
Implementing Atomic Data through Indirect Learning in Dynamic Networks∗

Kishori M. Konwar∗, Peter M. Musial‡, Nicolas C. Nicolaou ∗, Alex A. Shvartsman∗,†,‡
∗Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

†Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
‡ VeroModo. Inc, 11 Osborne Rd., Brookline, MA 02446 USA.

Abstract

Developing middleware services for dynamic distributed
systems, e.g., ad-hoc networks, is a challenging task given
that such services deal with dynamically changing member-
ship and asynchronous communication. Algorithms devel-
oped for static settings are often not usable in such set-
tings because they rely on (logical) all-to-all node connec-
tivity through routing protocols, which may be unfeasible or
prohibitively expensive to implement in highly dynamic set-
tings. This paper explores the indirect learning, via peri-
odic gossip, approach to information dissemination within
a dynamic, distributed data service implementing atomic
read/write memory service. The indirect learning scheme
is used to improve the liveness of the service in the settings
with uncertain connectivity. The service is formally proved
to guarantee atomicity in all executions. Conditional perfor-
mance analysis of the new service is presented, where this
analysis has the potential of being generalized to other sim-
ilar dynamic algorithms. Under the assumption that the net-
work is connected, and assuming reasonable timing condi-
tions, the bounds on the duration of read/write operations of
the new service are calculated. Finally, the paper proposes a
deployment strategy where indirect learning leads to an im-
provement in communication costs relative to a previous so-
lution that assumes all-to-all connectivity.

1 Introduction

Distributed middleware services for dynamic systems
must deal with communicating devices that may fail, join,
or voluntarily leave the system, and experience arbitrary de-
lays in message delivery. A common design approach in such

∗This work is supported in part by the NSF Grants 9988304, 0121277,
and 0311368.

settings is to have the participating network nodes periodi-
cally exchange their local state information with the goal of
approximating the global state of the system and ensuring
progress of local computation [4, 8, 16]. Performance of a
service implemented in this way depends on the prompt up-
date of the local state at each node, hence requiring (logi-
cal) all-to-all communication, which can be quite expensive.
The communication cost associated with all-to-all commu-
nication can be reduced by minimizing the number of bits
in the message [2], or by limiting the communication by as-
signing to each sender a proper subset of the nodes to com-
municate with [12]. Such methods can lead to good results
in static environments, however their utility is diminished in
highly dynamic networks. A weakness of all-to-all gossip
is its reliance on the existence of point-to-point connectiv-
ity. This is an important limitation, since in dynamic systems
such as ad-hoc and mobile networks, routing information is
prohibitively expensive, where significant amount of power,
memory, and communication are needed to keep the routing
tables up to date [10, 18, 19, 20]. Furthermore, routing proto-
cols provide a general solution and are oblivious to the data
flows of specific applications, which results in unnecessary
communication burden. On the other hand, in the absence of
a routing service no predictable progress can be ensured in
algorithms depending on all-to-all gossip.

In this paper we incorporate an indirect learning protocol
within a distributed algorithm implementing atomic objects
aimed at enhancing its effectiveness in dynamic networks.
Our algorithm is based on the RAMBO [8, 16] algorithms
and ensures atomicity in all executions while tolerating node
departures, joins, failures, and message loss. Data objects are
replicated to ensure survivability. To maintain consistency in
the presence of small and transient changes, the algorithm
uses configuration consisting of quorums of locations. To
accommodate larger and more permanent changes, the algo-
rithm supports reconfiguration, by which the configurations

are modified. All decisions regarding the locally initiated op-
erations on the replica are made by examining the local state.
In order to update the local state and ensure operation live-
ness, RAMBO algorithms rely on point-to-point connectivity
and use periodic all-to-all gossip to disseminate the state of
replicas. Our goal is to enable progress of data access opera-
tions (reads and writes) as long as there are quorums in active
configurations whose nodes are connected, either directly or
indirectly, and without relying on routing protocols.

Contributions. We present an implementation of the
RAMBO [16] service that incorporates an indirect learning
mechanism designed to take advantage of the semantics of
the internal data flow to effectively disseminate object replica
information among participating nodes. We call the new
algorithm ATILA (atomicity through indirect learning algo-
rithm). The dynamic settings considered include mobile ad-
hoc networks (MANETS), and we do not assume an under-
lying routing protocol or all-to-all direct connectivity.

