
At-Most-Once Semantics in
Asynchronous Shared Memory?

Sotirios Kentros, Aggelos Kiayias,
Nicolas Nicolaou, and Alexander A. Shvartsman

Computer Science and Engineering, University of Connecticut, Storrs, USA
{skentros,aggelos,nicolas,aas}@engr.uconn.edu

Abstract. At-most-once semantics is one of the standard models for ob-
ject access in decentralized systems. Accessing an object, such as altering
the state of the object by means of direct access, method invocation, or
remote procedure call, with at-most-once semantics guarantees that the
access is not repeated more-than-once, enabling one to reason about the
safety properties of the object. This paper investigates implementations
of at-most-once access semantics in a model where a set of such actions is
to be performed by a set of failure-prone, asynchronous shared-memory
processes. We introduce a definition of the At-Most-Once problem for
performing a set of n jobs using m processors and we introduce a no-
tion of efficiency for such protocols, called effectiveness, used to classify
algorithms. Effectiveness measures the number of jobs safely completed
by an implementation, as a function of the overall number of jobs n, the
number of participating processes m, and the number of process crashes
f in the presence of an adversary. We prove a lower bound of n−f on the
effectiveness of any algorithm. We then prove that this lower bound can
be matched in the two process setting by presenting two algorithms that
offer a tradeoff between time and space complexity. Finally, we generalize
our two-process solution in the multi-process setting with a hierarchical
algorithm that achieves effectiveness of n−log m·o(n), coming reasonably
close, asymptotically, to the corresponding lower bound.

1 Introduction

The At-Most-Once semantic for object invocation ensures that an operation ac-
cessing and altering the state of an object is performed no more than once. This
semantic is among the standard semantics for remote procedure calls (RPC)
and method invocations and it provides important means for reasoning about
the safety of critical applications. Uniprocessor systems may trivially provide
solutions for at-most-once semantics by implementing a central schedule for op-
erations. The problem becomes very challenging for autonomous processes in
a shared-memory system with concurrent invocations on multiple objects. Al-
though At-Most-Once semantics have been thoroughly studied in the context of

? This work is supported in part by the NSF Awards 0702670 and 0831306. The work
of the first author is supported in part by the State Scholarships Foundation - Greece.

At-Most-Once message delivery [4, 13, 16, 23] and At-Most-Once process invo-
cation for RPC [2, 14, 15, 16, 21], finding effective solutions for asynchronous
shared-memory multiprocessors, in terms of how many at-most-once invocations
can be performed by the cooperating processes, is largely an open problem.
This paper brings the attention to the At-Most-Once problem in multiprocessor
settings. We believe that solving this problem using only atomic memory, and
without specialized hardware support, such as conditional writing, will provide
a useful tool in reasoning about the safety properties of applications developed
for a variety of multiprocessor systems, including those not supporting bus-
interlocking instructions and multi-core systems.

We explore At-Most-Once implementations for asynchronous shared-memory
processors that are prone to crashes. We model accesses to objects as tasks, where
the correctness demands that each task is performed at most once. Any processor
is able to perform any task and we aim to maximize the total number of per-
formed tasks while preserving the at-most-once semantics. We define the notion
of effectiveness used to assess the efficiency of solutions for the problem. Effec-
tiveness measures the number of tasks performed using at-most-once semantics
as a function of the number of tasks, the number of processors, and the number
of crashes. We provide tight lower bounds for effectiveness, and we introduce
three algorithms that solve the problem. The first two are formulated for two
processors. The third algorithm is stated for an arbitrary number of processors
and it uses a two-processor solution as a building block. We present rigorous
analyses of the algorithms’ work, space complexity, and effectiveness.

Related Work: A wide range of works study At-Most-Once semantics in a
variety of settings. At-Most-Once message delivery [23, 16, 13, 4] and At-Most-
Once semantics for RPC [2, 14, 15, 21, 16], are two areas that have attracted a lot
of attention. Here the problem studied is different from the one we consider. Both
in At-Most-Once message delivery and RPCs, we have two entities (sender/client
and receiver/server) that communicate by message passing. Any entity may fail
and recover and messages may be delayed or lost. In the first case one wants to
guarantee that duplicate messages will not be accepted by the receiver, while
in the case of RPCs, one wants to guarantee that the procedure called in the
remote server will be invoked at-most-once [22].

Di Crescenzo and Kiayias in [5] demonstrate the use of the semantic in mes-
sage passing systems for the sake of security. Driven by the fundamental secu-
rity requirements of one-time pad encryption, the authors partition a common
random pad among multiple communicating parties. Perfect security could be
achieved only if every piece of the pad is used at most once. The authors show
how the parties maintain security while maximizing efficiency by applying At-
Most-Once semantics on pad expenditure.

One can also relate the At-Most-Once problem to the consensus problem
[18, 9, 6, 12]; here one can view consensus as an at-most-once distributed decision.

Another related problem is the Write-All problem for the shared memory
model [10, 1, 8, 19, 11].First presented by Kanellakis and Shvartsman [10], the
Write-All problem is concerned with performing each task at-least-once. We note

that solutions to Write-All may be adapted to solve At-Most-Once, provided
safeguards are in place to prevent more-than-once invocations.

Finally we note that the At-Most-Once problem becomes much simpler when
shared-memory is supplemented by some type of read-modify-write operations.
For example, one can associate a test-and-set bit with each task, ensuring that
the task is assigned to the only processor that successfully sets the shared bit An
efficient implementation can then be easily obtained from a Write-All solution,
such as [1, 8, 11, 20]. Thus, in this paper we deal only with the more challenging
setting where algorithms use atomic read/write registers.

