Fault-Tolerant SemiFast Implementations
of Atomic Read/Write Registers -~

. LT . .
Chryssis Georgiou Nicolas C. Nicolaou Alexander A. Shvartsman
University of Cyprus, Cyprus  University of Connecticut, USA  University of Connecticut and

chryssis@cs.ucy.ac.cy  nicolas@engr.uconn.edu MIT, USA
aas@engr.uconn.edu

ABSTRACT Categories and Subject Descriptors

This paper investigates time-efficient implementations of atomic F.1.2 [Computation by Abstract Devices]: Modes of Computa-
read-write registers in message-passing systems where the numbeion—Parallelism and concurrengyD.4.5 [Operating Systems]:
of readers can be unbounded. In particular we study the case of aReliability—Fault-tolerance F.2.m JAnalysis of Algorithms and
single writer, multiple readers, arffiservers, such that the writer,  Problem Complexity]: Miscellaneous
any subset of the readers, and ug s&ervers may crash. A recent
_result_of Dutta et al. [3] show_s how to obta‘a_cst implementati_ons General Terms
in which both reads and writes complete ane communication
round-trip, under the constraint that the number of readers is lessAlgorithms, Reliability, Theory
than 2 — 2, wheret < £. In that same paper the authors pose
a question of whether it is possible to relax the bound on readers, Keywords
and at what cost, ifemifasimplementations are considered, i.e., . ) . )
implementations that have fast reads or fast writes. _Fault-tolerance,_Dls_tnbuted algorithms, Atomicity, Read/Write reg-
This paper provides an answer to this question. It is shown that it€rs, Communication rounds
one can obtain implementations where all writes are fast, i.e., in-
volving a single roEnd-trip communication, and where reads com- 1. INTRODUCTION
plete in one to two communication rounds under the assumption  Atomic (linearizable) read/write memory is one of the funda-
that no more than < g servers crash. Simulated scenarios in- mental abstractions in distributed computing. Fault-tolerant im-
cluded in this paper indicate that only a small fraction of reads re- plementations of atomic objects in message-passing systems allow
quire a second communication round. Interestingly the correctnessprocesses to share information with precise consistency guarantees
of the implementation does not depend on the number of concur-in the presence of asynchrony and failures. A seminal implemen-
rent readers in the system. The solution is obtained with the help of tation of atomic memory of Attiyat al. [1] gives a single-writer,
non-uniquevirtual ids assigned to each reader, where the readers multiple reader (SWMR) solution where each data object is repli-
sharing a virtual id form airtual node For the proposed definition  cated atn message-passing nodes. In this solution memory access
of semifast implementations it is shown that implementations sat- operations are guaranteed to terminate as long as the number of
isfying certain assumptions are semifast if and only if the number crashed nodes is less thari2, i.e., the solution tolerates crashes
of virtual ids in the system is less tha?n— 2. This result is proved of any minority of the nodes. The write protocol involves a single
to be tight in terms of the required communication. Itis shown that round-trip communication stage, while the read protocol involves
only asingle completéwo-round read operation may be necessary two round-trip stages, where the second stage essentially performs
for each write operation. It is furthermore shown that no semifast the write of the value obtained in the first stage. Following this de-
implementation exists for the multi-reader, multi-writer model. velopment, a folklore belief developed that in messaging-passing
atomic memory implementations “atomic reads must write”. How-
ever, recent work by Duttat al. [3] established that if the number
— - ) of readers is appropriately constrained with respect to the number
This work is supported in part by the NSF Grants 9988304, of replicas, then single communication round implementations of
0121277, and 0311368. reads are possible. Such an implementation given in [3] is called
TThe work of this author is supported in part by research funds at fast Furthermore it was shown that any implementation with a
the University of Cyprus. larger set of readers cannot have only the single round-trip reads.
Thus when the number of readers can be large, it is interesting to
considersemifastimplementations where the writes involve a sin-
gle communication round and where the reads may involve one or
two rounds with the goal of having as many as possible single round
reads.

