
Taking Total Control of Voting Systems: Firmware
Manipulations on an Optical Scan Voting Terminal

Seda Davtyan Sotiris Kentros Aggelos Kiayias Laurent Michel Nicolas Nicolaou
Alexander Russell Andrew See Narasimha Shashidhar Alexander A. Shvartsman

Voting Technology Research Center and Computer Science and Engineering Department
University of Connecticut, Storrs, CT 06269, USA

{seda,skentros,aggelos,ldm,nicolas,acr,andysee,karpoor,aas}@cse.uconn.edu

ABSTRACT
The firmware of an electronic voting machine is typically
treated as a “trusted” component of the system. Conse-
quently, it is misconstrued to be vulnerable only to an insider
attack by someone with an in-depth knowledge of the sys-
tem and access to the source code. This case study focuses
on the Diebold/Premier AccuVote Optical Scan voting ter-
minal (AV-OS) that is widely used in the USA elections. We
present three low level manipulations of the above voting ter-
minal’s firmware resulting in divergence from its prescribed
operation: (i) the first bestows the terminal with a powerful
memory card dumping functionality, (ii) the second enables
the terminal to leak the ballot details through its serial port
thus violating voter privacy during the election, (iii) the fi-
nal third firmware manipulation is a proof of concept attack
that swaps the votes of two candidates thus permanently
destroying the election outcome in an undetectable fashion.
This demonstrates the extent to which the firmware of the
AV-OS can be modified with no insider knowledge or access
to the source code.

Our results underscore the importance of verifying the
integrity of the firmware of electronic voting terminals ac-
companied by sound auditing procedures to maintain the
candor of the electoral process. We also note that this work
is performed solely with the purpose of security analysis of
AV-OS, and the first and the second firmware manipulations
we describe serve a dual purpose in assisting the techno-
logical audits of actual voting procedures conducted using
AV-OS systems.

1. INTRODUCTION
Frequently, the firmware component of a proprietary com-

puting system is misconstrued to be vulnerable only to a
technical insider attack by someone with extensive resources,
an in-depth knowledge of the targeted system, and access to
source code and/or hardware specifications. In this work,
we challenge this assumption in the domain of e-voting ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

chines by presenting a detailed case study focusing on the
AccuVote Optical Scan Terminal (AV-OS) that is widely
used in the US elections. Our investigation demonstrates
the possibility of an array of firmware manipulation attacks
against the AV-OS that are characterized by their low cost
(<$300) and the fact that they were developed without
any access to hardware specifications or the source code of
any software running in this system. By virtue of being a
firmware modification, our attacks are totally immune to
cryptographic integrity checks or any other type of auditing
procedure (aside from an auditing procedure that inspects
the firmware itself, which is a type of audit whose impor-
tance is strongly underscored by our work).

Our results include three firmware manipulations applied
to the AV-OS. Our first manipulation equips the voting ter-
minal with a powerful memory card dumping functionality.
The second firmware manipulation leaks the ballot contents
through the serial line when a voter scans his/her ballot.
Finally, we present a proof of concept malicious attack to
illustrate the dangers of trusting un-audited firmware. The
third firmware alteration is capable of swapping two elec-
tion counters thus permanently destroying the outcome of
any election that relies solely on the machine counts.

We note that this work is performed solely with the pur-
pose of security analysis of AV-OS and to assist in the audits
of elections conducted using AV-OS systems. The various
firmware manipulations find a dual purpose in the auditing
process and the basic techniques developed herein are useful
tools that can expedite the auditing procedures for voting
terminals.
Optical Scan Security Vulnerabilities: There are two
major types of electronic voting equipment: Direct record-
ing electronic (DRE) machines and optical-scan (OS) ma-
chines. An important benefit of the optical scan technology
is that it naturally yields a voter-verified paper audit trail
(VVPAT)—the actual “bubble sheet” ballots marked by the
voters that enables hand-counted audits and recounts. De-
spite the paper trail benefit of OS terminals, three major
issues serve as the motivation of this paper: First, OS ma-
chines, such as the AV-OS terminal, have a loadable soft-
ware component containing information about the election
and candidates. Such software presents opportunities for at-
tacks [5, 2, 8] and should be audited. Second, OS machines
may occasionally make errors when reading ballot sheets, as
indicated by hand-counted audits [10, 9]. Such audits are
performed randomly in some states and may be triggered
by a tightly contested race. Unfortunately, such audits are

time consuming and may themselves be error prone [10, 11].
The third issue concerns the firmware, the software compo-
nent that implements the basic functionality and typically
resides in the internal memory of the terminal. Generally,
the firmware of voting machines is trusted implicitly. In
some cases the firmware source code is inspected by inde-
pendent experts [8, 6] to ensure that it behaves as expected,
however, to the best of our knowledge, the actual firmware
binary code is currently not audited.