ATILA implements indirect learning through gossip di-
rectly with neighboring service participants and achieves im-
provements in operation liveness, in dynamic settings, at the
expense of higher memory consumption. Each node is re-
quired to maintain an estimate of the replica state at each ser-
vice participant. This information is included in gossip mes-
sages. We present a general solution that is oblivious to the
communication structure or existence of routing protocols.
Our solution allows deployment optimizations that improve
its performance; we discuss one such optimization.

We formally prove that ATILA implements atomic objects.
The performance of read and write operations of the ser-
vice is affected by the properties of the service deployment
graph, where the edges are direct communication links be-
tween nodes. The more challenging and interesting part of
this work is the probabilistic analysis that estimates the dura-
tion of read/write operations, and the analysis that uncovers
the possible savings in cost per message bit. Of independent
interest, we believe that our analysis approach can be gener-
alized to other algorithms that use quorums.

Related work. Dynamic distributed systems with an un-
known and possibly unbounded number of participants that
may join, voluntarily leave, and fail, are becoming increas-
ingly common. Applicable to these settings problems in-
clude, for example, consensus [14] and maintenance of con-
sistent memory [3].

Group communication services (GCS) [1] are important
building blocks in distributed systems and can be used to im-
plement shared memory abstractions. However, communi-
cation required for group maintenance limits the utility of

common GCSs in dynamic environments such as MANETS.
Dynamic node participation and node mobility force frequent
group membership changes and group maintenance becomes
an expensive task requiring high communication overhead
and energy consumption [11].

The GEOQUORUMS approach of [3] uses stationary fo-
cal points, implemented by mobile nodes, to provide atomic
shared read/write memory where consistency is maintained
by using quorums of focal points. This approach requires
geocast communication that can deliver messages to specific
geographic locations. Earlier RAMBO service [16] was de-
veloped for dynamic overlay networks, where messages are
routed automatically. Specification of RAMBO trades math-
ematical simplicity for practicality, and while its successive
refinements [5, 6, 8, 9] improved usability of its implementa-
tion each still relies on the all-to-all connectivity.

Overlay networks allow transparent routing of messages
atop diverse communication structures. Nodes communicate
using virtual point-to-point channels with the help of rout-
ing protocols. Many routing algorithms for ad-hoc and mo-
bile networks have been proposed [10, 18, 19, 20]. However,
routing protocols have drawbacks: (i) Maintenance of over-
lay routes in systems where nodes join, migrate, depart, and
fail, is expensive in terms of processing, memory consump-
tion, and communication. As node membership and location
varies the topology of the network may change and the new
virtual routes have to be recalculated often in order to main-
tain integrity of the overlay network. (ii) Routing protocols
are oblivious to the semantics of the communication among
the participating nodes. Hence, there may be substantial re-
dundancy in communication. In the networks that are sen-
sitive to throughput, increased communication burden may
have adverse effects on the performance of the routing algo-
rithms themselves and on the message-passing applications.
Document structure. In Section 2 we present the model and
definitions. We describe our algorithm in Section 3. The
proof of atomicity is outlined in Section 4. Probabilistic per-
formance analysis is presented in Section 5 and the determin-
istic analysis in Section 6. We conclude in Section 7. The
complete specification of our algorithm and selected details
of the correctness proof can be found in [13].

2 System Model and Definitions

We assume a message-passing model with asynchronous
processors (i.e., nodes) that have unique identifiers from set
I , which needs not be finite. Nodes may join, crash, and
voluntarily leave the system. Nodes communicate via point-
to-point, direct, asynchronous channels. A node can send a

message to another node if a direct link between the nodes
exists. In the wireless setting a virtual point-to-point link be-
tween two nodes exists if these nodes reside within the effec-
tive transmission range of each other. In addition, the broad-
casting node effectively sends a message to all nodes within
its transmission range. The nodes and the point-to-point
communication links form the service deployment graph.

Let C denote the set of configuration identifiers. For each
c ∈ C we define: members(c), a finite subset of node identi-
fiers, read-quorums(c), a set of finite subsets of members(c),
and write-quorums(c), a set of finite subsets of members(c).
We require that for every R ∈ read-quorums(c), and ev-
ery W ∈ write-quorums(c), R ∩W �= ∅, and that for any
W1,W2 ∈ write-quorums(c), W1 ∩W2 �= ∅. No intersec-
tion requirement is imposed on the sets of members or on the
quorums from distinct configurations.

We define C⊥ = C ∪ {⊥} and C± = C ∪ {⊥,±} to
be the partially ordered sets, such that: ⊥ < c and resp.
⊥ < c < ±, for c ∈ C. We define the set CMap, the set
of configuration maps, as the set of mapping N → C±. In
any sequence in CMap, the symbol⊥ represents an unknown
configuration and ± represents obsolete configuration that
has been removed. Finally, we define update to be a binary
operation on cm, cm′ ∈ CMap that updates any element in
cm with the corresponding element in cm′ if that element is
greater according to the partial order C±.