Permission to make digital or hard copies of all or part of thaknfor

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies Background DetailsThe implementation of atomic SWMR
bear this notice and the full citation on the first page. Toyootherwise, to objects in [1] usewvalue-timestamairs to impose a partial or-

republish, to post on servers or to redistribute to listguiees prior specific der on read and write operations. To perform a write operation
permission and/or a fee. oo - . J
SPAA06,July 30-August 2, 2006, Cambridge, Massachusetts, USA. the writer increments its local timestamp and sends a message with

Copyright 2006 ACM 1-59593-262-3/06/0007%5.00. the value-timestamp pair to all processes. When a majority of pro-



cesses reply, the write completes. The process performing a read read/write object that supports arbitrarily many readers. To

operation sends out queries and waits for a majority of the pro- accommodate arbitrarily many readers, we introduce the no-
cesses to reply with their value-timestamp pairs. When a majority tion of virtual identifiersand allow multiple readers to share
of the processes replies, the reader finds the highest timestamp and the same virtual identifier, thus forming groups of nodes that
sends the pair consisting of this timestamp and its associated value we call virtual nodes We base the determination of the
to all processes. The read completes when the reader receives re- proper return value on the cardinality of the set of virtual
sponses from a majority of processes. Although the value of the nodes maintained by the servers (this is similar to the algo-
read is established after the first communication round, skipping rithm in [3] that uses the cardinality of the set of the readers
the second round may lead to violations of atomicity when reads maintained by the servers to determine the return value) .
are concurrent with a write. We prove the correctness (atomicity) of the new implemen-
Subsequent works extended the approach in [1] to multiple writ- tation. We note that our implementation is not a straight-
ers, each involving a two round-trip communication protocol, and forward extension of [3]. The introduction of virtual nodes
using quorums of replicas instead of majorities [8, 4]. A fully dy- raises new challenges such as ensuring consistency within
namic atomic memory implementation using reconfigurable quo- groups so that atomicity is not violated by processes sharing
rums is given in [7], where the sets of object replicas can arbitrarily the same virtual id, and proving the resulting implementation

change over time as processes join and leave the system. When the correct.
set of replicas is not being reconfigured, the read and write pro- 3. We consider two families of algorithms, one that does not use

tocols involve two communication rounds. Retargetting this work reader grouping mechanisms, the other that assumes group-
to ad-hoc mobile networks, Dolest al. [2] formulated the Geo- ing mechanisms such as our algorithm. For both we show
Quorums approach where replicas are implemented by stationary that there is no semifast atomic implementatioff if- 2 or

focal pointsthat in turn are implemented by mobile nodes. Inter- more virtual identifiers (groups) exist in the system. Addi-
estingly, in this work some reads involve a single communication tionally it is shown that any semifast algorithm must inform
round when it is confirmed that the previous write of the value ob- no less tharst + 1 server processes during a second commu-
tained by the read has already completed. nication round.

The implementation of atomic SWMR objects in [3] assumes 4. \we show that there does not exist semifast atomic imple-
asynchronous message-passing systems with reliable channels. mentations for multiple writers and multiple readers, even
Here read and write operations dast, i.e., involve a single com- fort = 1.
munication round, but under the constraint tRak % — 2, where 5. We simulated our SWMR implementation and we present

S is the number of servers maintaining object replicAsis the

number of readers, such that the writer, any subset of readets, an

up tot servers may crash. Note that for any number 1 of fail-

ures the number of readers must be strictly less than the number of

servers, and the number of readers is inversely proportional to the

number of server failures. A fast implementation cannot exist in

the case of multiple readers and multiple writers. For example, it is

shown that in the setting where 2 writers and 2 readers exist in the Paper Organization.in Section 2 we present our model and

system and = 1, atomicity can be violated. definitions. In Section 3 we describe our implementation and prove
o its correctness. In Section 5 we show the necessary properties that

Our Contributions.Our goal is to develop atomic memory al-  an implementation of an atomic register must possess in order to

gorithms where a large number of read and write operations are be semifast. In Section 6 we show that no semifast MWMR imple-

fast, i.e., involving a single communication round. In particular, mentation is possible. Section 7 contains simulation results. Due to

we want to remove constraints on the number of readers while pre- space limitations, some proofs are omitted, and they can be found

serving atomicity. We say that an atomic SWMR implementation in [5].