In [5], the authors describe a general architecture that
characterizes special purpose trusted computing devices such
as the AV-OS voting terminal. Recall that a system like the
AV-OS is composed of both software and hardware compo-
nents. From the security viewpoint, the key features are the
components that are accessible or easily replaceable from
outside the system, namely, the software components. The
main theme in [5] (as well as in most previous research) cen-
tered around the vulnerabilities and security issues of the
AV-OS voting terminal that relate to the machine’s propri-
etary language, called AccuBasic, used for reporting election
results. For the most part, previous work assumes that the
firmware of the AV-OS terminal is a trusted component of
the system, a point from which we depart in the present
work.
Contributions: We present three manipulations of — in
essence attacks on — the AV-OS firmware. First we imple-
ment a new diagnostic memory card dumping function of
the terminal; in particular, we develop a firmware manipu-
lation that expedites the memory card dumping functional-
ity of the AV-OS terminal; our modified firmware exhibits a
sixfold speedup of the total dumping time. This firmware
manipulation was performed to assist in the auditing of the
contents of memory cards but can also be instrumental in
launching an attack against the voting terminal since the
memory card stores all the sensitive information regarding
the election and expedient access to this information can
be essential to an attacker. The second manipulation tar-
gets vote privacy: our modified firmware “leaks” through
the serial port the actual contents of a voters’ ballot. The
dual purpose of this firmware manipulation is assisting in
the hand-counted audits of the election outcomes. Indeed,
in the post-election stage this modification of the firmware
allows auditors to visually inspect (on screen) the interpre-
tation of the ballots by the AV-OS terminal. Such func-
tion can be used to enhance an optical scan terminal with
some of the functionality of a DRE voting terminal that
provides visual cues on the machine’s interpretation of the
voters’ input (such affirmation is missing from optical scan
voting terminals but is present in DRE machines). Lastly,
we demonstrate a malicious proof-of-concept attack based
on firmware manipulations. The modified firmware tests to
see whether a set of right conditions are met and then swaps
the vote counters of two candidates – something that per-
manently destroys the election results (to the degree they
rely on the output of the machine). This attack, being at
the firmware level, is immune to any cryptographic integrity
checking that is employed at the memory card level (recall
that the firmware should in fact be capable of modifying the
contents of the memory card and is ultimately the compo-
nent responsible for enforcing integrity checks).

At no time did we have access to source code or internal
documentation, showing that the above attacks can be car-
ried out by anyone with a reasonable computer science back-

ground. The proof of concept attacks illustrate the dangers
of trusting un-audited firmware and show the importance of
verifying the integrity of the firmware of EVMs accompa-
nied by sound auditing procedures to maintain the candor
of the electoral process.

2. THE AV-OS ELECTION SYSTEM
The AV-OS election system is comprised of two compo-

nents [3]: the AccuVote Optical Scan voting terminal (AV-
OS) and Global Election Management System (GEMS).

The AV-OS terminal is a computing device responsible
for accepting ballots and tabulating the results of the elec-
tion. The functionality of the terminal is determined by
the firmware loaded into a single Erasable Programmable
Read Only Memory (EPROM) residing inside the terminal.
The AV-OS voting terminal described in this paper contains
the firmware version 1.96.6. The major hardware compo-
nents include an 8MHz microcontroler which emulates an
Intel 80186 processor, 128K RAM chips, an optical scan-
ner, a dot-matrix printer, LCD display, serial communica-
tion port, built-in modem and a removable 40 pin EPSON
memory card. An analysis and discussion of the contents of
the memory card is presented in this paper.

GEMS is the ballot design and central tabulation system.
It is installed on and operated from a conventional PC.
GEMS consists of several databases that include the data
and ballot layout corresponding to the precincts participat-
ing in the election, and the bytecode that determines how
the tabulated results are printed. This data is transferred
via the serial communication port to the memory card kept
in the AV-OS terminal.