3 The ATILA Algorithm

We now present the algorithm implementing a dynamic
atomic object service using an indirect learning protocol. The
algorithm is based on RAMBO [16] and its refinements in [8,
5], and we call the new algorithm ATILA. The service is
defined for a single object — where atomicity is preserved
under composition. The pseudocode implementing read and
write operations of the algorithm appears in Figures 1.

In order to ensure fault tolerance, object data is replicated
at several nodes. The algorithm uses quorum configurations
to maintain consistency. Configurations can be modified on-
the-fly through reconfiguration. Main parts of the algorithm
deal with communication with replicas during read and write
operations, and the removal of the obsolete configurations
using configuration upgrade operations.

Participant Information. Each participant maintains the
value and the associated tag of the object being replicated.
The tags are used to totally order write operations with re-
spect to each other and all read operations with respect to
the writes — this forms the basis for the proof of atomicity
(Section 4). Each node maintains a set of node identifiers,

world, representing the nodes that are locally known to have
joined the service, and the configuration information stored
in variable configs of type CMap.

Each node uses phase numbers to logically timestamp the
messages it sends to other nodes indicating the “freshness”
of the state conveyed in the messages. The phase number of
a node is incremented following an “important” event at a
node, such as the start of a new phase of a read or a write, or
a configuration upgrade operation. Most importantly, phase
numbers are used to implement indirect learning as discussed
later in this section. Each node i maintains a matrix of phase
numbers, pNums, where rows and columns are indexed by
node identifiers, hence its size is |world | × |world |. The
variable pNums[i][j] represents the most recent phase infor-
mation known to i about another participating node j. This
means that i has learned the replica information known to
j when j’s phase number was equal to pNums[i][j]. The
variable pNums[j][k], for some j, k ∈ world and i �= j, rep-
resents the most recent phase number known to i about the
phase of node k that is known to j. Each of these variables
reflects the latest information locally known at a node, but
not necessarily the most up-to-date global information.

Each node maintains two records to store information
about the ongoing operations. Record op is used to keep
track of the phases of read and write operations. Fields of
op are initialized when a new phase of a read or write op-
eration is initiated: op-configs records the value of configs ,
op-Nums records the value of pNums , and op-acc, initially
∅, records the identifiers of the nodes that contain adequately
current information regarding i’s state. Similarly, record upg
is used to track the configuration upgrade operation, where
the fields upg-configs , upg-Nums and upg-acc are defined
analogously to the fields of op record. In addition, the upg
record contains field upg-target , an the index of the configu-
ration being upgraded. (The phases of read, write, and con-
figuration operations are discussed later in this section).

Information Propagation and Indirect Learning. Period-
ically, and following certain events, any non-failed partici-
pant of the service sends state messages to all nodes found
in its local world . These messages include sender’s current
values of: tag , val , configs , world , and pNums . Although a
node attempts to send messages to all nodes in its world , only
the messages addressed to the nodes with a direct connection
may be delivered, all other messages may be lost.

We now narrate the update process based on an example
of a message exchange between two non-failed service par-
ticipants, say i and j. When i receives message from j it
compares values of variables comprising its state against the

• RW-Start: Node i resets its local structures pertaining to the read/write operations, such as: op-configs , op-Nums . Also, it notes that a read or a
write operation was initiated.

• RW-Phase-1a: Node i increments its local phase number and updates the pNums set with the new information. A snapshot of the information stored
in configs and pNums is recorded in op-configs and op-pNums . At this point node i sets out to query configurations found in op-configs for the
most recent tag and value information. Next, i sends 〈RW1a, tag, val , configs,world , pNums〉 message to all known participants of the service,
i.e. world .

• RW-Phase-1b: Upon receipt of a 〈RW1a, t, v, c, w, pn〉 message from i, node j compares its local knowledge (local state values) with the infor-
mation included in the message. For instance if its local tag is strictly smaller than t, then it updates its tag with t and value with v. Also, it updates
its configs , world , and pNums . Next, j replies to i with 〈RW1b, tag, val , configs,world , pNums〉.

• RW-Phase-1c: Upon receipt of a m = 〈RW1b, t, v, c, w, pn〉 message from j, node i updates its state based on comparison of the values of its local
state with the related information found in the message. If m.c contains configurations previously unknown to i, then the current phase is restarted.