Contributions: Our goal is to explore the feasibility and efficiency of solu-
tions that satisfy the At-Most-Once semantic in the shared-memory model with
asynchronous processors prone to crash failures. The At-Most-Once Problem
is formulated for m processors and n jobs, where any processor can perform
any job, provided that no job is performed more-than-once. Note that in such
a setting it is impossible to distinguish between a slow and a crashed proces-
sor, consequently it is impossible to determine whether a processor delays while
performing a job or if it crashes before performing the job. This means that
generally some jobs may never be performed. Our contributions are as follows.

(1) We define the At-Most-Once problem and the correctness properties to be
satisfied by any solution. We introduce a complexity measure we call effective-
ness. This measure describes the number of jobs completed (at-most-once) by
an implementation, as a function of the overall number of jobs n, the number of
processors m, and the number of processor crashes f . (Section 2.)

(2) We present a lower bound for the effectiveness of the at-most-once imple-
mentations. In particular, we prove that no At-Most-Once solution may achieve
effectiveness better than n− f . (Section 3.)

(3) We provide two algorithms that solve the At-Most-Once problem for 2 pro-
cessors. The algorithms use a collision-avoidance approach. The importance of
these algorithms is twofold: a) they can be used as building blocks to construct
general implementations for larger number of processors, and b) they achieve
optimal effectiveness. The algorithms differ substantially in their space require-
ments and work complexity, demonstrating the trade-offs between efficiency and
space. We analyse work, space, and effectiveness. (Section 4.)

(4) Finally we present a multi-processor algorithm, that employs one of our
two-processor algorithms as a building block. We prove the correctness of the
algorithm, and we perform rigorous analysis of its effectiveness of n−logm·o(n),
and its work and space complexity. (Section 5.) The algorithms in this work
are motivated by the Write-All algorithms from [3, 8], although the problem
itself and the correctness criteria are quite different. Our work can be viewed
as complementary to [5] that considers a similar problem in message-passing
models. Here we use a shared-memory model in a deterministic setting.
Because of lack of space we omit some of the proofs in this manuscript. We
encourage the reader to contact the authors for the detailed proofs.

2 Model, Definitions, and Efficiency

We define our model, the At-Most-One problem, and measures of efficiency.

2.1 Model and Adversary
We model a multi-processor as m asynchronous, crash-prone processes with
unique identifiers from some set P. Shared memory is modeled as a collection of
atomic memory cells, where the number of bits in each cell is explicitly defined.
We use the Input/Output Automata formalism [18, 17] to specify and reason
about algorithms; specifically, we use the asynchronous shared memory automa-
ton formalization [18, 7]. Each process p is defined in terms of its states statesp
and its actions actsp, where each action is of the type input, output, or internal.
A subset startp ⊆ statesp contains all the start states of p. Each shared variable
x takes values from a set Vx, among which there is initx, the initial value of x.

We model an algorithm A as a composition of the automata for each process
p. Automaton A consists of a set of states states(A), where each state s contains
a state sp ∈ statesp for each p, and a value v ∈ Vx for each shared variable x.
Start states start(A) is a subset of states(A), where each state contains a startp
for each p and an initx for each x. The actions of A, acts(A) consists of actions
π ∈ actsp for each process p. A transition is the modification of the state as a
result of an action and is represented by a triple (s, π, s′), where s, s′ ∈ states(A)
and π ∈ acts(A). The set of all transitions is denoted by trans(A). Each action in
acts(A) is performed by a process, thus for any transition (s, π, s′), s and s′ may
differ only with respect to the state sp of process p that invoked π and potentially
the value of the shared variable that p interacts with during π. We also use triples
({varss}, π, {varss′}), where varss and varss′ are subsets of variables in s and
s′ respectively, as a shorthand to describe transitions without having to specify s
and s′ completely; here varss and varss′ contain only the variables whose value
changes as the result of π, plus possibly some other variables of interest.

We say that states s and t in states(A) are indistinguishable to process p if:
1) sp = tp, and 2) the values of all shared variables are the same in s and t. Now,
if states s and t are indistinguishable to p and (s, π, s′) ∈ trans(A) for π ∈ actsp,
then (t, π, t′) ∈ trans(A), and s′ and t′ are also indistinguishable to p.

An execution fragment of A is either a finite sequence, s0,π1,s1, . . .,πr,sr,
or an infinite sequence, s0,π1,s1, . . .,πr,sr,. . ., of alternating states and actions,
where (sk, πk+1, sk+1) ∈ trans(A) for any k ≥ 0. If s0 ∈ start(A), then the
sequence is called an execution. The set of executions of A is execs(A). We say
that execution α is fair, if α is finite and its last state is a state of A where no
locally controlled action is enabled, or α is infinite and every locally controlled
action π ∈ acts(A) is performed infinitely many times or there are infinitely
many states in α where π is disabled. The set of fair executions is fairexecs(A).
An execution fragment α′ extends a finite execution fragment α of A, if α′ begins
with the last state of α. We let α ·α′ stand for the execution fragment resulting
from concatenating α and α′ and removing the (duplicated) first state of α′.

We model process crashes by action stopp in acts(A) for each process p. If
stopp appears in an execution α then no actions π ∈ actsp appear in α thereafter.

We then say that process p crashed. Actions stopp arrive from some unspecified
external environment, called adversary. In this work we consider an omniscient,
on-line adversary [10] that has complete knowledge of the algorithm. The adver-
sary controls asynchrony and crashes. We allow up to f < m crashes. We denote
by fairexecsf (A) all fair executions of A with at most f crashes.