2.1 AV-OS Software Components
The behavior of each AV-OS terminal is determined by

the firmware and the memory card contents.

Firmware. The main software component of the AV-OS is
its firmware, executable code kept in a 128K 32 pin EPROM
chip (M27C1001) and responsible for all the functions pro-
vided by the machine. The EPROM is electronically pro-
grammable and UV (ultra-violet) light erasable. Using ap-
propriate (inexpensive) tools, we were able to extract the
binary code of the firmware and disassembled that into a
friendlier assembly-level1 representation for examination and
with the purpose of security analysis.

Our analysis reveals that the firmware consists of two seg-
ments. The first is at the beginning of the EPROM’s mem-
ory space. “Far” calls lead to the starting address of the
second segment and facilitate the interaction between the
two segments.

Thereafter, utilization of I/O strings, program flow con-
trols, procedural structure and register operations, allowed
the identification and modification of the firmware. Inter-
estingly, deployment of the customized firmware, required
nothing more but burning the modified binary code onto a
programmable EPROM and installing the new EPROM into
the AV-OS; this procedure is accomplished in minutes given
physical access to the machine.

Memory Card. The AV-OS terminals contain a 40-pin
128KB Epson memory card. It is installed into the slot via

1Dissasembly according to the 80186 architecture since the
actual processor in the AV-OS (part number NEC D70320L-
8) emulates an Intel 80186 processor.

a J40 connector found in the right front side of the ter-
minal. Worth mentioning is that Epson discontinued the
production of this memory card, and reader/writers for this
memory card are not readily available.

The data on the card includes status information, an au-
dit log, ballot description, and counters, described in more
detail in Section 3. This information was extracted in part
by the systematic analysis of the firmware’s binary code and
in part by “eavesdropping” on the communication between
GEMS and AV-OS. Note that the analysis was performed
without any technical documentation from the vendor and
in the absence of the firmware source code. The memory
card format is shown in Figure 1.

3. GAINING ACCESS CONTROL
In the process of this work it became apparent that we

could affect, replace, or modify all aspects of the firmware.
A first step of our security analysis presented below was to
gain control over the following components: (1) the memory
card access and analysis, and (2) the serial port access and
one way communication from the AV-OS terminal to GEMS
(and, in effect, any external PC). With this new control it
becomes possible to design and embed software (benign and
malicious) on the AV-OS hardware.

Memory Card Access Control. Perhaps the most im-
portant step in the security analysis of the AV-OS terminal
was understanding and interpreting the contents of the 40-
pin EPSON memory card. Since the election data and the
election flow control are stored in the memory card, it is
imperative to unveil the importance and use of every single
byte on the card by the terminal. At first we identified the
memory card address from the firmware. This helped us to
trace the conditions under which the terminal accesses the
memory card and identify the purpose of most of the card’s
bytes. The organization of the card appears in Figure 1.
Below we summarize the data found in each section.

Header: The header contains information about the organi-
zation of the contents of the card, description of the election
and flow control flags. The header has a fixed length, total-
ing 576 bytes.

Log: This segment is a fixed-size “circular” buffer in which
the firmware logs certain timestamped events. It can hold at
most 512 entries—any log additions beyond this limit over-
write entries in an earliest-first fashion. Each entry consists
of 2 bytes, totaling 1024 bytes of log. Further analysis and
parsing of the log reveals information about the history and
the actions taken on the AV-OS terminal that hosted the
analyzed memory card.

Election Data: The election data obtained from the GEMS
database is kept several bytes below the log end. The elec-
tion data segment has a variable length and can be bro-
ken down into three subsections: a) Ballot Data that reveal
information about the ballot layout, b) Race Data which
include the details about the participating offices, and c)
Candidate Data which contains the details about the elec-
tion candidates.

Bytecode: The AccuBasic (AB) bytecode present in the
programmed memory cards is solely responsible for the re-
porting procedures. The code is written in a proprietary
symbolic language that was decompiled and analyzed.

Election Counters: The election counters are located be-
low the bytecode on the memory card as illustrated in the

schematic in Figure 1. Here all the election results and
statistics are stored. This section can be divided into two
broad subsections: a) Race Counters and b) Candidate Coun-
ters.