• RW-Phase-2a: Node i compares m.pn and op-pNums to check if at least one read quorum of each configuration found in op-configs has an
adequately recent state information of i (i.e. has at least learned the phase number of i from RW-Phase-1a) If so then the first phase is complete –
i is now in the position of the highest tag. At this point node i sets out to propagate to the members of configurations found in op-configs the most
recent tag and value information. Node i increments its phase number and updates its pNums with the new information, it also records current
values of configs and pNums in op-configs and op-pNums . Next, i broadcasts 〈RW2a, tag, val , configs,world , pNums〉 message where tag

and value depend on whether it is a read or a write operation: in the case of a read, they are just equal to the local tag and value; in the case of a
write, they are a newly chosen tag, and v, the value to write.

• RW-Phase-2b: If node j receives a 〈RW2a, t, v, c, w, pn〉 message from i, it updates its state accordingly, and responds to i with
〈RW2b, tag, val , configs,world , pNums〉.

• RW-Phase-2c: Same as RW-Phase-1c.
• RW-Done: If node i can determine that at least one write quorum of all configurations in op-configs has an adequately recent state information of i

(i.e. has at least learned the phase number of i from RW-Phase-2a), then the read or write operation is complete and the tag is marked confirmed.
If it is a read operation, node i returns its current value to client. Node i marks that the operation is now terminated. At this point new read/write
operation may be initiated at node i.

Description of the phases of the read and write protocols.

information included in the message. Assume that i receives
message m = 〈tag , val , configs ,world , pNums〉 from j. If
m.tag ≥ tag then i updates its tag with m.tag and the
value with m.val . Next, i includes in its world any new
identifiers found in m.world . For each new node identi-
fier, matrix pNums is extended with a new column and a
new row, initialized to zeros. Also, i sets its configs to
update(configs ,m.configs).

The last step updates the phase information, where i com-
pares its phase matrix with the one in the sender’s message.
This update captures the indirect learning process. For all
k, � ∈ m.world , if m.pNums[k][�] > pNums[k][�], then j

knows that k has learned about a higher phase number of �.
Therefore, whenever m.pNums[k][�] > pNums[k][�] then i

assigns pNums[k][�]← m.pNums[k][�].

Observe that all bookkeeping information (except for
value) is monotonically growing with each update, i.e., a tag
is updated only when the arriving tag is larger, nodes are
only added to the world set, and the phase number infor-
mation is updated if the incoming phase number information
is more recent than what i is aware of. Therefore, if some
node k learns that i’s phase number is p, then k has learned
of a tag (resp. value) of the replica that is at least as recent
as when i’s phase number was p. Phase numbers are up-
dated either following a receipt of a message directly from
k or indirectly from some other node. Thus if i is perform-

ing some operation and p is its current phase number then
if pNums[k][i] ≥ p, then i can deduce that k learned the
information that is at least as recent as the information com-
municated by i to its world in phase p. (Finally, if the service
deployment graph is connected and the network is reasonably
well-behaved, then eventually i will (indirectly) learn that k

(indirectly) learned the information disseminated by i.)

Joining. Nodes join the service by sending a join request
to the nodes provided by the user (“seeds”). Our well-
formedness assumption is that when the set of seed nodes is
empty, the node processing the join request is the “creator” of
a new object. If an active participant of the service receives
a join request it will add sender’s identifier to its local world
set and reply with a state message. The joinee becomes oper-
ational (active), when a response message to the join-request
is received.

Read and Write Operations. The read and the write op-
erations are conducted in two phases (see Figure 1): RW-
Phase-1, or query phase, is identical for both operations. In
this phase the replica owners are queried in regard to the most
recent tag and the associated value. RW-Phase-2, or prop-
agation phase. During this phase, the replica information is
propagated to the replica owners. In case of the read opera-
tion the replica information discovered during RW-Phase-1
is propagated. In case of the write operation the new tag
and the associated value are propagated to the replica owners,

where the tag is strictly grater than the one discovered during
preceding RW-Phase-1. The termination point of each phase
is determined only after the node conducting this operation
can certify that at least one quorum of replica owners from
each active quorum set has responded (directly or indirectly)
to its latest phase information.

Reconfiguration and Configuration Upgrade. Reconfigu-
ration process has three stages. First, a new configuration is
introduced by some active service participant. Second, the
proposed configuration is installed, this is handled by an ex-
ternal service, called Recon, as in [16]. Finally, the obsolete
configurations are removed using the configuration upgrade
operation. Liveness of the service is ensured as long as old
configurations remain operational until they are removed.

