to; in the same execution. The intersection
betweensS,, andS,,, MaxS, = S., NS,,, is obviously|MaxS, | > S — 2t. Sincew, — p; the timestamp
ts for each server il/axS,,, per Lemma 4.3, is greater or equalio So p; received a maximum timestamp
TS,, such thatl'S,, > k. From the implementation we know that the reader returhegitS, or7'S, —1. We
consider two cases:

Case 1 7S, > k. Sincep; returns eithefl’S,, orT'S, — 1, it follows that either case it returns a timestamp
greater or equal té.

Case 2 TS, = k. As we mentioned above each serverMfuzS,, replies with ats > k. SinceT'S,, = k
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every serves; € MaxS,, replies with a timestamps = & to p;. So the sef\/ S, , which contains the messages
received byp; with the highest timestamp, will include the messages sgrillothe servers il axS,,. So
|MS, | > S — 2t. But since the writer sent a message with timestadnip the servers beforg;, thenw is
included in theseen set of each server infaxS, . Before the servers infaxS,, responded tgp; they also
includedy; in their seen set. So the predicate will be true far= 2 andp; will returnT'S,,, = k. Observe that any
read operation returri5S, , since the writerv has no sibling, and thus the predicate holdsdor 2 no matter

which reader performs the read operation. O

We say that gostit = =z is introducedin the system by a read operatign if p is complete, performs
two communication rounds, and for evayrORM messagellFORM, ts, _, _) it sends during its second round,
ts = xz. The following lemma ensures that ipastit = x is introduced to the system, then there exists a maximum

timestampts in the system such that > .

Lemma 4.6 For any executiorf of SF, if apostit = z is introduced in the system by a read operatjan then

any succeeding read operatiga will observe a maximum timestamg such thatts’ > x.

Proof. Consider an executiofiof SF where the read operatigh introduced a postit equal toto the system. It
follows thatp;, observed as the maximum timestamp in the sysi&y, = x. Assume thatM/ S, | > S — ot and
|Nmenrs,, m.seen| = «, and thugp, performs an informative operation. Sinees [1,V+1]andS > (V +2)t¢, we
getthafM S, | > t. So, if we denote by, the set of servers that replied to the succeeding pedld,, | = S—1),
then per Lemma 4.3 there is a servgre MaxzS,, NS, that replies tg, with a timestamgs’ > z. Therefore,

p2 detects a maximum timestanps,, > ts’, and hencd'S,, > z. O

Lemma 4.7 For any executiorf of SF if a read operatiom, receives gostit = x thenp; will return a value

Yy =T,

Proof. Consider an executiof of SF which contains a read operatipn by a readerr;, ;). It follows from
Lemma 4.6 that if reagh; receives gostit = x, then it will detect a maximum timestanipS,, > z. Let
TS, = x and so either the predicate will hold and thenwill return y = T'S,,, or the condition whether
postit,, = TS, will be true and s will in this case returny = T'S,, as well. Thusp; will returny = z.
If now T'S,, > x thenp; will return y = T'S,, if the predicate holds oy = T'S,, — 1 otherwise. Note that
sincepostit = x, it is less tharil’S,, and so the postit condition does not hold. Either gaswill return a value

Yy > . U

We proceed to the proof of properfy3.

Lemma 4.8 In any executiorf of SF if a read operatiorp; returnsk > 1, then the write operation;, either

precedes; (wr — p1) Or is concurrent withp .
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Proof. Consider an executiohof SF. Note that in order for a timestamp= k& to be introduced in the system dur-
ing £ a write operationu;, must be invoked (since only the writer increments the tiameg). We now investigate
what happens when a reader returns a timestampk in £. LetT'S,, be the maximum timestamp received by the
read operatiom;. Thenp; returns, according to the implementation, eithet 7'S, ork =TS, — 1. The first
case is possible if the predicate holds for the reader oeiféader observed some postit, such thatit = 7'S,, .
If the predicate holds them detected timestampsS,, = kin |[MS, | > S — at messages, and sinke < % -2
anda <V + 1then|MS, | > t. So there is at least one servgre S, that received messages fram before
replying top;. If p; returnsk because of a postit, then per Lemma 4.6, timestamp k£ was already introduced
in the system. Thus for both casegis either concurrent or precedes the read operatjon

In the case where the reader retuins- 7'S,, — 1 it follows that the reader detected a maximum timestamp
TS, = k+ 1inthe system and thus the, ; operation has already been initiated by the writer. Henge,

operation has already been completed and precededwas concurrent and completed befpfecompletes. [J

In order to prove the atomicity properf4, we first need to show that readers who belong to the samealirtu
node (siblings) satisfy the property (Lemma 4.9). Then wansthat the property is also true for any two non-
sibling readers in the system (Lemma 4.10). The idea behimgitoofs is to investigate the possible states of the
predicate used for a read operation in SF and show that tipegyA4 is not violated by any of them. Since the
predicate is affected by the choser(number of replicas with the maximum timestamp) and theinaldy and

the membership of the intersection of the seen sets, wezmadch case separately.

Lemma 4.9 Let the readersr;, 1) and (r;, v;) be siblings and perform the read operatiopsand p» respec-
tively. For any executiod of SF that containg; and p», if p1 — p2, andp; returnsx thenp, returnsy, such that

Y=

Proof. We consider again an executigrof SF. We first investigate the case wheye= r;. In this case; denotes
the first read operation of andp, a succeeding read operation from the same reader: hetthe value returned
from p;. During the reag,, ; sends &READ message withts,, = T'S,, > x. This message will be received by
all servers inS,, which according to Lemma 4.3 will reply with a timestany) > T7'S,, > z. SoT'S,, > z. If
TS,, = xthen|MS,,| = S —t and the predicate holds far= 1. Thusy = T'S,, = «. Otherwise, ifl'S,, > z,
the return valuey will be equal toI'S,, or7'S,, — 1 and thusy > x. By a simple induction we can show that this
is true for every read operation ef(including p») after p;. For the rest of the proof we assume that~ r;. We
investigate the following two possible cases: flyeturnsz = 7'S,, — 1 and (2)p; returnsz = T'S,,. In all of

the cases we show that< y or that the case is impossible.

Case 1:In this caser = T'S,, — 1. Therefore, some servers repliedgowith 'S, = x« + 1, and hence a write

operationw,, started before, is completed. Sa, completed before, has completed and therefatg — po
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sincep; — po. Thus by Lemma 4.5, returns a valug > .

Case 2: In this casex = T'S,,. Hence either there is some € [1,V + 1] such that|MS, | > S — ot
and| Nimenrs,, m.seen| > a or p received gpostit equal toT'S,, from some server. We examine those two

possibilities separately.

Case 2(a): It follows thatz = T'S,,, and there is some < [1,V + 1] such thatM S, consist at least — ot
S

messages received by with ts = z and| Nypens,, m.seen| > a. SinceV < 3 —2anda € [1,V + 1],
then[MS,,| = S — at > t. Following we investigate the cases where,cis,, m.seen| = a and| Nmenms,,
m.seen| > a. (1) First lets examine the case wherereturnsz = T'S,, becausd Nmenrs,, m.seen| = .
According to the implementatiom; has to inform|/N.S,,, | > 2t + 1 servers about its return value, Sincep;
precedeg,, atleastN.S, NS,,| > t+1 servers, thatinformed by, will reply to p». Any servers; € NS, NS,,,

by Lemma 4.6 will reply with &ostits, > x to p and with a timestamps;, > z. Sops will observe a maximum
timestampl’S,, > x. According now to Lemma 4.4, will return a valuey > x. (2) The second case arise when
p1returnsz = T'S,, because Nyenrs,, m-seen| > a. We can split this case in two subcases regarding the value
returned byp,. The two possible values that might returnisy = T'S,, ory = T'S,, — 1.