2.2 At-Most-Once Problem, Effectiveness and Complexity
We consider algorithms that perform a set of tasks, called jobs. Let A be an
algorithm specified for m processes with ids from set P = [0 . . .m− 1], and with
jobs with unique ids from set J = [0 . . . n−1]. We assume that there are at least
as many jobs as there are processes, i.e., n ≥ m. We model the performance of
job j by process p by means of action dop,j . For a sequence β, we let len(β)
denote its length, and we let β|π denote the sequence of elements π occurring
in β. Then for an execution α, len

(
α|dop,j

)
is the number of times process p

performs job j. Now we define the number of jobs performed in an execution.

Definition 1. For execution α we denote by Jα = {j ∈ J | dop,j
occurs in α for some p ∈ P}. The total number of jobs performed in α is de-
fined to be Do(α) = |Jα|.

We next define the at-most-once problem.

Definition 2. Algorithm A solves the At-Most-Once problem if for each execu-
tion α of A we have ∀j ∈ J :

∑
p∈P len

(
α|dop,j

)
≤ 1. We call any such execution

α an AO-execution (at-most-once execution).

Measures of Efficiency. We analyze our algorithms in terms of three complexity
measures: effectiveness, work, and space. Effectiveness counts the number of jobs
performed by an algorithm in the worst case.

Definition 3. The effectiveness of algorithm A is: EA(n,m, f) =
minα∈fairexecsf (A)(Do(α)), where m is the number of processes, n is the num-
ber of jobs, and f is the number of crashes.

A trivial algorithm can solve the At-Most-Once problem by splitting the
n jobs in groups of size n

m and assigning one group to each process. Such a
solution has effectiveness E(n,m, f) = (m− f) · nm (consider an execution where
f processes fail at the beginning of the execution). Thus our goal is to construct
algorithms that achieve higher effectiveness.

Work complexity measures the efficiency of an algorithm in terms of the total
number of memory accesses.

Definition 4. The work of algorithm A, denoted by WA, is the worst case total
number of bits accessed in all memory reads and writes in any execution of A.

Space complexity measures the memory space used by the algorithm.

Definition 5. The space of algorithm A is the total number of bits in shared
and internal variables used by the processes of A.

3 Lower Bound

We show that any algorithm that solves the at-most-once problem in the presence
of up to f crashes has effectiveness E ≤ n − f . While the proof is subtle, the
result itself is intuitive, based on the observation that one cannot distinguish
a crashed process from a slow one. If an algorithm assigns job j to process p,
and the process crashes, the algorithm is unable to revoke the job and assign it
to another process, since process p may simply be slow and it may ultimately
perform job j, violating at-most-once semantics.

Recall that in our setting we have at least as many jobs as processes (n ≥
m > f). (The case where n ≤ m is less interesting and for this reason is not
presented in this paper.) For our proofs we consider only the algorithms that
satisfy Condition 1 below requiring that the algorithm is able to perform at least
one job. Also let us denote by Fα = {p | stopp occurs in α} the set of crashed
processes in execution α.

Condition 1. For all infinite executions α of A, Do(α) ≥ 1 and for all finite
executions α of A, there exists an execution fragment α′, s.t. α · α′ ∈ execs(A)
and Do(α · α′) ≥ 1.

We proceed with a lemma, which shows that one may construct two execu-
tions that contain f failures and their states are indistinguishable to all correct
processes, for algorithms that solve the at-most-once problem. Moreover we show
that exactly f jobs are performed in the first execution, while no jobs are per-
formed in the second one. Then we use these executions to prove the main the-
orem of this section, which shows that the second execution we construct from
the lemma, cannot be extended to perform more than n− f tasks. This implies
that the effectiveness of any algorithm that solves the at-most-once problem is
at most n− f .

Lemma 1. If algorithm A solves the at-most-once problem in the presence of
f < m crashes and Condition 1 holds, then there exist finite executions α1, α2 ∈
execs(A), s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = f , Do(α1) = f , Do(α2) = 0, and the
final states of α1 and α2 are indistinguishable for all processes in P − Fα1 .

Proof. We prove the lemma by induction on the number of crashes f .
Base case: First we find execution α s.t. Do(α) ≥ 1 and Fα = ∅. Such an
execution exists by Condition 1 and the fact that crashes are determined by the
adversary. Let us consider the first do event in α. Let dop,j be that event, and let
s1 and s2 be the states in α before and after dop,j . Since dop,j does not change
shared memory, s1 and s2 differ only in the state of process p and thus are
indistinguishable for all processes in P − {p}. Let α′ = α0 · (s1, dop,j , s2) be the
prefix of α up to event dop,j . Clearly α′ ∈ execs(A). We construct the executions
α1 = α0 ·(s1, dop,j , s2, stopp, s

′
2) and α2 = α0 ·(s1, stopp, s

′
1). These executions are

finite, and since the crashes are controlled by the adversary α1, α2 ∈ execs(A).
Moreover Fα1 = Fα2 = {p} and Do(α1) = 1, Do(α2) = 0. Since stopp affects
only the state of p, s1, s

′
1, s2, s

′
2 are indistinguishable for all processes in P−{p}.

Inductive step: For k < f assume that there exist finite executions α1, α2 ∈

execs(A), s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = k, Do(α1) = k, Do(α2) = 0 and the
final states of α1 and α2 are indistinguishable for all processes in P − Fα1 . We
next construct the needed executions for k + 1 failures.