Configuration upgrade operation is implemented in two
phases, which are similar to phases of read operation. The
goal of the query phase is to obtain the most recent replica
information from the appropriate quorums of all active con-
figurations with index smaller than that of the configuration
being upgraded. In the propagation phase the newly discov-
ered replica information is propagated to the configuration
being upgraded. The formal specification using Input/Output
Automata notation [17] appears in [13].

4 Proof of Atomic Consistency

In this section we formally show that ATILA implements
atomic objects by applying necessary refinements on the
safety proofs of RAMBO [8]. The challenge is to show that
atomicity is ensured when indirect mechanism is used. We
present only parts of the RAMBO [8] proof framework that
need modification. (The omitted details are covered in [13].)

We consider well-formed executions of the algorithm for
each active participant, i, where: i follows the protocols for
joining and reconfiguration, i initiates only one operation at
a time, and i waits for appropriate acknowledgments before
proceeding.

Let α be an arbitrary well-formed execution of the algo-
rithm, and let π1 and π2 be two read or write operations that
occur at i and j respectively — non-failed participants of
ATILA. Additionally, we assume that π1 completes before π2

begins in α. When ordering of operations is not important,
we use π to denote an arbitrary read or a write operation.

For every π, the query-fix (resp. prop-fix) event occurs im-
mediately after the query (resp. prop) phase of π completes.
Therefore, query-fix point occurs at the point when node i de-
termines that at least one read quorum of each configuration
in op-configs has a sufficiently recent state information of i,
which happens in phase RW-Phase-2a (Figure 1). A similar

relation exists between prop-fix and RW-Done.

Next we introduce history variables. The query-cmap(π)
is a mapping: N → C±, initially undefined. It is set in
the query-fix step of π, to the value of op-configs in the
pre-state, and the variable prop-cmap(π) that is defined
analogously for the propagation phase of operation π. The
query-phase-start(π), initially undefined, is defined in the
query-fix step of π, to be the unique earlier event at which the
collection of query results was started and not subsequently
restarted (the last time op-acc set is assigned ∅). This is ei-
ther in RW-Start step of a read or a write operation, or in
RW-Phase-1c step. The event prop-phase-start(π) is de-
fined analogously, but with respect to the propagation phase.

For every read and write operation π at i, we define the
history variable tag(π) to be the value of tag i when the
query-fix event occurs for π at node i. If π is a read operation
then tag(π) is the largest tag that node i encounters during
the query phase. If π is a write operation, tag(π) is the new
tag that is chosen by i for performing the write.

Finally for any operation π we define the history vari-
able R(π, k), for k ∈ N, as a subset of I , initially un-
defined. It is set in the query-fix step of π, for each k

such that query-cmap(π)(k) ∈ C, to an arbitrary R ∈
read-quorums(c(k)) such that R ⊆ op-acc in the pre-state,
where c(k) ∈ C. Similarly we define W (π, k), for k ∈ N, to
be a subset of I , initially undefined and set during the prop-fix

step of π, for each k such that prop-cmap(π)(k) ∈ C, to an
arbitrary W ∈ write-quorums(c(k)) such that W ⊆ op-acc
in the pre-state.

Phase guarantees. Results presented in this section account
for the effects of query and propagation phases of read/write
and configuration upgrade operations. We show that if i ini-
tiates a phase of a read/write or a configuration upgrade op-
eration and if there exists a specific sequence of message ex-
changes that starts and ends at i, then if that phase terminates,
i is in possession of the most recent tag and its value cannot
be smaller than what i knew at the start of the phase. More-
over, we show that configuration information and value of
the tag at each node that participated in the examined com-
munication sequence has specific properties. Our claims are
based on the following observation: A node sends the most
recent state information that includes its configuration infor-
mation, value and tag, and phase information of all service
participants. By the specification of the algorithm, the re-
ceiver of this message can only increase its tag and incre-
ment the phase information in any cell of its phase number
matrix. Also, the configuration information is updated only
with a more recent one. This means that nodes may learn

about configuration information, tag, and phase information
of other participants indirectly.

Note that in ATILA, the case j = i is treated uniformly
with the case where j �= i. Next, we consider how the tag in-
formation is propagated in the query phase of the read and the
write operation. Since the flow of information in the propa-
gation phase is analogous to that in the query phase, we com-
press two lemmas into one.