(i) Let first consider the case whege=T'S,,. Sincep, returnedz = T'S,,, as we showed in lemma 4.8 , there is
a write operationv, that precedes or is concurrent with As stated abovgl/ S, | > t and hence there is a server
s; such thats; € MaxS, NS,,. By Lemma 4.3s; will send a timestamps > x to po, and hencd'S,,, > ts. So

Yy =T,

(ilWe now get down to the case whepe returnsy = 7'S,, — 1. Since|MaxS,,| > t, there must be a server
s;i € MaxS, NS,, ands; replies with a timestamps > x to po. So the highest timestamp &),,(i.e. T'S,, =

y + 1) will be greater or equal te. If the inequality is true, namely + 1 > z, then clearly the value returned by
p2 isy > x. If the equality holds ang + 1 = z then the highest timestamp receivedy7'S,, =y + 1 = =.
Hence all the servers iMaxS, N S,, replied with a timestamps = = = y + 1 to p2. Recall that in this
case we assumed thah,,enrs,, m.seen| > a. Also according to Lemma 4.3)M Sy, | — |[MS,,[| < t and
since|MazS,,| = |MS,,| > S — at, it follows that p, will receive the maximum timestamps,, = « from
|MaxS,,| = |MS,,| > S — (o + 1)t servers. Let for any; € MaxS, NS,,, denote bymn, the message sent
from s; to p; andmsy the message sent f@. Obviouslym,.ts = mo.ts = x. Since the timestamp is the same
ands; sentm; beforemy thenm;.seen C ma.seen. As a result NmeMS,, m.seen| < | NmeMS,, m.seen)|.
Notice that, since the two readers are siblings, ifnam-sibling reader received replies from those servers in
betweenp; and py, thenm;.seen = my.seen and | NmeMS,, m.seen| = | NmeMS,, m.seen|. Either case,

| Nimens,, m.seen| > o and henceNpenrs,, m.seen| > a+ 1. Observe that the predicate now is truedof 1
since|MS,,| > S — (a + 1)t, and thusp, must returnl’S,, = « = y + 1, contradicting the initial assumption

that p, returnsy = x — 1. The same result applies in both cases where IV anda = V' + 1 since theseen set
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remains unchanged.

Case 2(b):Herep; returnsz = T'S,, because some postits equalft§,, received byp;. We have to consider

2 cases here. Either (}) received more than + 1 postits, or (2)p; received less than + 1 postits. Both
cases imply that, a readér,,,v,,) perform a reag;,, and is about to return or already returned the maximum
timestamp (which is equal t6'S,,) in the system. Furthermore implies that, initiated an informative phase
which is concurrent or precedes the read operatiorBy analyzing the cases we obtain the following results:

(1) If p; received more than or equal to- 1 messages containing a postit with vajusstit = T'S,, = x, then
the writerw initiated aw, operation during or beforg, is completed. It follows thatv.S;, N S,, denote the set
of servers that replied to; and contained thgostit = T'S,,. The readep receives replies fromS,,| = S — ¢
servers. SinceNS, . NS, | >t + 1, then|S,, N (NS,, NS, )| > 1. So the read operatiom will receive a
reply from at least one servey € NS,,, NS,,. Hence, from Lemma 4.4, receives aostit,, > x from s; and
according to Lemma 4.7 will return a valye> postits, and thusy > «.

(2) Let now examine the case whesereceives less thah+ 1 messages containing postits with value equal to
TS,,. Let assume again thavS, N S,,| < t + 1 is the set of servers that replied wiphstit = T'S,, to p;.
However, in contrary to the previous case, the situationre/fi&v S,,, NS,,) N.S2| = 0 is possible. Sg; informs
NS, | > 2t + 1 servers with gostit = T'S,, before completing. So there exists a servee S,, N NS,
that replies tg,. By Lemma 4.4; replies with apostits, > T'S,,, and by Lemma 4.7y, returns a timestamp

y > postit,,. Hencep, returns a valug > x. O

We now show that the forth atomicity property is preservethgyoperations invoked from non-sibling readers.

Lemma 4.10 Let the readers(r;, ;) and (r;,v;) be non-siblings and perform the read operatignsand p;
respectively. For any executighof SF that containg; and ps, if p1 — p2, and p; returnsz thenp, returnsy,

such thaty > .

Proof. Consider an executiofiof SF. In this lemma we study the case where- r; andy; # v; in &, and hence
the two readers are not siblings. We proceed in cases andtiabw> x or the case is impossible. We know that
p1 may return eithefl’S, — 1 orT'S,,. It can be shown similarly to case (1) of Lemma 4.9 that whereturns

x =TS, — 1thenp, returnsy > z. It remains to investigate the cases where:gljyeturnsT’S,, because the
predicate did not hold but it received some postits, suchybstit = T'S,,, and (2)p; returnsT'S,, because it
received| M S,, | messages that contained the maximum timestaéisip such that there is € [1...V + 1] and

|MSp,| > S — at and| Nimens,, m.seen| > a.

Case 1:In this casep; returnsz = T'S,, because it received some postits, gdstit = T'S,,. According to the
implementation some process (sibling or not-Qf sayry, performed a read operatign, and is about, or already

returned a timestamp equal,, . There are two cases to consider based on the cardinalityof, N S,,: (1)
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INS,., NSy | >t+1and (2)|NS,, NS, | <t+1.If(1)is true andr; received NS, , NS, | > t+ 1, then
p1 returnsz = T'S,,, without performing a second communication round. Sincestteof servers that responded
to p2 is|S,,| = S —t, it follows that there is at least one servgre S,, N (NS,,, N'S,,). According to Lemma
4.4, s; will relpy to ps with apostits, > x. Furthermore by Lemma 4.5, will return a valuey > postits,. So
obviously p, returns a valug > x. On the other hand if (2) is true anpd received NS, , NS, | < t + 1 postits,
then, before returningy; will inform |N.S,, | > 2t + 1 servers with gostit = T'S,,. So there exists a server
si € S, N NS, that replies topy. By Lemma 4.4s;, will reply with a postits, > T'S,, and by Lemma 4.7 it

follows thatps will return a timestampy > postit,,. Hence it follows again thaj > «.

Case 2:This is the case wherg returnsT’S,, because the predicate holds, namely, theteds[1...V + 1] and
|MS,,| > S — at such thal Nyenrs,, m.seen| > a. Recall again that since € [1...V + 1] andV < % -2,
IMS, | > S —at >t So, if MaxS,, are the servers that replied with messaged/is, , there is at least
one servers; € MaxS, NS,,. Therefores; replies top,, by Lemma 4.3, with a timestam > x. Hence
p2 Will observe a maximum timestanips,, > . If p; observesl'S,, > x then clearly, since, returns either
y=1TS,, ory =TS, — 1, itwill return a valuey > x. It remains to investigate the case where the maximum
timestamp observed by, isT'S,, = =. SinceT'S,, = T'S,, = x it follows that all the servers il axS,, NS,
will reply to po with a timestampts = z. Furthermore, sincg, might miss up tot servers fromMaxS,,
and|MaxzS,,| = |MS,,| > S — at, it follows that p, will receive the maximum timestanipss,, = = from
|MaxS,,| = |MS,,| > S — (a+ 1)t servers. There are two possible return valuegfoiEithery = T'S,,, = =
ory =TS, —1= y+1=ux. Sothe only case that needs further investigation is when = x. We consider

two possible scenariog; satisfied the predicate with an (&)< V +1and (2a =V + 1.

Case 2(a):Herep, satisfied the predicate using an< V' + 1. This implies that\,,ears,, m.seen might contain
less thari” 41 elements and thus not every virtual identifier will be ina@dd So we have to consider two subcases:
(1) vj & Nimems, m.seen and (2)v; € Nmensim.seen.