We first take α2. From Condition 1 there exists execution fragment α that
has no crashes s.t. α2 · α ∈ execs(A) and Do(α2 · α) ≥ 1. Since Do(α2) = 0
only α has do events. Moreover since α2 ·α ∈ execs(A), α has only actions from
processes in P−Fα2 . Let dop,j be the first do event in α, where p ∈ P −Fα2 and
j ∈ J , and let s1, s2 be the states in α before and after dop,j . Clearly s1 and s2

are indistinguishable for all processes in P − {p}. Let us consider the prefix of
α2 ·α up to event dop,j and let us denote this as α2 ·α0 · (s1, dop,j , s2). We have
that α2 · α0 · (s1, dop,j , s2) ∈ execs(A).

Note that since the final states of α1 and α2 are indistinguishable for all
processes in P − Fα2 , and α0 contains only actions from process in P − Fα2 ,
the actions of the execution fragment α0 can extend execution α1 leading to
a state s3 that is indistinguishable for all processes in P − Fα2 from state s1.
This means that there exists execution fragment α′0 that has the same sequence
of actions with α0, s.t. α1 · α′0 · (s3, dop,j , s4) ∈ execs(A) and s1, s2, s3, s4 are
indistinguishable for all processes in P−(Fα1∪{p}). Since α1 ·α′0 ·(s3, dop,j , s4) ∈
execs(A), it must hold that j /∈ Jα1 .

We construct the executions α′2 = α2 · α0 · (s1, stopp, s
′
1) and α′1 = α1 · α′0 ·

(s3, dop,j , s4, stopp, s
′
4). We have that α′1, α

′
2 ∈ execs(A), Fα′1 = Fα′2 = Fα1 ∪{p},

|Fα′1 | = k + 1, Do(α′1) = k + 1, Do(α′2) = 0, states s′1, s
′
4 are indistinguishable

for all processes in P − Fα′1 .

Theorem 1. If algorithm A solves the at-most-once problem in the presence
of f < m crashes, then there exists an execution α ∈ execs(A), s.t. either α is
infinite and Do(α) ≤ n−f , or α is finite, and there exists no execution fragment
α′, s.t. α · α′ ∈ execs(A) and Do(α · α′) > n− f .

Proof. By contradiction. Assume the theorem to be false, with Condition 1 hold-
ing. Thus from Lemma 1 we can construct finite executions α1, α2 ∈ execs(A),
s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = f , Do(α1) = f , Do(α2) = 0 and the final
states of α1 and α2 are indistinguishable for all processes in P −Fα1 . Also from
the assumption, there exists execution fragment α′ s.t. α2 · α′ ∈ execs(A) and
Do(α2 ·α′) > n− f . Since Do(α2) = 0, it must be that Do(α′) > n− f . Clearly
α′ has only actions for processes in P −Fα2 = P −Fα1 . Because the final states
of α1 and α2 are indistinguishable for all processes in P − Fα1 the sequence
of actions in α′ can extend α1 as well. This means that there exists execution
fragment α′′ that has exactly the same actions as α′ s.t. Do(α′′) > n − f and
α1 · α′′ ∈ execs(A). But Do(α1) = f and Jα1 , Jα′′ ⊆ J . Since n = |J | it fol-
lows by the pigeonhole principle that Jα1 ∩ Jα′′ 6= ∅ and thus α1 · α′′ is not an
AO-execution, a contradiction.

The main result follows as a corollary to the theorem.

Corollary 1. For all algorithms A that solve the at-most-once problem with
m processes and n ≥ m jobs in the presence of f < m crashes it holds that
EA(n,m, f) ≤ n− f .

4 Two Process Algorithms for At-Most-Once Problem

We present algorithms for the at-most-once problem that use a collision-
avoidance approach. First we give 2-process algorithms: ao2,n that uses n 1-bit
shared memory variables, and ao

′

2,n that uses two shared memory variables of
log n bits, thus achieving lower space complexity. Both algorithms achieve op-
timal effectiveness. The two-process algorithms can be used as building blocks
to construct algorithms for larger numbers of processes. Here we use algorithm
ao2,n to construct an m-process algorithm for the at-most-once problem.

4.1 Algorithm ao2,n

The algorithm, given in Fig. 1, solves the at-most-once problem for n jobs, using
two processes, numbered 0 and 1, and n 1-bit shared variables. The main idea is
to have the processes move towards each other, with process 0 performing jobs
in the ascending order, and process 1 in the descending order. The processes
avoid a collision, i.e., doing a job twice, by adopting a “look ahead decide for the
current” (LA-DC) approach.

The algorithm uses n shared bit variables x0, . . . , xn−1 as a bookkeeping
mechanism to record progress. Initially all shared variables are set to 0. If process
p performs job j using action dop,j , then statusp variable is changed to set. This
enables action setp that in turn sets the value of xj to 1. The process decides
whether a job can be performed in action checkp. Using the LA-DC approach,
before a process performs job j, it decides that it is safe to do so, by checking the
shared variable associated with the next job in its path, that is xj+1 for process 0
and xj−1 for process 1. If xj+1 (resp. xj−1) is 0 then process 0 (resp. 1) proceeds
to perform j; otherwise the status of the process is assigned the value end, and
we say that the process terminates. The key idea is that since xj+1 (resp. xj−1)
is 0 then the competing process 1 (resp. process 0), did not yet perform the task
j + 1 (resp. j − 1). Collision is avoided since it cannot be performing j.

To show correctness we first prove that if cur0 = k for some k > 0, then all
shared variables “before” xk are set to 1, and respectively that if cur1 = k, then
all shared variables “after” xk are set to 1.

Lemma 2. For any execution α of ao2,n and for any state s in α such that
s.cur0 = k and s.cur1 = k′ for 1 ≤ k ≤ k′ ≤ n− 2, then for i ∈ {0, ..., k − 1} ∪
{k′ + 1, ..., n− 1}, s.xi = 1, and actions do∗,i precede s in α.