Serial Port Access. We then aimed to control the commu-
nication between the AV-OS terminal and an external PC.
This would significantly enhance the analysis and processing
of the terminal’s data, utilizing the power and tools devel-
oped on an external PC. For this purpose we identified the
firmware’s specialized procedure for transmitting bytes to
the serial port. Then, guided by the general reference on the
Intel-derived processor chip of the AV-OS [7], we first iden-
tified key memory-mapped registers used in the procedure
and responsible for the interaction between the processor
and the serial line. According to the use of those registers,
the main idea of the transmission is to unmask and trigger
the transmission interrupt which in turn will place the byte
to be sent from the sending buffer on the wire. Due to space
limitations we omit the technical details in this paper and
we summarize the AV-OS transmission methodology in the
following four steps: (1) Discovery and reservation of the
sending buffer, (2) Byte to be sent is uploaded to the send-
ing buffer, (3) Address of the Serial interface is loaded, and
(4) Unmask the transmit completion interrupt to transmit
the byte from the send buffer on the wire.

4. ACCURATE MEMORY CARD AUDITING
The firmware in the AV-OS terminals provides a function

to export the contents of its 40-pin memory card through
the serial line. We refer to this function as memory card
dumping. Our election audit procedure uses this capability
of the machine to test the contents of the memory card (con-
taining the election data) against election data provided by
a trusted party (for more details see [9]). For reasons given
below, a new memory dumping function was essential to
ensure the reliability, accuracy, integrity and efficiency of
an election audit procedure. The firmware-resident memory
dumping function has several deficiencies:

1. There is no indication on whether AV-OS faithfully
dumps the contents of the memory card.

2. Using the native firmware may cause unintended changes
to the contents of the memory card, interfering with
the ability to recover the original contents of the card.

3. The memory card dumping selectively filters out some
characters from the contents of the card affecting their
reliable extraction and reproduction.

4. The dumping of the card takes a relatively long time,
making it unfeasible to examine hundreds or even thou-
sands of cards considered in a typical audit.

Ultimately, our objective was to enable reliable delivery
of the data from the card to an external receiver via the
serial port with no side-effects. Armed with the knowledge
presented in Section 3 we were able to access the memory
card, extract its content and transmit it unmodified through
the serial line. To hasten the data extraction process we
implemented a very simple form of data compression based
on run-length encoding (RLE).

Delivery of the Memory Card data: A clear under-
standing of the address space layout and content as well as
how to access the memory card enabled us to write a simple
routine that reads the data from the memory card.

Headers

Version Status PIN General
Counters Pointers District

Info
Log

Election Data

Ballot
Data

Race
Data

Candidate
Data

Bytecode

Counters

Race
Counters

Candidate
Counters

Empty (0)

576 1024
(< 32KB)

128KB

Figure 1: Format of the AV-OS Memory Card.

The next task was to ensure that the bytes read from the
memory card were faithfully transmitted using the serial line
one-way communication from the terminal to an external
serial line receiver (Section 3). The new procedure simply
accepts the byte to be send on the wire, places that byte in
the sending buffer and unmask the transmission interrupt
which triggers the transmission over the wire. No other
control, meta-data or arbitrary bytes are transmitted on the
wire. The new firmware was tested on the transmission of
memory cards with known content to confirm the fidelity of
the transmission.

Speeding up memory card dumping: Because of the
low transmission rate of the serial port (9600bps = 1KB/s)
of AV-OS, dumping the contents of the 128KB memory card
takes a significant amount of time (> 2 min), burdening the
inspection of a large number of cards (i.e., many hundreds of
cards). To solve this problem we enhanced the simple trans-
mission protocol with a straightforward run length encoding
algorithm to compress the bytestream (and decompress it
on the receiving end). This compression reduced the dump
time to 20 sec per memory card. (Simple run-length en-
coding works well here because several large parts of the
memory card are sequences of identical values.)

Avoid unintended alteration of the memory cards:
The final task was to ensure that no information is added
to the memory card or altered during the dumping process
– such changes would be unacceptable in an audit proce-
dure. Since our software now has control over the dumping
process and communication from the end of the machine
boot sequence, we can make sure that the card contents
are not altered. Thorough testing also verified that the
boot/initialization code alters neither the log nor any other
data on the memory card. Thus the entire procedure gets a
faithful image of the card and does not alter its contents.