(1) Let first assume that; ¢ Nienrs, m-seen. Consider the set of serveidaxS,, N S,,. Since|MazS,, | =
IMS,,| > S —atand|S,,| =S —tthen|MazS, NS,| > S — (a+ 1)t > 1. Also since the reag; pre-
cedespy, and processes i axS,, replied withts = T'S,, = z to py, then processes it axS, NS,, reply
with a timestamp's > x to po. So all the servers in the séfaxS,, N S,, replied tops with ts = z = y + 1.
For any serves; € MaxS, NS,,, let m; andmy be the messages of in MS, andMS,, respectively.
We know thatmi.ts = me.ts = z. Sincem; was sent beforens, thenmi.seen C mg.seen. Thus
NmeMs, m.seen C Nmens,, m.seen. Moreover, every servet; € MaxS,, addsy; into its seen set before
replying top,. Therefore clearly; € Niens,,m.seen. By assumption though; ¢ Nienrs, m.seen, and
so it follows that| Nienrs,, m.seen| > | Nmems,, m.seen| +1 > a + 1. Since|MaxS,,| = [MS,,| and

MaxS,, > |MaxS, NS,| > S — (o + 1)t, then the predicate fop, holds witha + 1. Thus p, returns
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TS,, =z =y + 1, which imposes a contradiction.

(2) Let now consider the case where € Ny,ens, m.seen. So either (i) a sibling of-; or (i) r; itself per-
formed a read operation befopg. Assume that (i)-; itself performed a read, say,, beforep,. So since
vj € Nmems,, m.seen, rj received a maximum timestanipSa, = 7'S,, during read operatiopy,. In this case
p2 Will represent a second read operation fropand so, during., r; sends ®EAD message witlis = T'S,, > .
This message will be received by all serversSiy) which according to Lemma 4.3 will reply with a timestamp
ts' > TS, > z. If ts = x then the set of servers that replied with the maximum tirmegtd@'S,, to p.
will be |MaxS,,| = |S,| > S —t. Since every serves; € S,, before reply top, addsy; to its seen
set, then predicate will hold far = 1. If now ts’ > x, thenp, will return a valuey such thaty = ts’ or

y = ts’ — 1 and thus in any casg > x. Both cases contradict with the assumption that 1 = z. Let
now the case (i) to be true angd € Np.enrs,, m.seen because a sibling of; initiated a read operation before
p2. As we discussed abovel/axS,,| > |[MaxS, NS,,| > S — (a + 1)t and furthermore all the servers in
MazxS, NS,, reply to pp with a timestampts = « = y + 1. Let m; andmy be the messages of a server
5; € MaxS, NS,,, INMS,, andMS,, respectively. We know that.ts = ma.ts. Sincem; is sent beforen,,
thenm;y.seen C msy.seen. ThusﬂmgMgplm.seen C Nmems,, m.seen. Every server that replies i, first adds
v; into its seen set and thug; € Npenrs,, m.seen. Since thoughy; was already iM,enrs, m.seen, it follows
that|Nmenss,, m-seen| > [Nmems, m.seen| > a. If [Nmens, m.seen| > a, then|Nyens,, m.seen| > a+1.
Since|MaxS,,| = |[MS,,| > S—(a+1)t, the predicate holds with + 1 andp, returnsT’S,, = = y+1. Ifon
the other hand Nynenrs,, m-seen| = a thenp; will perform an informative operation before returningnding
thepostit = 10 |[N'S,,| > 2t + 1 servers. So there will be a servgre S,, " N.S,, which will reply, by Lemma
4.4, with apostits, > x to pa. So according to Lemma 4.7, will return a valuey > postit > x. Hence we
derive contradiction based on the initial assumption thaty + 1.

Case 2(b):p; satisfied the predicate with an= V' +1. Sincel{w, v1,...,vv}| = V+1and|Nmens, m.seen| >

a =V +1, itfollows thatv; € Nmens,, m.seen. Observe that the set of servers that replyavith messages
in MS,,, |[MaxS,,| > S —at > t. So as shown in the previous case (Case 2aill return a valuey > «

deriving this way a contradiction. O

The main result of this section follows:
Theorem 4.11 Algorithm SF implements an atomic read/write register ia 8WWMR model.

Proof. Since the writer, any subset of readers and upgervers might fail by crashing, we ensure termination in
any execution of the implementation by letting any readewidter to wait for messages only fros — ¢ servers
during any communication round. Atomicity is preservedriy axecutiont by Lemmas 4.2, 4.8, 4.5, 4.10. Since

both termination and atomicity properties are preserveddbult follows. O
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5 SFis a Semifast Implementation

In this section we show that the proposed implementations@Fsemifast implementation, that is, it satisfies all
the properties of Definition 2.3. We use the same notation &gction 3.

We first show that SF satisfies the third property of DefinioB.

Lemma 5.1 For any executior§ of 1, if p; is a two-round read operation, then any read operatigiwith R(p;) =

MR(p2), such thatp; — ps Or p3 — p1, must be fast.

Proof. Sinceps might precede or succeed we examine the two cases separately. We proceed by comgjdanri
execution¢ of SF that contains both, andp,, and we show that in each casggis fast or the case is not possible.
For the rest of the proof we study the timestamps returnedvdydad operations since every value is associated
with a unique timestamp. Let assume that timestamg: k is associated witlvaly, written by the unique write

operationR(p;) = R(p2) = wy.

Case 1:Starting from the case whepg — p- there are two subcases to investigate: dslpbserves a maximum
timestamp equal t&, and (2)p, observes a maximum timestanipt+ 1. Obviously in the second casg; is
concurrent withwy 1 butwy 1 is not yet completed.

The fast behavior o, in the first subcase case follows from the fact thainforms |N .S, | > 2t + 1 servers
with the timestamps = k. Sop, witnessesS,, N NS, | > ¢+ 1 postits equal t during its first communication
round. Since the maximum timestarf5,, observed byp, is also equal td:, then p,, according to Lemma
4.7, returnsl’S,,, no matter the validity of the predicate. Moreover sifSg, N NS,,| > t + 1 any subsequent
read operation will witness at least one servenNiy,, and thusp, completes without proceeding to a second
communication round.

Consider now the second subcase wherebserves a maximum timestamp equakte 1. From the imple-
mentation we know that a read operation might return eitieobserved maximum timestaréjy,,, or7'S,, — 1.
Sincep, returnedk, it implies that a decision for returniri§jS,, — 1 was taken by,. According though to the
implementation, a reader may perform a second communicetgiand only when it decides to retuirS,,. In any
other case the reader is not required to perform two commatiait rounds. S will return 7'S,, — 1 in one

communication round as desired.

Case 2: Consider now the case whepe — p;. Sincep; performs two communication rounds, it returns the

maximum timestamg, thatp; observed during its first communication round. On the ottaerdh, also returns

k, by either returning’S,, or T'S,, — 1. Sopz might observe a maximum timestaréiy,, = korT'S,, = k+ 1.
Lets first investigate the case whéfé,, = k + 1. Recall thatp; receives replies fromsS,, | = S — t servers.

Sincep; observes &'S,, = k, then ifT'S,, = k + 1, it means thak + 1 was introduce to less thanservers
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in the system. In order faw, to satisfy the predicate there must exist/drb,, which contains messages of the
servers inMaxS,,, such thaiM S,,| > S —atfora € {1,...,V +1}andV < % — 2. Therefore we require
that|MS,,| > t. However since MaxS,,| > |MS,,| and|MaxSs| < t, we have thatM S,,| < t and thus
the predicate does not hold fps. Notice that for each read operatipn — p; (including p3) and observing
a maximum timestamf@'S,, = k + 1 the predicate is false and hence no read operation perfoarsstond
communication round informing the servers withatit = k+ 1. So it follows that the second condition whether
there argostits = k + 1 will be false forp, as well and thug, returnsT’S,, — 1 = k. As previously stated, if a
read operation returriBS — 1 only needs one communication round.

It is left to examine now the case whepe observes &'S,, = k. Remember thap; performs a second
communication round in two cases: (1) the predicate holds Wi,,.c s, m.seen| = a and (2) it observed
“insufficient” postits sent by a concurrent read operatibor simplicity of our analysis we assume that no read
operation was concurrent wifh and thatp; performed a second communication round because the fisivasse
true. Sincep, returns’'S,, = k then either (i) the predicate holds fps or (i) po observed sompostit = k. Let
examine those subcases separately and we show that in esgh tsfast or the case is impossible.