Lemma 4.1 Suppose that a query-fixi (resp. prop-fixi) event
for a read or write operation π occurs in α. Let k, k′ ∈
N. Suppose query-cmap(π)(k) ∈ C and j ∈ R(π, k)
(resp. prop-cmap(π)(k) ∈ C and j ∈ W (π, k)). Then
there exists a sequence of identifiers 〈ι1, ..., ιn〉 where for
all 1 ≤ h ≤ n each ιh ∈ I , and the corresponding mes-

sage sequence
〈
mι1,ι2 , . . . ,mιĥ,ιĥ+1

, . . . ,mιn−1,ιn

〉
, where

ι1 = ιn = i and that there is ιĥ = j, for some 1 <

ĥ < n. Such that: (i) The message mι1,ι2 is sent after
the query-phase-start(π) (resp. prop-phase-start(π)) event.
(ii) Each message mιh,ιh+1 is sent after mιh−1,ιh

is received.
(iii) The message mιn−1,ιn

is received before the query-fix

(resp. prop-fix) event of π. (iv) If t is the value of the tagj in
any state before j sends mιĥ,ιĥ+1

, then: (a) tag(π) ≥ t. (b) If
π is a write operation then tag(π) > t. (v) If configs(�)j �=⊥
for all �≤k′ (resp. �<k′) in any state before j send mιĥ,ιĥ+1

,
then query-cmap(π)(�) ∈ C (resp. prop-cmap(π)(�) ∈ C)
for some �≥k′.

The remaining task is to show that the tag and the configs
information is propagated correctly during the query and
propagation phases of the configuration upgrade operation.
Meaning that at each node participating in the corresponding
message sequence the following holds: (i) the tag informa-
tion is non-decreasing and it at least as large as tag i at the be-
ginning of the operation, and (ii) that all configurations with
identifier equal to and smaller than upg-target i are not ⊥. In
the interest of concise presentation, we will forgo of the de-
tailed explanation as it is analogous to Lemma 4.1, where the
departures are traceable to the difference between specifica-
tion of the configuration upgrade operation and the read and
the write operation.
Atomicity. We show atomicity using the framework of
Lemma 13.16 in [15]. Recall that α is an arbitrary, good
execution of the algorithm. It suffices to show that in α if all
invoked the read and write operations complete, then these
operations can be partially ordered by an ordering ≺ and the
following properties are satisfied. (P1): ≺ totally orders all
write operations in α. (P2): ≺ orders every read operation
in α with respect to every write operation in α. (P3): for
each read operation, if there is no preceding write operation

in ≺, then the initial value is returned by this read; else, the
read operation returns the value of the unique write operation
immediately preceding it in ≺. (P4): if some operation, π1,
completes before another operation, π2, begins in α, then π2

does not precede π1 in ≺. If such ordering ≺ can be con-
structed for α, then the algorithm guarantees atomicity.

We define ≺ in terms of the lexicographic order on tags
of operations π. Observe that (P1) to (P3) are essentially im-
mediate. Lemma 4.1 stated above and the additional lemmas
presented in [16, 8, 5], which describe the behavior of con-
figuration upgrade operation and read and write operations
in any execution, are used to establish the monotonically in-
creasing order on tags with respect to non-concurrent read or
write operations. Based on the tags we define a partial or-
der on operations and verify that property (P4) is enforced.
Therefore, it follows immediately that the tags induce a par-
tial order ≺ that meets the necessary and sufficient require-
ments for atomic consistency. Hence, the main result:

Theorem 4.2 ATILA implements atomic read/write objects.

5 Conditional Analysis of Operation Latency

In this section we examine the operation latency under
similar timing assumptions as in the analysis of operations in
RAMBO presented in [16, 8, 5, 7]. The novelty of our analy-
sis as compared to the type of analysis done in [16, 8, 5, 7] is
that here we use a more realistic assumption on the duration
of message delivery. The previous analysis assumed that all
messages were delivered within a fixed time interval; instead
we assume a probability distribution on the delivery time of
messages with finite variance.

ATILA is specified as a nondeterministic algorithm for
asynchronous environments with arbitrary message delays
and node crashes, departures, and new nodes joining. For the
purpose of analysis, we restrict asynchrony, resolve the non-
determinism of the algorithm, and impose constraints suffi-
cient to guarantee that the universe is connected.
Assumptions. Assume α is an admissible timed execution
and α′ a finite prefix of α. Let �time(α′) denote the time of
the last event in α′. Let α be a timed admissible execution
then we say that α is an α′-normal execution if no mes-
sage sent in α after α′ is lost, and if a message is sent at
time t in α, it is delivered within bounded time (unknown
to the participants). Moreover, we assume that each node
sends messages at the first possible time and at regular inter-
vals of d thereafter, as measured by the local clock, and each
node will immediately send messages to all of its immediate
neighbors following: receipt of a join request, new configu-

ration is discovered, and a message that indicates that phase
information of any node has changed. Also, the non-send and
locally controlled events occur just once, and are assumed to
be instantaneous.