is semifastf write operations take a single communication round

and where read operations take one or two rounds. We show that2, MODEL AND DEFINITIONS

one can obtain semifast implementations with unbounded number \ye consider the single writer, multiple reader (SWMR) model,

of readers, where in many cases reads take a single round. Our apyhere a distinguished processis the writer, the set oR read-

proach is based on forming groups of processes where each group, ¢ gre processes with unique ids from thefet {r1,...,7r},

is given a unique virtual identifier. The algorithm is patterned af- ;.4 \where the object replicas are maintained by the sésefvers

ter the general scheme of the algorithm in [3]. We show that for i unique ids from the sef = {s1,..., ss} such that at most

each write operation at most one complete read operation returninggeryers can crash. virtual nodeis an abstract entity that consists

the written value may need to perform a second communication of 4 group of reader processes. Each virtual node has a unique iden
round. Furthermore, our implementation enables non-trivial exe- ifier from the set) — {1,...,vv}, whereV < 5 — 2. Areader

cutions where both reads and writes are fast, i.e., involve a single ... tht is a member of a virtual node maintains its own identifier
communication round. We also provide simulation results for our . 414 its virtual identifier (r;) = v;; we identify such process by
algorithm, and we consider semifast implementations for multiple {he pair(r;, ;). The processes that share the same virtual identifier
writers. More broadly, our contributions are as follows. are calledsiblings We assume that some external service is used
1. We define the notion of aemifastimplementation which o create virtual nodes by assigning virtual ids to reader processes.
specifies which atomic reads are required to perform a sec- (Note that wherl’ = R and when each virtual node consists of a
ond communication round. In particular, for each write oper- single unique reader, then our model is essentially that of [3].)
ation, onlyone completeead operation is allowed to perform Each procesg is associated with an application. The application
two communication rounds. asks the process to invoke an operation and the process responds to
2. We provide a semifast implementation of an atomic the application with the result. We assume a reliable channel be-

preliminary results demonstrating that only a small fraction
of read operations need to perform a second communication
round. Specifically, under reasonable execution conditions
in our simulations no more that0% of the read operations
required a second round.



tween any two processes and that the messages carry a source and Correctness of an implementation of an atomic object is defined
a destination field. The state of all channels is represented by thein terms of theterminationand atomicity properties. The termi-
setmset that contains all messages sent but not yet delivered, suchnation property requires that any operation invoked by a correct

messages are said to lmetransit We refer to the messages that
intend to write a new value to the atomic registemasiTE mes-

process eventually completes. Atomicity is defined as follows [6]:
Consider the sefl of all complete operations in any well-formed

sages, and we call the messages that request the value of the regist@xecution. Then there exists an irreflexive partial orderngn
asREAD messages. The messages used to propagate informatioroperations inll, satisfying the following: (1) For any operation

within the system are calladiFORM messages.

An algorithm A is a collection of automata, wherg, is the au-
tomaton assigned to the proceswith an initial statelnit. Com-
putation of A proceeds irstepswhere each step denotes actions

m € II, there are finitely many operation$ such thatr’ < . (2)
If operation; precedes the operatior, in II, then it cannot be
the case that> < ;. (3) If 7 is a write operation and’ is any
operation inll, then eitherr < =’ or 7’ < w. (4) The value re-

of a single process. In particular each step is described by an or-turned by a read operation is the value written by the last preceding

dered tuple(st, p, mIn,inv, mOut, res) wherest is the state of
the system (withst,, denoting the state component of proces
and includes the set of messageset and the state of each pro-
cess in the systenp;is the process idnIn the messages received
by the procesgp in that stepinv the invocation submitted to pro-
cessp by the applicationynOut the output messages of process

write operation according t& (or L if there is no such write).

Semifast implementationgve say that a read or write op-
erationr is fastif it completes in one communication round. Let
denote byinv() the invocation of operation requested at pro-

cesyp and letret () denote the response of procedsr operation

p, andres is the response of the process to the application in that . We then define a communication round as follows:

step. Whennv = L there is no invocation at that step and when
res = | there is no response to the application. Whefin = ()

DEFINITION 2.1. A processp performs a communication

or mOut = () then there are no messages to be received or to beround during operationr in an execution if all of the following

sent out in that step respectively. In every step a progesss as
follows, wherest’ is the resulting state (the state components of
all other processes are unchangedif): (1) it setsst’.mset to
st.mset — mlIn, (2) inputsmIn, inv, and its current statet,, to
A,, which outputs a new state;,, the messagesOut to be sent,
and the responsees to the last invoked operation, and (3) adopts
the statest;, as its new state, sets’.mset to st.mset U mOut,
and responds withres to the application. A procegs performs
an invocation stepf the invocationinv # L, aresponse step
whenres # 1, and acommunication stefp mOut # () and both
inv = 1L andres = L.