Suppose that the predicate holds fer So there is am € {1,...,V + 1} and there i$M S,,| > S — at such
that | NmeMS,, m.seen| > a. If | NmeMS,, m.seen| = « thenp, proceeds to a second communication round
informing [N'S,,,| > 2t + 1 servers about the maximum timestamp is about to reflif), = k. Sinceps — p1,
then|S,, NNS,,| > t+1, and thusp; would observe “enough” postists equatte: 7'S,, and would not perform
a second communication round. This however contradictdrotisl assumption, rendering this case impossible
for p2. Therefore the predicate validity is possible fer only if | Ny,enrs,, m.seen| > a. This is the case though
whereps returns in one communication round as desired.

It remains to study the case whegereturnsT'S,, = k because of some postits equalkto There are two
subcases to consider: (@) does not observe more thas 1 postits so it performs a second communication round
and (b)p, observes more than+ 1 postits and returns in one communication round. The firstasd will result
in p; performing only one communication round as described albowradicting our initial assumption. In the
second subcase there is a read operatjomhich is concurrent or precedes and performs two communication
rounds. Since, receives more thaty- 1 postits equal td'S,,,, it returns in one communication round. Moreover,
since we assumed that no read operation is concurrentpyitinenp; completes before the invocation ef. So
p; will inform at least|N'S,,| = 2t + 1 servers with a postit equal ta Hence|S,, N N.S,,| > ¢t + 1 and thusp;

returns in one communication round imposing contradiction O

We now show that SF satisfies the fourth property of Definificdh Notice that the proof of the lemma assumes
generalexecutions of our implementation SF which include both corent and non-concurrent operations. In fact

the following proof assumes that all the read operationsaneurrent with the write operation and yet are fast.
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Lemma 5.2 There exists an executighof I that contains at least one write operation, and the set of read

operationsF = {p : R(p) = wi}, such thatF| > 1, 3p € F, p is concurrent withu, andVp € F, p is fast.

Proof. As in the previous proof we consider that each read operatien F returns the timestamp written by
R(p) = wk. Also assume that the timestamp writtendy is equal tots = k. Recall that a read operatign
returns either the maximum timestam or 7'S — 1. So the timestamp is returned by either wherp witnesses
TS = k or when it witnessed'S = k + 1. A read operation is fast in the following cases: (1) the wate is
correct andN,,eprsm.seen > «|, or (2) more tham+1 postits equal t@'S witnessed, or (3) the operation returns
TS —1. Inthe contrary a read operation needs to perform two conration rounds whep,,c s m.seen = |

or whenp observed less than+ 1 postits equal t@'S in the replies from the servers.

Let assume, to derive contradiction, that for any execution 7, that contains a write operatiasy,, 3p € F
that returnsi(p) = wy and is not fast. Consider the following finite execution fremt which is a prefix of,
o(wr). We assume thap(wr) contains the write operation, performed by the writer that writes timestamp
k. Moreover, assume thab,, | = S — [t servers received the&/RITE messages fromy, in ¢(wr) , where
1 < 8 <V — 1. Thus the write operation is incomplete.

We extent nowp(wr) by the finite execution fragment(1) which containg3 — 2 read operations, . .., ps_2
performed bys — 2 readers each of them from different virtual nodes. [gt ), ..., (r3_2,v3_2) be the
identifiers of the readers that invoked the read operati&sthermore every readér;, v;) receive replies from
all the servers that replied to the write operation. Henoh eaaderr;, v;) withesses apM S, | = S — St and an
| Nimens,, m.seen| < 8 —1and thus Ni,enrs,, m.seen| < (3. So the predicate condition is false for any read
from (r;, v;), returning timestam@’s,, — 1 in one communication round.

We further extent the execution fragmeritl) by execution fragmeng(2) which contains two read operations
performed by two sibling processgs;/,vg_;) and (ry,v5_1). Observe that those processes are not siblings
with any of the previous readers. Let now the read operatignand po; performed by the two sibling readers

respectively, miss exactly servers that receivedRITE messages from,. However, let them miss differemt

servers. For example, if the servess. . ., so; receivedwRITE messages, theml’ skips the servers; 1, ..., so
and pos skips the servers,, ..., s;. Notice now that both readers will observe |amm€M5pd/ m.seen| = (3, ,
for d € {1,2}, since they receive messages from servers that also replittt read operationg, . .., pg—2.

However, both reads;: andp./, since they miss of the servers that receivelRITE messages, they witness an
|MS,,| =S—(8+1)t. Sothe predicate is false for them as well and they refifp,, — 1 in one communication
round.

Finally we extendy(2) by ¢(3) which contains two read operatiops- by the readefr-, vg) andp,- by the
reader(ry-, v341). Both readers are not siblings to any of the previous readesdo not make any assumption

about the relation of the two reads, that is, they may be aoasti Let both reads receive messages from all
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the servers that replied to the writer and thigs, .| = S — (t, again ford € {1,2}. Recall that any server

s; € MaxS,,. contained aseen = {w,v1,...,v3-1}, and before replying t@;- and p,-, they addvgz and

"
v+ respectively in theiseen sets. Suppose that the intersection fiSneMspl* m.seen| = 3 + 1 for p;« and
| NmeMS,,, m.seen| = 3+ 2 for py+, that is, the servers replied tg- before replying tg.-. Hence the predicate
is correct by NmeMs,,. m.seen| > (3 for both reads and thus they retufft, . = k in one communication
round. Notice thap;«, pa« € F sinceR(p1+) = R(p2+) = w.

Any subsequent read operatipnby a readexr;, v,) will witness an|M .Sy, | > S — (8 + 1)t and| Nmenrs,,
m.seen| > +42. Soif p, witnessT'S,,, = k then the predicate will hold fgs, and moreover will retur’S,, = &k
in one communication round. i, returnsk even though witnessed a maximum timestafiff), = £+ 1 it would
be also fast since any read operation that retdtfis, — 1 is fast. So by this construction we showed that there
exists an executiof of I containing a write operatiom;, and all the read operatiopsc F such thatk(p) = wy,

are fast, contradicting our initial assumption. That coetgs our proof. O

We now state the main result of this section.

Theorem 5.3 For any executiort, the proposed implementation SF is a semifast implementati an atomic

Read/Write Register.

Proof. The properties (1) and (2) of Definition 2.3 are triviallyisfied since all the write operations as imple-
mented by SF are fast and every read operation does noteaqaie than two communication rounds to complete.
Properties (3) and (4) of the same definition are ensuredrbynkes 5.1 and 5.2. Thus our implementation SF is

indeed a semifast implementation and that completes owif.pro O

6 Impossibility of Obtaining Semifast Implementations

As itis shown in [3], no fast implementations exist if the ruenof readers? in the system is such that > % —2.

Our approach to semifast solutions is to trade fast impleatiem for increased number of readers, while enabling
some (many) reads to be fast. Here we show that semifastimepl@tions are possible if and only if the number of
virtual identifiers (virtual nodes) in the system is Iessntl%af 2. We show that the bound on the virtual identifiers
is tight for algorithms that: (1) consider each node actimjviidually in the system (as in [3]), and (2) consider
weak grouping of the readers such that no reader is requinedintain knowledge of the membership of its own or
any other group. (Related discussion appears in Sectiofh2gughout the section we assume the communication

scheme presented and explained in Section 2.2.

Definitions and notation. We consider a system withi node groups (virtual nodes), such that (v—i2) (to

derive contradiction). We partition the set of serv8reto V' + 2 subsets, calletlocks each denoted by; for
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1 <i <V + 2, where each block contains no more thaervers.

We say that aincomplete operatiomr skipsa set of blocksB .S in a finite execution fragment, whereS C
{Bj,...,Byi2},if: (1) no serverinBS receives anREAD or WRITE message from, (2) all other servers receive
messages and reply 19 and (3) those replies are in transit. A complete operatidiat is fast is said tgkipa
block B; in a finite execution fragment, whei®, € {Bj, ..., By 2} if: (1) no server inB; receives &READ or
WRITE messages from, (2) all other servers receive the messages fraamd reply, and (3) all replies are received
by the process performing. We say that an incomplete operatiothat performs a second communication round
informsa set of blocksBST in a finite execution fragment, whei@SI C {By,..., By} if: (1) all servers in
BS1I receive thenFORM message fromr and reply, (2) those replies are in transit, and (3) no setiveainy block
B; ¢ BSI receive anyNFORM messages from. A complete operatiom that performs a second communication
roundinformsa set of blocksB ST in an finite execution fragmenBSI C {Bjy,..., Byi2} if: (1) all servers in
BS1 receive thaNnFORM messages from and reply, (2) no servers in any bloék; ¢ BSI receive anyNFORM
messages from, and (3) those replies received by the process performing complete operatiorr is said to
be skip-freein an execution fragment if for every blodg; in the set{ By, ..., By 12}, all the servers irB; receive

the messages fromand reply to them.