Using Lemma 2 we prove that ao2,n solves the at-most-once problem.

Theorem 2. Algorithm ao2,n solves the at-most-once problem.

4.2 Algorithm ao
′

2,n

This algorithm, also uses the LA-DC idea. The difference is that we use two
integer shared variables, xleft and xright, each of log n bits, that serve as pointers

Shared Variables: X = {x0, . . . , xn−1}, boolean, initially all 0

Signature:

Input:
stopp, p ∈ {0, 1}

Output:
dop,j , p ∈ {0, 1}, j ∈ J

Internal:
nextp, p ∈ {0, 1}
Read: checkp, p ∈ {0, 1}
Write: setp, p ∈ {0, 1}State:

statusp ∈ {check, set, do, done, end, stopped}, initially check
curp ∈ {0, . . . , n− 1}, initially cur0 = 0 and cur1 = n− 1
stepp ∈ {−1, 1}, initially step0 = 1 and step1 = −1

Transitions of process p:

Internal Read checkp
Precondition:

statusp = check
Effect:

if (curp + stepp) ≥ 0 AND
(curp + stepp) ≤ n− 1

then
if xcurp+stepp = 0
then statusp ← do
else statusp ← end

else
statusp ← end

Internal nextp
Precondition:

statusp = done
Effect:

curp ← curp + stepp
statusp ← check

Internal Write setp
Precondition:

statusp = set
Effect:

xcurp ← 1
statusp ← done

Output dop,j
Precondition:

statusp = do
curp = j

Effect:
statusp ← set

Input stopp
Effect:

statusp ← stopped

Fig. 1. Algorithm ao2,n: Shared Variables, Signature, States and Transitions

to the progress of each process. Initially xleft and xright are set to 0 and n− 1
respectively, and thereafter each time process 0 or 1 performs a job with action
do∗,∗, xleft is incremented or xright is decremented respectively at event set. The
decision (made in action check) on whether it is safe to perform a job is based on
the differences xright − cur0 and cur1 − xleft for processes 0 and 1 respectively.
If the difference is greater than 1, then it is safe to perform the job. With similar
arguments as in Theorem 2 the result follows.

Theorem 3. Algorithm ao
′

2,n solves the at-most-once problem.

4.3 Effectiveness, Work and Space Complexity

We now present the efficiency results for both algorithms.

Effectiveness: We show that algorithms ao2,n and ao
′

2,n perform n − 1 jobs
in the presence of at most one stopping failure (optimal given Corollary 1).

Theorem 4. The effectiveness of ao2,n with f < 2 is Eao2,n(n, 2, f) = n− 1.

Theorem 5. The effectiveness of ao
′

2,n with f < 2 is Eao
′
2,n

(n, 2, f) = n− 1.

Work and Space: Next we asses the work and space complexity of algorithms
ao2,n and ao

′

2,n. Recall that algorithm ao2,n uses single bit shared variables
and ao

′

2,n uses shared variables of log n bits.

Theorem 6. Algorithm ao2,n has work 2(n+ 1) and space n+ 2 log n+ 8 bits.

Theorem 7. Algorithm ao
′

2,n has work 2(n+1) log n and space 4 log n+10 bits.

5 Multiprocess Solution for the At-Most-Once problem

We now present m-process algorithm aom,n, given in Fig. 2, where m = 2h, and
the number of jobs is n = kh (non-powers are handled using standard padding
techniques). The algorithm is a hierarchical generalization of algorithm ao2,n. It
uses an abstract full k-ary tree of h levels to keep track of progress and guarantee
at-most-once semantics. All processes start at the root of the tree at level 0. At
each node λ at level µ processes are split in two groups according to their process
identifiers and look for subtrees with jobs that are safe to perform in the children
of node λ. Thus at each node λ we can see the processes as two groups, group 0
and group 1, solving a sub-problem with k groups of jobs (the subtrees rooted
at the children of node λ) using the approach of algorithm ao2,n. Group 0 starts
from the leftmost child of node λ and moves to the right, while group 1 starts
from the rightmost child and moves to the left. Both groups use the LA-DC
approach to define whether it is safe to perform a group of jobs (sub-tree rooted
at a child of node λ).

We store the tree on a shared memory array by associating each node with
a shared variable. Variable x0 is associated with the root at level 0, x1, . . . , xk
with the nodes at level 1, xk+1, . . . , xk2 with the nodes at level 2, and so on. In
general the nodes at level µ ∈ [1 . . . h] are associated with the shared variables
xuµ , . . . , xuµ+kµ−1, where uµ = 1+k+k2+k3+. . .+kµ−1. The tree has a total of
v = uh+1 nodes. We denote by node λ the node associated with the shared vari-
able xλ, that has children associated with xλ·k+1, . . . , xλ·k+k and a parent asso-
ciated with xbλ−1

k c. Node λ ∈ [0 . . . v − 1] is at level µ = blogk (λ · (k − 1) + 1)c.
Finally, job j is associated with leaf xuh+j . Next we present aom,n in more detail.
Internal Variables of process p

statusp ∈ {check, set, up, down, do, done, end, stopped} records the status of
process p and defines its next action as follows: down–p can move to the children
of its current node, up–p finished the current level and can move one level higher,
set–p can set the shared variable associated with its current node to 1, check–p
has to check whether it is safe to work at the current node, do–p is at a leaf and
can perform the associated job, done–p finished working at the current node and
can move to the next, end–p terminated (it is not safe for p to work on the tree),
stopped–p crashed. All processes start at node 0, with statusp = down.