An execution fragmenp of an algorithmA is a finite or in-
finite sequence of stepsy,o1,...,0-,... Of A. An execution
fragment is called amxecutionof A if it begins with the step
oo = (s0,*, %, x, %, ) wheres0 is the initial state of the system
and s0.mset = (@, and for each process, s0, = Init. Ex-
ecutions are denoted by the symigol A finite execution frag-
ment is a finite prefix of some execution. We say that an ex-
ecution fragmentp extendssome finite execution fragment’ if
the first step inp is oy = (st', , *, %, *, *), the last step of’ is
oe = (st,*,*,*, x,x), such thatst’ is the state that immediately
results fromoy,.

A process carrashduring any step of an execution. Following

hold:

(1) p sends the messages € mOut, during an invocation step
whereinv = inv () or a communication step during, to a sub-
set of processes,

(2) any proces9’ that receivesn € mIn during a stepr, replies
to p with a message:’ € mOut within the same steb,

(3) whenp receives at least one messages € mlin, it either
performs a response step witles = ret(w) or inserts a set of
messages imOut and performs a communication step.

When procesp decides to respond to the application withirin
(3) above during the first communication roundqinthen we say
that operatiorr is fast An implementation iastif both reads and
writes are fast in every execution.

A semifast atomic implementation, as suggested in [3], is the im-
plementation that either has all reads that aredasil writes that
are fast. Here we formalize the notion of semifast implementations.
Let wy, be thek* (k > 1) write operation by the sole writer and
let vali, be the value written to the register. Letbe the partial
order defined on any (atomic) execution as given earlier. We use
the reading-functioMm(p) as defined in [9] to specify the (always
unique) write operation that wrote the value returned by pead

a crash the process does not perform any steps. A process is con- DEFINITION 2.2. An SWMR implementatiahis semifasif the

sidered to bdaulty in executiong if it crashes in¢; otherwise the
process izorrect

Atomicity. Our goal is to implement a read/write atomic object

following are satisfied:

(1) In any executiorg of I, everywrite operationws, k > 1, is
fast.

(2) In any executiorg of I, any completeeadoperation performs

in a message passing system by replicating the value of the objectone or two communication rounds between the invocation and re-
among the servers in the system. Each replica consists of a valuesponse.

v, initially L, and an associated timestarn initially 0. A read

(3) For any executiorg of I, if a two-round read operatiop; re-

or a write operation consists of an invocation step and a match- turns the valueret(p1) = valx andR(p1) = ws, then any read

ing response step. An operationiieompletein an execution, if

operationpz, wherepy < p2 Or p2 < p1, andret(p2) = val, and

the operation’s invocation step does not have a matching responséi(pz) = wyx, must be fast.

step; otherwise the operationdemplete We assume that applica-
tion executions areell-formedin that it invokes one operation at a
time: it waits for a response before invoking another operation.

In an execution we say that a (read or write) operatigrpre-
cedes another operatior, (or w2 succeedsr,), if the response
step form; precedes the invocation step7f. Two operations are
concurrentif neither precedes the other.

(4) There exists an executigfof I containing a write operation
wy, and a set of read operations such thatvp € F,R(p) = ws
andp is fast.

!Notice that procesp’ replies tom either at the same step or
during a subsequent step, if p’ does not receive any messages
betweerr and (inclusively)s’. Intuitively this property is used to
forbid processes to wait for other messages before replying to