Block Diagrams. To facilitate the understanding of the proofs that follove provide schematic representations
of block diagrams. We divide the diagram into columns eacthei representing an operation (possibly incom-
plete)r, and at the bottom of each column we place an identifier ofrtheking process in the forrtr, /), where

r the actual id and’ the virtual id of the invoking process. Each column contanset of rectangles. For an
operationr if the i** row of the column contains a rectangle it means that the seindlock B; received &READ,
INFORM or WRITE messages from and replied to those messages. In other words we draw a géetanthe;*”
row of an operationr if = does not skip or informs the blodk;. If a rectangle is colored white, it means that block
B; received only &READ or WRITE messages from. A two-color rectangle (black and white) in thié& row of

an operationr declares that the servers in blogl receivediNFORM messages from. If the operation identifier

in a column is in a circle it means the operation is completthe@vise the operation has not yet completed. If
the operation identifier is in a rectangle means that theabjoeris invoking the informative phase and has not yet
received the required replies.

We now show thal” cannot be greater or equal théw 2. The idea behind the proof is to derive contradiction
by assuming that semifast implementations existifop % — 2. We construct executions that violate atomicity
and essential properties of the semifast definition. Iniqaer we first assume an executigrwhich contains a
skip-free write operation. We construct executions thatlmaextended tg, that contain fast read operations. We
show that in execution extensions where the value of theeveperation is propagated to less thaervers, some

fast read operations return the value written, but othétsmean older value (since they may skip the servers with
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Figure 2: Left: Physical communication betweerand the servers ip(wr) andp(wry). Right: Same commu-
nication using block diagrams.

the maximum timestamp). We emphasize that the first partegpthof can use the proof of Proposition 1 in [3] as
a black box with the assumption of the skip-free write operaaind the association of a distinct group id to each
reader used. However we choose to present the proof hereéntitety for completeness. In the second part of

the proof we present executions that violate atomicity émghe presence of a slow read operation.
Lemma 6.1 No semifast implementation exists if the number of nodepgrun the system i % -2

Proof. We proceed along the lines of Proposition 1 of [3]. We cort$tam execution of a semifast implementation
I that violates atomicity. Namely we show that there existexecution for/ where some read returris(the
defined new value) and some subsequent read returns an aldet and in particular the initial valu¢. We
consider two cases: (1) > % —2and (2)V = % — 2. In the first case we show impossibility of the fast behavior
if V> % — 2, thus violating property 4 of Definition 2.3. In case (2) wewsftthat there exists an execution where
atomicity is violated even in the presence of a two-round igaeration. This violates property 3 of Definition 2.3.
Case 1:SinceV > % — 2, it suffices to show that we derive contradiction in the cabenal” > % —1. Sowe can
partition the set of servers inld + 1 blocks{ B, ..., By 41} where each block contains ¢ servers. We provide
the constructions we use for the needs of this proof in theevarnd read operation paragraphs and then we present
an execution scenario based on those constructions tHategsatomicity.

Write Operations. Let o(wr) be an execution fragment in which operation is completed byw. Let the
operation beskip-free this is the best case for a write operation and thus our Idwend applies to all other
possible cases. We define a series of finite execution fraigmeérich can be extended tg(wr). We say that in
the finite execution fragment(wry 12) the writerw has invoked @, operation, but all thevRITE messages are

in transit. Then, fol <i < V +1, we say thato(wr;) is the finite execution fragment that contains an incomplete
write(1) operation and skips the set of blodks;|1 < j < i—1}. Observe that: (1) the finite execution fragments
e(wr;) ande(wr;41) differ only on block B;, (2) since ing(wr1) we do not skip any block but all the replies
are in transit, thep(wr) is an extension op(wr;) where all those replies are receivedbyand (3) onlyw can

distinguishy(wr) from ¢(wrq). Figure 2 illustrates the communication between the writemnd the groups of
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servers in the finite execution fragment&or) andyg(wrs). The figure shows both physical communication and
block diagram representation.
Read Operations. We now construct finite execution fragments for read opemati We assume that only one
reader process, say, owns a virtual identifier; and denoted by the pajr;, v;). Let (1) be a finite execution
fragment that extendg(wr) by containing a complete read operation by a reader withrici/; ) that skipsB; .
Consider nowy’(1) to be an extension @f(wr2) that appendsg (wr,) by a complete read operation by the reader
(r1,v1) that skipsB;. Notice that readefr;, 1) cannot distinguistp(1) from ¢’ (1) becausep(wr) andp(wrs)
differ atw and blockB; and read fromry, v1) skips blockB;.

We continue in similar manner, starting fropi(1), and create execution fragments for the rest of the readers
in the system. In particular we define an execution fragmsnf, for 2 < i < V to extendy/(i — 1) by a
complete read operation frofw;, ;) that skipsB;. We then construct finite execution fragmeriti) by deleting
from ¢(7) all the rectangles (steps) from the servers in blBgkin particular, as previously mentioned, execution
fragmenty’ (i) extendsp(wr;41) by appending that withreads such that far < k < 4, (ry, ) skips the blocks
{Bj| k < j < i}. Observe that sincé-, ;) cannot distinguishy(1) and’(1), it returns1 in both executions.
Furthermore, since(2) extendsy’(1), by atomicity(rs, 1) returnsl. So(ry, v2) returnsl in ¢’(2) since it cannot
distinguishy(2) and¢’(2). By following inductive arguments we conclude that {g(:), reader(r;, v;) returnsl.
Thus, for the execution fragment(V), (rv, vy ) returnsl. An illustration of the following execution fragments
can be seen in Figure 3.
Finite Execution fragmenp(A). Here we consider the execution fragme#itV’). As defined abovey’ (V)
extendsy(wry 1) by appending/” reads such that for < k < V, (ry,v)’s read skips the block$B;| k£ <
j < V'}. Observe here that all the read operations are incompletpefor the read operation of readef, vy ).
Moreover only the servers in blodRy . receivewRITE messages from the; operation ofw. Also, only By ;1
replies to the read operation of the reader, 1), and those messages are in transit. All otREAD messages
of (r1,v1) are in transit and not yet received by any other server. Let@bon fragment(A) extendy’ (V') as
follows: (1) all the messages send py, 1) and were in transit, are received by the servers in bldgks. . , By,
(2) reader(r;, v1) receives the replies from serveBs, . .., By, and returns from the read operation. Notice that
since By 41 contains less or equal toservers, it means that readet, 1) received> S — t replies and should
not wait for any more replies to return.
Finite Execution fragmenp(B). We consider as execution fragmes(t3) with the same communication pattern
as p(A) but with the difference that the;, operation is not invoked at all. Hence servers in bldgk,; do
not receive anyRITE messages. Clearly only the servers in bldgk, 1, the writer and the reade(s;, v») to
(rv,vy) are in position to distinguisiz(A) from ¢(B). The readefr;, 1), since it does not receive any messages

from By 4 cannot distinguishp(A) from ¢(B). So, since there is no writew() operation,(r, v1) returns_L in
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Figure 3: Execution fragments(A), o(B), ¢(C), ¢(D).

©(B) and therefore returns in ¢(A) as well.