pidp[0 . . . h] is a binary expansion of p into h+1 bits. Note that p ∈ [0, 2h−1]
and thus ∀p ∈ P, pidp[0] = 0.

curp ∈ {0, . . . , v − 1} marks the node at which process p is positioned.
leftp, rightp ∈ {0, . . . , v−1} keeps the leftmost and rightmost siblings of the

current node.
lvlp ∈ {0, . . . , h} stores the level µ of the current node.
stepp ∈ {−1, 1} tracks of whether process p is moving from right to left or

left to right at the current level.
Actions of process p

downp: Process p moves one level down. If a leaf is reached, it sets statusp =
do in order for the job associated with the leaf to be performed. If p is at an
internal node, it checks whether pidp[lvlp] is 0 or 1. If it is 0, then p moves to the

leftmost child of node curp, otherwise it moves to the rightmost child. Process
p sets lvlp, curp, leftp, rightp and stepp accordingly. The status of p remains
down.

checkp: If p works left-to-right and curp is the rightmost child of its parent, it
sets statusp = up. Similarly if p works right-to-left and curp is the leftmost child
of its parent, it sets statusp = up. Otherwise, p performs a look-ahead read in
shared memory to determine if it is safe to work on the subtree rooted at node
curp. If the shared variable associated with the next node (curp + stepp) is 0,
it is safe to work on the subtree of node curp and thus sets statusp = down.
Otherwise it sets statusp = up.

upp: Process p moves one level up. If it is at level 1 (only root is above), it
sets statusp = end and terminates. If by moving up an internal node is reached,
p updates its internal variables accordingly by checking the proper bit of its pidp
variable, and sets statusp = set.

setp: Process p writes 1 to the shared variable associated with the node curp
and sets statusp = done.

nextp: Process p moves to the next node (left or right, per value of stepp),
and sets statusp = check.

dop,j : Process p preforms job j. Then p sets statusp = set.
stopp: Process p crashes by setting statusp = stopped.

Correctness. We show that algorithm aom,n solves the at-most-once problem.
First we prove that at any internal node λ at level µ, either only processes with
pidp[µ] = 0, or only processes with pidp[µ] = 1 enter the subtree rooted at λ.

Lemma 3. For any execution α of algorithm aom,n if there exist states s, s′ in

α and processes p, q ∈ P s.t.
⌊
s.curp−1

k

⌋
=
⌊
s′.curq−1

k

⌋
= λ, for some node λ at

level µ, then pidp[µ] = pidq[µ].

Proof. For node λ at level µ, if it is the leftmost child of its parent, then from
the first if clause of action checkp, only processes with pidp[µ] = 0 may enter the
subtree rooted at λ. Similarly if node λ is the rightmost child, only processes with
pidp[µ] = 1 may enter the subtree rooted at λ. If node λ is between the leftmost
and rightmost children of its parent

(
λ ∈

[⌊
λ−1
k

⌋
· k + 2 . . .

⌊
λ−1
k

⌋
· k + k − 1

])
,

then processes with pidp[µ] = 0 will approach it from the left, while
processes with pidp[µ] = 1 will approach it from the right. In order to
get a contradiction let us assume that there exists execution α that has
states s, s′ and processes p, q with pidp[µ] = 0 and pidq[µ] = 1, s.t.
b s.curp−1

k c = b s
′.curq−1

k c = λ. This means that both processes have entered
the subtree rooted at node λ. For this to happen, there exist in α tran-
sitions ({curp = λ, statusp = check} , checkp, {curp = λ, statusp = down}) and
({curq = λ, statusq = check} , checkq, {curq = λ, statusq = down}), that pre-
cede s and s′ respectively. Recall that p moves left-to-right and q right-to-left,
and before moving to a new node at a level, they set the shared variable asso-
ciated with the previous node to 1. Hence it follows that either xλ+1 = 1 when
action checkp took place or xλ−1 = 1 when action checkq took place. If the

Shared Variables: X = {x0, . . . , xv−1}, xi boolean initially 0

Signature:

Input:
stopp, p ∈ P

Output:
dop,j , p ∈ P, j ∈ J

Internal:
nextp, p ∈ P
upp, p ∈ P
downp, p ∈ P

Read: checkp, p ∈ P
Write: setp, p ∈ P

State:

statusp ∈ {check, set, up, down, do, done, end, stopped}, initially down

pidp[0 . . . h], where pidp[i] =
⌊

p

2h−i

⌋
mod 2 (the binary expansion of p to h+ 1 bits)

curp ∈ {0, . . . , v − 1}, initially 0
leftp ∈ {0, . . . , v − 1}, initially 0
rightp ∈ {0, . . . , v − 1}, initially 0

lvlp ∈ {0, . . . , h}, initially 0
stepp ∈ {−1, 1}, initially undefined

Transitions of process p:

Input stopp
Effect:

statusp ← stopped

Internal Read checkp
Precondition:

statusp = check
Effect:

if (curp + stepp) ≥ leftp
AND (curp + stepp) ≤ rightp
then
if xcurp+stepp = 0
then
statusp ← down

else statusp ← up
else
statusp ← up

Internal nextp
Precondition:

statusp = done
Effect:

curp ← curp + stepp
statusp ← check

Internal upp
Precondition:

statusp = up
Effect:

if lvlp = 1 then
statusp ← end

else
lvlp ← lvlp − 1

curp ←
⌊
curp−1

k

⌋
leftp ←

⌊
curp−1

k

⌋
· k + 1

rightp ←
⌊
curp−1

k

⌋
· k + k

if pidp[lvlp] = 0 then
stepp ← 1

else
stepp ← −1

statusp ← set

Internal Write setp
Precondition:

statusp = set
Effect:

xcurp ← 1
statusp ← done

Internal downp
Precondition:

statusp = down
Effect:

if lvlp = h then
statusp ← do

else
lvlp ← lvlp + 1
leftp ← curp · k + 1
rightp ← curp · k + k
if pidlvlp = 0 then
curp ← leftp
stepp ← 1

else
curp ← rightp
stepp ← −1

Output dop,j
Precondition:

statusp = do
curp = uh + j

Effect:
statusp ← set

Fig. 2. aom,n: Shared Variables and Signature, States and Transitions of processes

first case is true, then the state of p becomes {curp = λ, statusp = up} prevent-
ing p from entering the subtree rooted at λ. Otherwise the state of q becomes
{curq = λ, statusq = up} and q never enters the subtree rooted at λ. So it cannot
be the case that both process p and q entered the subtree rooted at node λ in α
and that completes the proof.

Lemma 4. For any execution α of algorithm aom,n if there exist states s, s′ in

α and processes p, q ∈ P s.t.
⌊
s.curp−1

k

⌋
=
⌊
s′.curq−1

k

⌋
= λ, for some node λ at

level µ, then pidp[0 . . . µ] = pidq[0 . . . µ].

Proof. We prove this by induction on the level µ of node λ.
Base Case: Here we consider level µ = 0, meaning that all processes that reach
the children of the root (node 0) have the same pid∗[0] bit. This holds since
∀p ∈ P, pidp[0] = 0. Thus for any execution α of aom,n, if there exists state s in

α s.t.
⌊
s.curp−1

k

⌋
= 0 for some process p ∈ P, pidp[0] = 0.

Induction Hypothesis: Assume that for any execution α if there exist states
s, s′ and processes p, q s.t. b s.curp−1

k c = b s
′.curq−1

k c = λ, for all nodes λ ∈
[xuµ . . . xuµ+kµ−1] at level µ, then pidp[0...µ] = pidq[0...µ].
Induction Step: By Lemma 3 we show that ∀λ ∈ [xuµ+1 . . . xuµ+1+kµ+1−1] at
level µ + 1, for any execution α, if there exist states s, s′ and processes p, q s.t.
b s.curp−1

k c = b s
′.curq−1

k c = λ, then pidp[0 . . . µ+ 1] = pidq[0 . . . µ+ 1].

From Lemma 4 we get Corollary 2 that says, that in any execution α of
aom,n, only one process p, if any, may reach the decision to perform job j
associated with leaf uµ + j. This decision is reflected in α by a state s, where
s.curp = uµ + j, s.statusp = do.

Corollary 2. For any execution α of algorithm aom,n if there exist states s, s′

and processes p, q s.t. s.curp = λ, s.statusp = do and s′.curq = λ, s′.statusp =
do, for some leaf λ ∈ [uh . . . uµ + kh − 1], then p = q.

Theorem 8. Algorithm aom,n solves the at-most-once problem.

Work and Space: Next we assess work and space of algorithm aom,n. Ac-
cording to the algorithm specification, only the actions checkp and setp perform
memory accesses, and every time they do so, they access exactly one bit.

Theorem 9. The work complexity of algorithm aom,n is O(n+m logm).

Proof. We observe that for each subtree rooted at an internal node λ at level
µ we have a sub-instance of the problem for kh−µ jobs and 2h−µ processes. All
processes of such sub-instance have the same prefix at the first µ bits of their
pid from Lemma 4. Let Wµ be an upper bound on work of the sub-instance.
Now we consider the first level of the subtree. Processes are split in groups 0
and 1 (with 2h−(µ+1) processes each), according to the value of their pid∗[µ+ 1].
Group 0 starts at the leftmost child, group 1 at the rightmost child, and they
move towards each other. From Lemma 4 we have that only one of the groups,
if any, will continue to the sub-instance of the next level, thus we have at most
k sub-instances derived at level µ + 1. From algorithm aom,n, we have that
before a process enters a node, it does a look ahead memory read, and when
it leaves a node, it sets the shared variable associated with the node to 1. This
means that we have a total of k + 2 reads and k writes from the two groups.
Since each group has 2h−(µ+1) processes, we get (k + 2) · 2h−(µ+1) reads and
k · 2h−(µ+1) writes. From the above discussion we have the following recurrence
relation: Wµ = k ·Wµ+1 + (2k + 2) · 2h−(µ+1).
Also for level h (k jobs and 2 processes), we have k + 2 reads and k writes by
Theorem 6, thus: Wh = 2k + 2. Combining the above we get:
W0 = k ·W1 + (2k + 2) · 2h−1 = (2k + 2) · 2h−1 ·

∑h−1
i=0

(
k
2

)i
.

Case k = 2: (2k + 2) · 2h−1 ·
∑h−1
i=0

(
k
2

)i
= 6 · 2h−1 · h = 5m logm

Case k > 2: (2k + 2) · 2h−1 ·
∑h−1
i=0

(
k
2

)i
= (2k + 2) · 2h−1 · (k2)h−1

k
2−1

= 2k+2
k−2 ·

(n−m) ≤ 8(n−m), where the penultimate relation follows formm = 2h, n = kh.
We conclude that W0 = Θ(n+m logm).

Theorem 10. The space complexity of algorithm aom,n is Θ(n+m log n).

Effectiveness: We now assess the effectiveness of algorithm aom,n.

Theorem 11. Algorithm aom,n has effectiveness Eaom,n(n,m,m − 1) =
(n

1
logm − 1)logm = n− logm · o(n).