In the quorum-based algorithms operational liveness de-
pends on all members of some quorum set remaining active.
Let us denote by t(c) the time at the end of the installation
of configuration c, a time can always be specified by using
the well-known axioms of time passage actions [15]. Also,
let c′ denote the next configuration that has been installed
after c. Finally, we assume that configurations remain oper-
ational in order for reconfiguration to terminate, reconfigura-
tions are not too frequent (say τd separated), only nodes that
have joined the service may become part of the next config-
uration, and the deployment graph remains at least weakly
connected.

Analysis. Now we provide analysis that estimates the dura-
tion of a read (resp. write) operation when reconfiguration
is present. To make this estimate more realistic we provide
minimum timing restrictions on spacing of certain events in
the system and delays on message delivery. For the purpose
of analysis, we assume certain probability distribution on the
message delivery time. Unfortunately, such probability dis-
tribution may be difficult to determine for a complex algo-
rithm like ATILA. However, under conditions when the rate
at which nodes join, leave, or fail and the reconfiguration of
the system, is not very high, we may estimate the mean or the
standard deviation of message delivery delay.

In the analysis that follows, we consider a subgraph of
the service deployment graphs induced by members of active
configurations. Let D represent the diameter of this graph.
Now, consider some non-failed quorum member, j, such that
the length of the communication path between i and j is D.
Note that new nodes may join the service at any time and at
any active participant. If a new node joined only at j and
is included as a member of a configuration installed next, D

will increase. Therefore, we are interested in estimating the
time required to complete a single phase of the read (resp.
write) operation in a situation when new nodes join the ser-
vice and become members of new configuration during the
following reconfiguration attempt. Omitted details, are pre-
sented in [13].

Suppose that the mean time required for a message deliv-
ery between any two nodes is λA with finite variance σA

2

and the mean time of a new member being inducted into the
quorum is λB and with finite variance σB

2. Also, we assume
that λA < λB , i.e., on an average it takes less time for a mes-
sage to reach its destination than it takes for the service to

reconfigure, e.g., see RAMBO algorithms in [5, 8, 16].
The communication distance between i and some other

node j is measured in terms of the length of the shortest path
between i and j in the communication graph assuming each
edge to be of unit length. Therefore, the delivery time of a
point-to-point message is λA = λB

k , where λB is the aver-
age time needed to install a new configuration and typically,
1 ≤ k ≤ 12. Since messages are propagated faster than
new configurations are installed, read/write operations take

DλB

λB−λA
= kDλA

kλA−λA
= kD

k−1 to complete with high probability
(whp). We say that an event E occurs with whp to mean that
Pr[E]=1−O(n−α) for some constant α>0.
The deterministic upper bound. Under assumptions stated
above we consider the following worst case scenario. Let i

be the node that initiates a read or a write operation. At the
start of the operation, let j be the node farthest from i, this
distance is at most the diameter of the service deployment
graph at the time when i initiates its operation, this is referred
to as the second pointer. Soon after i initiates its operation,
new nodes join the service. The first new node connects to
j and each new node may join at the last node that joined
the service. In essence the nodes that joined the service form
a path. By the recon spacing assumption a new node may
become a member of the next configuration at least 12d time
after it joined the service.

Theorem 5.1 Let α be a α′-normal execution of the ATILA

that satisfies 12d reconfiguration spacing then a read/write
operation takes O(N) time to complete since its invocation,
where N is the number of nodes present at the time of invo-
cation of the operation and τ > εN , for some constant ε.

6 Analysis of communication cost in ATILA

Now, we describe a scenario where the message bit cost
complexity of ATILA is less than that of RAMBO and yet the
necessary redundancy in the case of direct link failure is pro-
vided. The message bit cost complexity is the total cost of
sending the individual bits across communication links. The
RAMBO algorithm involves point-to-point perpetual dissemi-
nation of information which eventually helps to infer liveness
of the protocol. However, such approach is obviously waste-
ful when nodes are separated by long geographical distances.
A more reasonable solution to the above problem is to mini-
mize communication over long distances, hence reducing the
total message bit cost.