Finite Execution fragmentg(C) and (D). Observe that inp(A), reader(r;, ;) does not violate atomicity
even though it returnd. and (ry, vy) returnsl because the two operations are concurrent. We construct now
two more executions: execution fragmeniC') andy (D) which extend the execution fragmerigA) andy(B)
respectively with a second complete read operation ffomy,) that skipsBy ;. Since the servers iBy ., are

the only ones who can distinguisi{ A) andy(B) and sincgry, v1)’'s second read skipBy ;1 then(ry, v1) cannot
distinguishy(C) from (D) either. Sincep(C) is an extension ap(A) means that the readéry, vy) returnsl

in ¢(C). Moreover(ry,v1) returns_L since no write §,) operation is invoked ip(D). So since(r;, v;) cannot
distinguishy(C') from (D), it returns_L in ¢(C') as well. Howeverr;, v;) succeedsry, vy ) that returnsl in
©»(C) and thusriolates atomicity This completes the proof of Case (1).

Case 2:The next case that needs investigation is the equlity % — 2. Since we are using groups of nodes, it is
possible that all the readers will be contained in a singbeigr Consider this situation for the following proof. As
before, sincd/ = % — 2 we can divide the servers intd + 2 blocks where each block containservers. More
precisely, since we only assume one virtual ndde<( 1) then the total number of blocks is 3. We also consider the

same construction for the write operation with the diffeeethat thev; is not skip-free but skips the blodRy 5.
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In particularp(wr;) is the execution fragment that contains an incomplgteperation and skips the set of blocks
{By42} U{B,|1 < j <i—1}. As before,p(wr) is the execution where all the servdiB;| 1 < j <V 41}
replied to thev; write operation and all those replies are in transit$or) is the extension op(wr,) where all
those replies are being received by the writer

Let now describe a series of finite execution fragments thignel o (wr). We say that execution fragment
©(el) extendsp(wr) by a complete read operation by the reafler v;) that skips blockB;. To preserve atom-
icity, (r1,v1) returnsl. Consider now another executiop(el), that extends»(wrs) by the same read operation
from (rq, 1) that again skipg3;. Recall that only the writew and the servers in blocB; can distinguishp(wr)
from p(wrq). So since(ry,v1) skips the servers in the blodk,, it cannot distinguishp(el) from ¢’(el) and
thus returnsl in ¢/(el) as well. We now exteng’(el) by execution fragmenp(e2) as follows: (1) a complete
inform(1) operation from{ry, 1) that skips the servers in the bloék, ., o, and (2) a complete read operation from
reader(ry, 1) that skips blockB;. The read from(rq, 1) returnsl to preserve atomicity. Further consider the
execution fragmenp(e3) which is the same witkp(e2), but with the difference that the inform operation from
(r1,v1) is incomplete and also skips blodk;. Notice thatp(e2) andp(e3) differ at the readefr;,v;) and the
servers in blockB; only. Since the read€rs, 1) does not receive any messages frB8q it cannot distinguish
the two executions. Therefofes, v1) returnsl in ¢(e3) as well.

It now remains to investigate two more execution fragmept#;) andy(F'). Let o(E) extendy(e3) with a
complete read operation ljys, ). This read operation skips blodk,. The read fromrs, v1) cannot distinguish
o(E) from p(e3) and so it returnd in p(F) as well. Executionp(F') now has the same configuration @&F)
with the difference that no write.() or inform(*) operation is invoked by any process. 89,v4), (r2,v1) and
(rs,v1) return L in o(F'). However, sincep(E) and(F) only differ at block By, and since(rs, v1) skips Ba,
it cannot differentiate the two executions fragments. Hefig, v;) returns.L in ¢(E) as well. Thereforep(E)
violates atomicitysince(rsy, v1) that succeedérs, v1) returnsl and(rs, v1) returns an older value, namely. This

completes the proof. a

Per Lemma 6.1 semifast implementation are possible orlly & % — 2. In addition, the following lemma
shows that the existence of a semifast implementation apertls on the number of minimum messages sent by

a process during its second communication round.

Lemma 6.2 There is no semifast implementation of an atomic registerrifad operation informst or fewer

servers during its second communication round.

Proof. SinceV < %— 2, we get thats > t(V +2), and hence in order to maintain at least one reader in therayst
S > 3t. Suppose by contradiction that there exist a semifast im@hgation/ which requires a complete read

operation to send equal 88 INFORM messages during its second communication round. Recathingeader that

29



performs the informative phase, in order to preserve thmitetion property, should expet replies (since up to
t servers might fail). We proceed by showing that there exstexecution of where a read operation returhs
and performs a second communication round and a subse@aehvperation returnisand again needs to perform
a second communication round to complefelating the third property of the semifast implementation.

Consider a finite execution fragmept where writerw invokes aw, write operation and writes the value
valy on the atomic register. We extend by a read operatiop; which performs two communication rounds and
returnsval;,. During the second communication round,sent messages 83 servers. OnlyN S, | = 2t servers
getINFORM messages frormp; and replied to those messages. Sihod the servers might be faulty, in order to
preserve the termination properpy, returns after the receipt of those replies. We further ektenby a second
read operatiom, which receives messages fra8),,| = S — t servers and missef the servers inV.S,, such
that|S,, " NS, | =t.

We now describe a second finite execution fragmentvhich is similar toyp; but with the difference that
p1 is incomplete and onlyN S, | = t servers received theiFORM messages from;. In this execution,p,
receives replies from all the servers that have been infdroye,, namely|S,, N NS, | = t. Note thatp, cannot
distinguishyy and - in terms of the number of servers informed by Sincep, observed that only servers
were informed byp; in ¢ and sincep; might crash before completinge must perform a second communication
round to ensure that any read operation pst. — p; that receives replies frons,,| = S — ¢ servers will not
observelS,, N NS, | = 0 and thus return an older value violating atomicity. Obvlpube fact thatp, proceeds
to a second communication round does not violate the thioggaty of Definition 2.3 sincg; andp, in @5 are
concurrent. Since, cannot distinguisty; andy,, p2 must perform a second communication roungbinas well.
However, ingp1, p1 — p2 and thus they are not concurrent. Spviolates the third propertycontradicting the

assumption that there is a semifast implementafiomhere any read operation needs to infofn3t servers. O

We now state the main result of this section.

Theorem 6.3 No semifast implementatiahexists if the number of virtual nodes in the systern i% —2and if

3t or fewer servers are informed during a second communicatand.

Proof. It follows directly from Lemmas 6.1 and 6.2. O

7 Multiple Writer, Multiple Reader (MWMR) Model

In this section we consider the MWMR model and show that nafssinimplementations of atomic registers are

possible in this setting in the presence of server failures.
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7.1 Preliminaries.

For the MWMR model we relax the definition of a semifast impésration as presented for the SWMR model,
by allowing read operations to perform more than two commation rounds (i.e., instead of two rounds we allow
multiple rounds in Definition 2.3). First we extract sevaramediate properties from the definition of atomicity
presented in Section 2. To satisfy the atomicity definitiom fiollowing properties must be true for any execution

of the MWMR semifast implementation:

PROPERTY P1: if there is a write operatiow, that writes valueval;, and a read operatiop; such that

wr — p;, and all other writes preceds. thenp; returnsvaly,.

PROPERTY P2: if the response steps of all write operations precedetioeation steps of the read opera-

tions p; andp;, i # 7, thenp; andp; must return the same value.

PROPERTYPS3: If the response steps of all the write operations prettedi@vocation step of a read operation

p; thenp; returns a value written by some complete write.

For the reasons discussed in Section 2.2, we assume the cooatmn scheme where a server replies REaD

(or WRITE or INFORM) message without waiting to receive any otR&AD (or WRITE Or INFORM) messages. In
this proof we say that an operation performsad phasaluring a communication round if it gathers information
regarding the value of the object from the system at thatdolkie say that an operation performsvate phase
during a communication round if it propagates informatiegarding the value of the object to any subset of the
servers at that round. A read phase of an operation (readita)\@oes not modify the value of the atomic object.
On the other hand a write phase of an operatidmehaves as follows according to its type: (1) a new, cuiyentl
unknown value is written to the register,7ifis a write operation (2) only previously known values aretten

to the register ifr is a read operation. We should clarify here that'sglue of the atomic object'we mean all
the parameters that may reveal any information about theabkealue of the object. So any operation phase that
modifies those parameters (and thus the state of the atoijeictpis considered as a write phase.