Proof. We observe that for each subtree rooted at an internal node λ at level
µ we have a sub-instance of the problem for kh−µ jobs and 2h−µ processes.
Moreover if we consider only the first level of such a sub-instance, we have to
solve a problem of k groups of jobs (with kh−(µ+1) jobs each) and 2 groups
of processes (with 2h−(µ+1) processes each). Furthermore, as we pointed out
before, algorithm aom,n follows the same principles for solving this instance as
algorithm ao2,n. Thus at each level we match the effectiveness of ao2,n that by
Theorem 4 performs Eao2,n(k, 2, 1) = k − 1 jobs. If we go all the way down to
level h = logk n, we have an exact instance of the 2-process problem (Section 4.1)
and hence by Theorem 4 it follows that Eaom,n (k, 2, 1) = Eao2,n(k, 2, 1) = k− 1.
From the above we get the following recurrence:

Eaom,n (n,m,m− 1) = (k − 1) · Eaom,n

(
n
k ,

m
2 ,

m
2 − 1

)
= · · · =

= (k − 1)h−1 · Eaom,n

(
n

kh−1 ,
m

2h−1 ,
m

2h−1 − 1
)

= (k − 1)h−1 · Eaom,n (k, 2, 1)

Thus Eaom,n (n,m,m− 1) = (k − 1)h.

Finally, we note that since Eaom,n(n,m,m − 1) = n − logm · o(n), the ef-
fectiveness of the algorithm comes reasonably close, asymptotically in n, to the
corresponding lower bound of n− f .

6 Conclusions

We examined the implementation of at-most-once semantics in an asynchronous
multiprocessor shared memory model. We first defined the problem, proposed a
new efficiency measures, we called effectiveness and counts the number of jobs
performed by a given implementation, and we showed that at-most-once algo-
rithms that tolerate f failures cannot perform more than n − f jobs. Then we
devised and analyzed two effectiveness-optimal algorithms for 2 processors us-
ing the collision avoidance paradigm, and finally we used those algorithms as
building blocks to construct an algorithm for n processors. Our results reveal
an effectiveness gap as the number of processes in the system increases. Thus
we challenge the discovery of more complex collision detection techniques that
would achieve higher effectiveness. Finally we question the existence and effi-
ciency of algorithms that try to implement at-most-once semantics in systems
with different means of communication, such as message-passing systems.

References

[1] R. J. Anderson and H. Woll. Algorithms for the certified write-all problem. SIAM
J. Computing, 26(5):1277–1283, 1997.

[2] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans.
Comput. Syst., 2(1):39–59, 1984.

[3] J. F. Buss, P. C. Kanellakis, P. Ragde, and A. A. Shvartsman. Parallel algorithms
with processor failures and delays. Journal of Algorithms, 20(1):45–86, 1996.

[4] S. Chaudhuri, B. A. Coan, and J. L. Welch. Using adaptive timeouts to achieve
at-most-once message delivery. Distrib. Comput., 9(3):109–117, 1995.

[5] G. Di Crescenzo and A. Kiayias. Asynchronous perfectly secure communication
over one-time pads. In Proc. of 32nd International Colloquium on Automata,
Languages and Programming(ICALP ’05), pages 216–227. Springer, 2005.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[7] K. J. Goldman and N. A. Lynch. Modelling shared state in a shared action model.
In Logic in Computer Science, pages 450–463, 1990.

[8] J. Groote, W. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for the
asynchronous write-all problem based on process collision. Distributed Computing,
14(2), 2001.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13:124–149, 1991.

[10] P. C. Kanellakis and A. A. Shvartsman. Fault-Tolerant Parallel Computaion.
Kluwer Academic Publishers, 1997.

[11] D. R. Kowalski and A. A. Shvartsman. Writing-all deterministically and optimally
using a non-trivial number of asynchronous processors. In Proc. of the 16th annual
ACM Symp. on Par. in Alg. and Arch.(SPAA ’04), pages 311–320. ACM, 2004.

[12] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

[13] B. W. Lampson, N. A. Lynch, and J. F. S-Andersen. Correctness of at-most-once
message delivery protocols. In Proc. of the IFIP TC6/WG6.1 6th International
Conference on Formal Description Techniques(FORTE ’93), pages 385–400, 1994.

[14] K.-J. Lin and J. D. Gannon. Atomic remote procedure call. IEEE Trans. Softw.
Eng., 11(10):1126–1135, 1985.

[15] B. Liskov. Distributed programming in argus. Commun. ACM, 31(3):300–312,
1988.

[16] B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based
on synchronized clocks. ACM Trans. Comput. Syst., 9(2):125–142, 1991.

[17] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-
Quarterly, pages 219–246, 1989.

[18] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[19] G. Malewicz. A work-optimal deterministic algorithm for the asynchronous cer-

tified write-all problem. In Proc. of the 22nd annual Symp. on Principles of
Distributed Computing(PODC ’03), pages 255–264. ACM, 2003.

[20] G. Malewicz. A work-optimal deterministic algorithm for the certified write-all
problem with a nontrivial number of asynchronous processors. SIAM J. Comput.,
34(4):993–1024, 2005.

[21] F. Panzieri and S. Shrivastava. Rajdoot: A remote procedure call mechanism
supporting orphan detection and killing. IEEE Transactions on Software Engi-
neering, 14(1):30–37, 1988.

[22] A. Z. Spector. Performing remote operations efficiently on a local computer net-
work. Commun. ACM, 25(4):246–260, 1982.

[23] R. W. Watson. The delta-t transport protocol: Features and experience. In Proc.
of the 14th Conf. on Local Computer Networks, pages 399–407, 1989.