Consider the following grouping. Let the participants of
the service be divided into m disjoint groups G1,G2, · · · ,Gm

based on their proximity in terms of cost/reliability of com-
munication among the nodes. For each group Gι we define

a non-empty subset, Lι, to which we refer as the representa-
tives of the group. Within a group nodes communicate using
the all-to-all gossip protocol, however only groups’ represen-
tatives may communicate with other representatives in the
different groups. In this setting the indirect learning proto-
col allows a reduction of message bit cost complexity. Note
that, the set of representatives may be agreed upon using an
arbitrary consensus service, and handled in a similar fashion
as ATILA applies reconfigurations. Also, in this deployment
correctness is vacuously satisfied — we only impose a com-
munication policy that restricts certain nodes from sending
messages to certain other nodes.

We compare the communication cost complexities of the
RAMBO and ATILA and show that the use of indirect gossip
can lead to substantial cost savings. To simplify the analysis
we assume that each group has size |Gι| = g and contains
|Lι| = � representatives. The following equation compares
the communication bit complexity per a single round of gos-
sip in ATILA, left hand side, and RAMBO, right hand side.

g2m(∆ + δN) + �m(m−1)
2

(
∆ + δ(N2 + N)

)
+ �(g −

�)m
(
∆ + δ(N2 + N)

) ≤ N2(∆ + δN) = O(N3)

where ∆ represents the constant size of the constant message
components and δ is the size of a node identifier. The omitted
analysis details are presented in [13].

7 Conclusions

We provide an algorithm that implements atomic
read/write objects where the participating nodes communi-
cate with their direct neighbors only, thus obviating the need
for a global routing protocol. The indirect learning approach,
as presented in this work, has the potential of making more
robust other algorithms that, for example, employ all-to-all
gossip as means for information exchange. The algorithmic
development presented here is formally proved to guarantee
atomicity in all executions. The indirect learning protocol al-
lows operations to progress as long as the underlying network
remains connected. We also presented a novel analysis of
the operational latency under reasonable assumptions about
the message delivery time. Lastly, we considered scenarios
where our algorithm helps reduce messaging costs.

References

[1] Special issue on group communication services. Communica-
tions of the ACM, 39(4), 1996.

[2] J.-C. Bermond, L. Gargano, A. A. Rescigno, and U. Vaccaro.
Fast gossiping by short messages. In Automata, Languages
and Programming, pages 135–146, 1995.

[3] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch.
Geoquorums: Implementing atomic memory in ad hoc net-
works. In Proc. of 17th International Symposium on Dis-
tributed Computing, pages 306–320, 2003.

[4] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch.
Geoquorums: Implementing atomic memory in mobile ad hoc
networks, 2003.

[5] C. Georgiou, P. Musial, and A. Shvartsman. Long-lived
RAMBO: Trading knowledge for communication. In Proc.
of 11th Colloq. on Structural Information and Communication
Complexity, pages 185–196, 2004.

[6] C. Georgiou, P. Musial, and A. Shvartsman. Developing a con-
sistent domain-oriented distributed object service. In Proc. 4th
IEEE Int-l Symposium on Network Computing and Applica-
tions, pages 149–158, 2005.

[7] S. Gilbert. RAMBO II: Rapidly reconfigurable atomic memory
for dynamic networks. Master’s thesis, MIT, 2003.

[8] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly
reconfigurable atomic memory for dynamic networks. In Proc.
of International Conference on Dependable Systems and Net-
works, pages 259–268, 2003.

[9] V. Gramoli, P. Musiał, and A. Shvartsman. Operation liveness
in a dynamic distributed atomic data service with efficient gos-
sip management. In Proc. 18th International Conference on
Parallel and Distributed Computing Systems, 2005.

[10] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad
hoc wireless networks. In Kluwer Academic, 1996.

[11] I. Keidar, J. B. Sussman, K. Marzullo, and D. Dolev. Moshe:
A group membership service for wans. ACM Trans. Comput.
Syst., 20(3):191–238, 2002.

[12] S. Khuller, Y. Kim, and Y. Wan. On generalized gossiping and
broadcasting, 2003.

[13] K. Konwar, P. Musial, N. Nicolaou, and A. Shvartsman. Im-
plementing atomic data through indirect learning in dynamic
networks. Technical Report MIT-CSAIL-TR-2006-070, MIT,
2006.

[14] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[15] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[16] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. In Proc. of 16th
International Symposium on Distributed Computing, pages
173–190, 2002.

[17] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. Technical report, MIT, 1987.

[18] V. D. Park and M. S. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In Proc. of
IEEE INFOCOM, 1997.

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile comput-
ers. In Proc. of ACM SIGCOMM, 1994.

[20] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance
vector routing. In Proc. of IEEE WMCSA, 1999.