We say that a complete operatigrskipsa servers; if s; does not receive any messages from the procésat
invokeds and the procegsdoes not receive any replies from All other servers that receive tiREAD, WRITE or
INFORM messages from reply to these, and receives those replies. All other messages remain in trisice
we assume that= 1, any complete operation may skip at most one server. We sagpithoperation iskip-freeif
it does not skip any server.

Since we consider read operations that might perform melipmmunication rounds to complete, we denote
by p;(j) the j®* communication round (phase) of a read operatiorin order to distinguish between the read and
write phases of;, let p#(j) denotes that thg'" phase of the reag; is a write phase. An arbitrary delay may

occur between two phases(j) andp;(j + 1) where other read (write) operations or read (write) phasghtm
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be executed. So we define as(j — 1) a set of operation phases (read or write) with the propegyahy phase

pi(x) € s1i(j — 1), p«(x) — pi(4). A setsr;(j7 — 1) might be equal to the empty set containing no operations.

Claim 7.1 A read operationp that succeeds any write operatian. and write phasep® («) from an operation

w # p, returns the value decided by the read phase that precesléssitwrite phase.

Proof. The claim follows from the fact that the read operation sedseall the write operations and from atomicity
properties P1 and P2. Let assume that reageerforms the read operatignwhich in turn requires: commu-
nication rounds to complete. Furthermore let assumehgt) is the lastwrite phaseof p and for simplicity of
analysis we also assume that this is the only write phase ftdobhe result is still valid when multiple write phases
are performed by.

Sincep succeeds all write operations then any read phdgg for 1 < g < n wheren the total number of
phases fronp, will gather the same information about the value of the &amgister. So according tQ’s local
policy and atomicity property P3 every read phase that plese” () will decide the same value, sayto be the
latest value written on the register. Lgtj — 1) be the last read phase operation that precgdés. According to
the assumption, a write phase of a read operation propaifpatealue gathered, to the system.3¢;) propagates
valuev which was observed by the read phases. Sjdg) performs a write operation on the register then any
read phase(?), j + 1 < ¢ < n, such thap“(j) — p(¢) must decide to preserve atomicity property P1. So the
last read phasg(n) of the read operation returnsas well and hence is the value returned by operatign That

completes the proof. O

7.2 Construction and Main Result.

We now present the construction we use to prove the maintré§elshow execution constructions assuming that
two writers (w; andws), and two readers-{ andr;) participate in the system. We assume skip-free operations
since they comprise the best case scenario and thus a lowed lbor these is sufficient. Note here that the con-
structions of executions with fast read operations ardairto constructions presented in [3]. We use this approach
and we present a generalization that contains read opesatiith single or multiple communication rounds suit-
able for our exposition. The main idea of the proof exploiteautions with certain ordering assumptions which
may violate atomicity. In particular we assume executiohgerg the two write operations are concurrent and inter-
leaved, are succeeded by the readand in turnp, is succeeded by,. We analyze all the different cases in terms
of communication rounds fqr; andps. We show that in each case, a single server failure may caols¢ions of
atomicity.

Let us first consider the finite execution fragment, constructed from the following skip-free, complete

operations: (a) operatiowrite(2) by we, (b) operationwrite(1) by wy, and (c) operatiorp; by ;. These
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operations are not concurrent and they are executed in teg orite(2) — write(1) — p;. By property P2,
operationp; returnsl.

We now invert the write operations of the above execution werdobtain executiory,, consisting of the
following skip-free, complete operations in the followingder: (a) operationvrite(1) by w;, (b) operation
write(2) by wy, and (c) operatiorp; by . As before, these operations are not concurrent. So in #¥s,c
by property P2, operatiom returns2.

The generalizationp;, of ¢, for 1 < ¢ < n, when the reader; performsn communication rounds is the
following: (a) awrite(2) operation fromws, (b) awrite(1) operation fromw;, (c) a set of read operations
sri(i — 1) from readers;, j # 1, and (d) a read or a write phagg(i) of the p; operation from reader;. Notice
that forn = 1 and forsr;(0) = () no process can distinguishy, from ¢,. Clearly at the end of phase (n), by
property P2, the operatign from r; returnsl.

Similarly we define thepy, to be the generalization af,, where the write operations are inversed: (a) a
write(1) operation fromw,, (b) awrite(2) operation fromw,, (c) a set of read operations; (i — 1) from readers
rj, j # 1, and (d) a read or a write phage(i) of the p; operation from reader;. In this case by the end of phase
p1(n), and by property P2, the, operation returng.

If we assume now, without loss of generality, that the lasticmnication roungb; (n) of 1 in ¢y, is a write
phase, thug{ (n), thenr; should not be able to differentiaig , from the following execution, fot < i <n — 1:

(@) awrite(2) operation fromws, (b) awrite(1) operation fromw,, (c) a set of read operations (i — 1)
from readers-;, j # 1, (d) a read phasg (i) of the p; operation from reader;, (e) a set of read operations
sri(n — 1) from readers;, j # 1, and (f) awrite(1) operation fromp{(n). By operationwrite(1), the reader

rq tries to disseminate the information gathered from theipts/rounds regarding the value of the atomic object.
Similarly we can definepy, with the difference that reader will perform awrite(2) operations during its last
communication round.

Obviously we have the same setting as in Claim 7.1 and so bgatime claim the decision for the return value
must be made ip; (n — 1). Notice that the decision of; taken inp;(n — 1) is not affected from the operations in
sri(n —1). So we can assume that, andy,, contain only read phases by. According now to property P2;
will decide 1 by the end o (n — 1) in 1, and2 by the end o (n — 1) in 9, Since we assume that we only
have2 readers in the system andr,, and since-; does not perform any read operation in eithey or ¢4, we

have that all the setg (i — 1) = () for 1 <4 < n in both executionsy;, andyy,.

Theorem 7.2 If the number of writers in the systemlig > 2, the number of readers iB > 2, andt > 1 servers

may fail, then there is no semifast atomic register impletaten.

Proof. It suffices to show that the theorem holds for the basic caszeWi = 2, R = 2, andt = 1. We assume

that there exists a semifast implementation and we derivamtradiction. Letv; andws be the writersy; andrs
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the readers, angl, . . ., sg the servers participating in the system. We show a serieseaigions and analyze the
different cases of a semifast implementation where wraieesfast and readers perforrcommunication rounds.
We show that in all of these cases atomicity can be violated.

We now define a series of finite execution fragments, wherel < i < S+ 1. We assume that the two write
operations fromv; andw, are concurrent. After the completion of both write opernadiap, read operation, which
may involve multiple communication rounds (phases), ioked byr;. For everyyp(i) the set of read operations
sr1(0) = 0 and so thep; from r; is the first read after the completion of the write operatidbsfiney(1) to be
similar top;4. Then we iteratively defing(i 4 1) to be similar top(i) except that servey; receives the message
from w, before the message fromy. In other words the arrival order of the write messages @srdhanged in
s;. Since the operations froma,, wy and each communication round by are skip-free, they can differentiate
betweeny(i) andp(i + 1). Also s; is the only server that can distinguish the two executionsesive assume
no communication between the servers. Obviously, by oustcoction, no server can distinguisii.S + 1) from
a4 SiNCe every server received tharITE messages in the opposite order thapip. Thus,r; cannot distinguish
the two executions either, and so it retuthd (S + 1) after the completion of its last communication round.
Therefore, executiong(S + 1) andy,, differ only atw; andws,. It follows that sincer; returnsl in (1), 2 in
p(S+1)andlor2in (i) (2 < i< S), there are two executiong(m) andp(m + 1), such that < m < S and
the read by returnsl in ¢(m) and2 in ¢(m + 1) at the end of the same communication round.

Consider now an execution fragmeptand an execution fragment’ that extendp(m) andp(m + 1) re-
spectively by a read operatign from r, that skipss,, during all its required communication rounds. On the
constructed executions we analyze the cases of semifakdrimeptation. Recall that we investigate the case of the
semifast implementation where we allow the readers to parfocommunication rounds and write operations are
fast (only one communication round). We examine the diffepossible scenarios during executigrisand ¢’

(1) bothp, andp- are fast in both executions, (2) performsk communication rounds i@’ andy” andp; is fast,

(3) p1 performsn communication rounds in both executions ands fast, and (4) botl; andp, performn and

k communication rounds respectively. We assume that theepses decide to perform a second communication
round according to their local policy.