5. LEAKING THE BALLOT CONTENTS
As mentioned in Section 1, one issue with optical scan

machines is that they may occasionally make errors, as sug-
gested by hand count audits such as that described in [9,
10]. Hand counts are time consuming, and potentially error
prone themselves. To address this, we designed a “semi-
automated” process. The idea is to send the contents of
each ballot through the serial line to a PC which will dis-
play the ballot as interpreted by the AV-OS. The poll worker
performing the audit can then verify that the ballot was
read correctly and correct errors. This will yield two bene-
fits: First, the process of comparing the ballot sheets to the
displayed counters should be faster for poll workers than the
usual hand count process. Second, more generally this will
allow the collection of data regarding the source of ballot
read errors to improve accuracy in future elections.

In the modified firmware, an additional function call is
added to the code that executes after each ballot is cast.

This call sends all the counters, including the latest bal-
lot, through the serial line. The program running on the
connected PC tracks the counters as they are received and
computes the difference in order to display the latest cast
ballot. The poll worker using this interface can then make
changes using the interface if the ballot scanner has made
errors. The program on the PC keeps track of these changes
in order to report on the reliability of the AV-OS and to com-
pute the revised totals. Note that current audit procedures
typically require multiple witnesses for the hand counts, and
similar procedures must be used in this proposed auditing
machine.

Needless to say a dual way of viewing this firmware modi-
fication is as an attack on voter privacy. Setting up a laptop
in the receiving end of the serial port of the AV-OS terminal
during election will retain the full record of all cast ballots
in the exact order they were cast.

The design of the above auditing process suggests an im-
proved approach to optical scan voting in which voters can
verify the votes as recorded by the OS machine and reject
the recorded ballot if there are errors. Voters may then have
the option of fixing the ballot (e.g., filling in bubbles more
completely) or placing the ballots in a separate box to be
hand counted later. There are other combined electronic
and paper systems, such as the Populex Digital Paper Bal-
lot System (www.populex.com), that produce a paper ballot
from voter input at a DRE type terminal. However, the pro-
posed design differs in that the VVPAT is voter generated.
This should dispel any doubts about the VVPAT itself. It
also has the benefit of higher efficiency since many voters
can fill out ballot sheets simultaneously at tables with pri-
vacy screens and share a single terminal for recording their
ballots, as with ordinary OS machines. With DRE type ma-
chines, more terminals are required to achieve the same level
of throughput, adding to the high costs of electronic voting.

6. A MALICIOUS MANIPULATION
We test the possibility of implementing a malicious firmware

that swaps the contents of two counters. The firmware is a
trusted component and is not subject to auditing. We il-
lustrate that a malicious attacker can reverse engineer the
firmware and produce a malicious version which performs a
counter-swap attack and cannot be traced by current pre-
election auditing procedures.

For the purpose of this attack, a malicious function was
added to the firmware, in the free space that exists at the
end of the EPROM. With the exception of this malicious
function the firmware is identical with the AV-OS 1.96.6
firmware. The importance of this is that the “Malicious
Firmware” behaves like the original AV-OS firmware version
1.96.6.

The injected function is invoked right after an election
is closed and before the results of the election are printed.
The function checks whether a threshold of “ballots cast”

has been reached. If enough ballots have been casted, which
implies that we are not in a hand-counted test election, but
in the actual election, it swaps the contents of two counters
in the card. In our prototype the counters choice is hard
coded, though in principle the selected counters could be
determined arbitrarily. Note that like [5] the attack uses a
“time bomb”, since the firmware will perform the counter
swap only during the election. Furthermore, the damage
from the attack is permanent, since the contents of the coun-
ters are permanently altered in the card. Thus electronic re-
porting through GEMS and the printed election results will
agree. To illustrate the results of this attack, Figure 2 shows
the printed results with 4 and 15 votes, using the original
and modified firmware. Note that the votes are swapped
only when there has been sufficient votes cast to indicate a
real election.

(a) Using original firmware (left) and modified (right).
Note that the behavior is the same.

(b) Using original firmware (left) and modified (right).
Note that two candidates have swapped votes.