Case 1:In this case both reads are fast and thus requiring only omgremication round to complete. As shown
in Proposition 2 in [3] the read operatiga cannot distinguish the two executiopsand” since it skips the only
server §,,) that can differentiate them. So the readreturns, according to property PRjn ¢’ and so it returns
1in ¢” as well. Howeverp; cannot distinguish the executiopgm + 1) and¢”, and so, since it returnin
p(m + 1), it returns2 in ¢ as well. Hencey” violates property P2.

Case 2:In this casep, performsk phases in executions’ and”. Since all read phases by skip the server

sm, then none of them is able to distinguish executidfrom " sinces,, is the only server who can differentiate
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them. Thusp, retuns the same value in both executions. Since accordiaig &g P2y, returnsl in ¢’ then it
returnsl in ¢” as well. Againp; cannot distinguiskp(m + 1) from ¢” so it return2 in " as well. Thus property
P2 is again violated.

Case 3:This is the case wherg, performsn phases to complete and is fast. Since all the phases py are
read phases, skip-free and precggethenp; cannot distinguish executian from ¢(m) andy” from p(m + 1).
Thereforep, returnsl in ¢’ and2 in ¢”. On the other hangs; returns according to property R2luring’. Since
all n phases of-, are read phases in both executigrisand” , then no server, writer ar, can distinguish each
phase and they only differ a§. So onlys,, differentiatesy’ from ”. Since thoughp, skipss,, then it cannot
distinguishy’ from ” returning 1 ine” as well violating property P2.

Case 4:Similarly to case 3p; returnsl duringy’ and2 duringy”. With the same reasoning as in case 3 and since
all phases of, skip the serves,,,, no communication round gf, can distinguishy’ from ”. So in this case,

returnsl in both executions violating property P2. This completesgioof. O

8 Simulation Results

To evaluate our implementation, we simulated algorithif using the NS-2 network simulator and measured the
percentage of two-round read operations as a function ofdhber of readers and the number of faulty servers.

Our simulations include 20 servetS & 20). To guarantee liveness we need to constrain the maximunbeaum
of server failureg so thatV < % —2o0rV < % — 3. Thust < Vi% In order to maintain at least one group
(V = 1), t must not excee@, or 5 failures. Thus in our simulations we allow up icservers to fail at arbitrary
times. We vary the number of reader processes between 1@and 8

We use the positive time parametetint and wint (both greater than kec) to model the time intervals
between any two successive read operations and any twossiavrite operations respectively.

We considered three simulation scenarios corresponditigettollowing parameters:
(1) rInt < wilnt: this models frequent reads and infrequent writes,
(14) rInt = wint: this models evenly spaced reads and writes,
(13i) rInt > wilnt: this models infrequent reads and frequent writes.

In our simulation setting the nodes are connected with cupiks at 1MB bandwidth, a latency abms, and
a DropTail queue. To model asynchrony, the processes sesshiges after a random delay between 0 and&:3
(smaller than-Int andwint). According to our setting, only the messages between tluking processes and the
servers, and the replies from the servers are delivered gssages are exchanged between any servers or among

the invoking processes).
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Percentage of 2comm

4.87) 4.10(1) 4.8(ii) 4.10(i7) 4.a(iii) 4.10(iii)

Setting a: Stochastic simulations Setting b: Fixed intesiraulations

Figure 4: Stochastic and fixed interval simulations. Theica@raxes show the percentage of two-round reads as a
function of the number of readers and the number of faultyessr

Each of the simulation scenari¢s, (ii), and(iii) was considered in two settings:

a. Stochastic simulations, where the intervals betweerréad or two write operations vary randomly within

certain bounds.
b. Fixed interval simulations, where the intervals are fixed

We now describe the simulation results for each of the twitnggst

Setting a: Stochastic simulations. Here we consider a class of executions where each read (resp) oper-
ation from an invoking process is scheduled at random tinted®n 1sec andrInt (resp.wlint) after the last
read (resp. write) operation. Introducing randomnesseérofheration invocation intervals renders a more realistic
scenario where processes are interacting with the atonjgctobdependently. Note that under this setting, for the
three scenario&), (i7), and(zii), the comparisons betweetint andwInt are satisfied stochastically.

We present the results for a single valueuafnt = 4.3 sec for write operations. For scenar{@) we use
rInt = 2.3 sec, for scenariqii) we userInt = 4.3 sec, and for scenarigiii) we userInt = 6.3 sec. The results
are given in Figure 4, setting a.

We observe that the results in this setting are similar, thighpercentage of two-round reads is mainly affected

by the number of faulty servers. In all cases the percenthtyeosround reads is undér.5%.

Setting b: Fixed interval simulations. In this setting the intervals between two read (or two writpgrations
are fixed at the beginning of the simulation. All readers Umedame intervatInt, and the writer the interval
wInt. This family of simulations represent conditions whereraiens can be frequent and bursty.

Figure 4, case b(i) illustrates the caseréht < wint, whererInt = 2.3 sec. Here a read (write) operation

is invoked by every reader (resp. writer) in the system evént = 2.3 sec (resp.wint = 4.3 sec). Because of
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asynchrony not every read operation completes before tlogation of the write operation and thus we observe
that only 4.5% of the reads perform two communication rounds

Figure 4, case b(ii) illustrates the scenario whefet = wint. This is the most bursty scenario since all
operations, read or write, are invoked at the same time,ifsggly the operations are invoked everynt =
wInt = 4.3 sec. Although the conditions in this case are highly bursty (antikely to occur in practice), we
observe that only about half of the read operations perfaroncommunication rounds.

Figure 4, case b(iii) illustrates the scenario wheteit < rInt. In particular a read operation is invoked every
rInt = 6.3 sec by each reader and a write operation eveilint = 4.3 sec. Given the modeled channel latency
and delays, notice that there is no concurrency betweerettteand write operations in this scenario. So all the
servers reply to any read operation with the latest timgstand thus no read operation needs to perform a second
communication round.

Finally, note the common trend that increasing the numbeeaders and the number of faulty servers nega-

tively impacts the performance of the algorithm in the sciesd(i) and (ii) for both case a and case b.

9 Conclusions and Future Work

In this paper we investigated the existence of semifastémphtations of a read/write atomic register. It is shown
in [3] that there are no fast SWMR implementations—wherénlveiders and the writer perform one communi-
cation round—if there aré — 2 or more readers. Furthermore a question was posed whetrerdkist semifast
implementations where reads or writes are fast.

The goal of this paper is to relax the bound on the readerseirsyistem at the cost of allowing some reads
to perform two communication rounds. We formalized the grothf semifast implementations and we presented
an implementation that meets our goal and satisfies thereshproperties. For our implementation we show that
for any write operation only one complete read operation f@aybe some read operations concurrent with that)
needs to perform two communication rounds. We also showattiiere is no semifast implementation if the
number of differentirtual nodesin the system istS — 2 or greater. Moreover we showed that there cannot exist
semifast implementations for the MWMR model. Finally, wmslated our algorithm and presented the results
that demonstrate that most read operations are fast in mwutaied executions.

Our paper made progress in identifying the tradeoffs betvilee concurency in the system and the number of
communication rounds required to implement atomic regist€he next step is to better understand the tradeoffs
in the MWMR model. One direction is to consider hybrid semstifianplementations where writers and readers per-
form a mixture of fast and semifast operations. Anotherdiiioa is to consider dynamic settings such as [9] where
nodes might join, leave, and arbitrarily fail. Lastly, meteulent adversarial behaviors, such as Byzantine faslure

can be be studied and analyzed. Initial progress in thictitine is reported in [6, 7], where certain quorums are
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employed to trade operation latency and Byzantine-resi#ien SWMR implementations. The broader question

we intend to investigate is—given a particular distribuggdtem model—how fast can a distributed atomic read

be?
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