Figure 2: Results printed after casting 4 ballots (a)
and 15 ballots (b)

Finally the fact that the attack is packaged into the firmware
makes it impossible to detect it through the verification of
the bytecode found in the memory card; measures such as
cryptographically signing the bytecode would be entirely in-
effective against the type of attack presented in this section.

7. CONCLUSION
In this work we demonstrated a set of firmware manipula-

tions for the AV-OS voting terminal that enable an attacker
to violate voter privacy or permanently damage the report-
ing of the election results. Our implementations being at the
firmware level are immune to any potential cryptographic
integrity checks. A variation of other exploits may also be
implemented in the firmware. One such exploit could be
the alteration of the election results following a predefined
voting pattern or button pressing sequence.

The firmware manipulation techniques we present raise
some important questions: How trusted should the hardware

of an electronic voting terminal be and what means are re-
quired to improve trustworthiness of such systems?

We stress that all the findings presented here were devel-
oped from first principles and at no time we had access to
the vendor specifications of the system or the software source
using inexpensive tools. Our results strongly underscore the
importance of pre-election and post-election audits for any
voting procedure, that should include an integrity check of
the firmware code. Moreover, the incorporation of firmware
cryptographic integrity checking in the architecture of an
e-voting machine can further expedite the auditing process.
While the subject of this case study was the AV-OS we have
no reason to believe that our findings would have been any
different had we focused on a different system.

8. REFERENCES
[1] Black Box Voting http://blackboxvoting.org.

[2] H. Hursti, Critical Security Issues with Diebold Optical
Scan Design, Black Box Voting Project, July 4, 2005.
www.blackboxvoting.org/BBVreport.pdf

[3] A. Kiayias, L. Michel, A. Russell, A. Shvartsman,
M. Korman, A. See, N. Shashidhar and D. Walluck,
Security Assessment of the Diebold Optical Scan Voting
Terminal,
voter.engr.uconn.edu/voter/Report-OS.html

[4] A. Kiayias, L. Michel, A. Russell, N. Shashidhar,
A. See, and A. Shvartsman, An Authentication and
Ballot Layout Attack Against an Optical Scan Voting
Terminal. 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT 07), August, 2007, Boston,
MA.

[5] A. Kiayias, L. Michel, A. Russel, N. Shashidhar,
A. See, A. Shvartsman, S. Davtyan. Tampering with
Special Purpose Trusted Computing Devices: A Case
Study in Optical Scan E-Voting. Twenty-Third Annual
Computer Security Applications Conference (ACSAC),
December, 2007, Fl.

[6] D. Wagner, D. Jefferson and M. Bishop, Security
Analysis of the Diebold AccuBasic Interpreter, Voting
Systems Technology Assessment Advisory Board,
University of California, Berkeley, February 14, 2006.

[7] V25+ and V35+ User’s Manual, NEC Corporation,
December, 1992.

[8] J. Calandrino, A. Feldman, J. Halderman, D. Wagner,
H. Yu, W. Zeller, Source Code Review of the Diebold
Voting System, July 20, 2007.
www.sos.ca.gov/elections/elections_vsr.htm

[9] A. Kiayias, L. Michel, A. Russell, N. Shashidhar,
A. See, A. Shvartsman, Pre-Election Testing and
Post-Election Audit of Optical Scan Voting Terminal
Memory Cards. USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT 08), July 2008, San
Jose, California.

[10] The Connecticut Citizen Election Audit Coalition,
Report and Feedback February 2008 Connecticut
Election Audit Observation, April 3, 2008
www.ctelectionaudit.org/Reports/

ObservationReportFeb08.pdf

[11] S. Goggin and M. Byrne, An Examination of the
Auditability of Voter Verified Paper Audit Trail
(VVPAT) Ballots, 2007 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT 07),
August, 2007, Boston, MA.

http://blackboxvoting.org
www.blackboxvoting.org/BBVreport.pdf
voter.engr.uconn.edu/voter/Report-OS.html
www.sos.ca.gov/elections/elections_vsr.htm
www.ctelectionaudit.org/Reports/ObservationReportFeb08.pdf
www.ctelectionaudit.org/Reports/ObservationReportFeb08.pdf

	Introduction
	The AV-OS Election System
	AV-OS Software Components

	Gaining Access Control
	Accurate Memory Card Auditing
	Leaking the Ballot Contents
	A Malicious Manipulation
	Conclusion
	References