We make the following observations having the above definition rectness) without having to bound the number of readers. Server
in mind. Given that any subset of the readers and the writer may s; then sends a reply tp; acknowledging the transaction. If a
fail, in order to guarantee termination, no operation can wait for READ, WRITE Or INFORM message is received then the reply is a
replies from any reader or writer processes. Since we require thatREADACK, WRITEACK, Or anINFORMACK, respectively. AnN-
the writes are fast, the servers cannot wait for any messages beforeeorRM message denotes that the proggsaants to inform the rest
replying to awRITE message. Read operations on the other hand of the reader processes about the timestamp it is about to return.
are allowed to perform two communication rounds. Two-round Accordingly, before replying to amFORM messages; updates
reads can have one of the two forms: (i) the reader process mayits postitvalue. To ensure that the value enclosed initfreORM
contact the servers twice, (ii) the reader may send messages to thenessage is not an already-returned timestampompares the re-
servers during the first round, the servers perform a communication ceived timestamp with itpostit If the postit value is greater, it
step and contact other servers in the second round and then replynust be the case that another reader already returned a newer times-
to the reader ending the first round. If the servers are responsibletamp than the one in the message and so updatingostéwith an
for the second communication round, then it may be the case thatolder timestamp may violate atomicity; otherwjsestitis updated.
all read operations need two rounds to complete, violating semifast Along with any reply,s; encloses its timestamp, its seenset, its
properties (3) and (4). Worse yet, a server may fail during its sec- counter and the value gpostit
ond round preventing an operation from completing. Hence both
communication rounds must be performed by the reader when it Reader.The actions of a reader node with id and virtual
decides it is necessary to do so according to the information gath-id v (r;) = v; are as follows. When; invokes a read oper-
ered during the first round. Thus in the sequel we assume that theation, it sends messages to all servers and waitsSfer ¢ re-
servers in the semifast implementation, upon receivirgab or sponses. Each of these responses is of the faEADACK,
INFORM message, cannot wait for messages from any other pro- ts', seen, rCounter, postit). Upon collecting these messages,
cess before replying. (Alternatively we can construct executions checks-Counter to distinguish new messages from the stale mes-
of a semifast implementation, where only tREAD, WRITE and sages (due to asynchrony), and then records the maximum times-
INFORM messages from the invoking processes to the servers andtampmaxzT'S = ts’ and the maximum postitaz P.S = postit
the replies from the servers are delivered. All the other messagesvalue contained among the received messages. Based on the re-

remain in transit.) ceived information, reader; computes the set of messages that
contained the maximum timestamp.¢z17 Smsg). Then the fol-
3. IMPLEMENTATION SF lowing predicate is used to decide the return value: we check if

We now present a semifast implementation, called SF, in which there is a subsed/S C maxTSmsg such that its cardinality
there is one writer and arbitrarily many readers. We assume that|M S| > S — at, for somex € [1,V + 1] and the cardinality of the
the numberV/ of unique virtual ids is such that < % — 2 (we intersection of the messagesinS is |Nmecarsm.seen| > «, then
show in Section 5 that semifast implementations are possible iff we returnmaxT'S. The predicate can be interpreted as “enough
V < % — 2). We now describe our implementation presented processes have seen theazT'S that we received”.
in pseudocode in Figure 1. Recall that each replica consists of a In order to visualize the idea behind the predicate consider an
value and its timestamp. For simplicity we give the algorithm that finite execution fragmenp; where the writerv performs a com-

returns only the timestamps; then we describe a straightforward plete write operationv; which receives replies fromS,, )| =

modification that returns a value along with each timestamp. S — t servers. We extengh; by a complete read operatign
which misseg servers from those that responded.q such that
Writer. During a write operation, the writes sends a write mes-  [MS1| = [Sw1) N S1| = S — 2t whereS; is the set ofS — ¢
sage consisting of the current timestamp and the value to be writtenservers that responded ta . According to atomicity, the read
to all servers. Sinceof the servers might be faulty; waits for re- operationp; returnsI'Sy = mazT'S. Consider now another ex-
sponses from only — ¢ servers. Upon receipt of all the expected €cutiony. where the write operation is incomplete and re-
acknowledgments the writer increases its timestamp and completesceives replies from exactlyS,,;)| = S — 2t servers. We ex-
the operation. The timestamps impose a natural order on the writestend 2 with a read operatiom; from r; which receives replies
since there is only one writer. from |S1| = S — ¢ servers including the servers B,;). So

|MSi| = |Sway N Si| = S — 2t and thus the reag; cannot
distinguish executiog, from . Hence, by atomicityp, returns
TS1 = maxTS in g2 as well. By extendingo2 even further by
a second read operatiga from r; we might get into the situation
where|MSa| = [Sy,1) N S2| = S — 3t, where|Sz| = § — ¢

Server. The servers maintain the replicas of the object. The state
of a server includes the following: (13 the greatest timestamp re-
ceived any server, (2) the sstenwhere the server records the-
tual ids of the readers that read the latest timestamp of the server, . v
(3) the counterarray in order to distinguish new from old mes- the servers that respondedia Butin order to preserve atomicity
sages from each process (needed because of asynchrong)and (he reader; must also retur’S; = maxT'S. This scenario can
the variablepostit used by readers to inform, if necessary, other P€ €asily generalized for more than two read operations and so the
readers about the timestamp they are about to return. predl_ca_\te in line 23 of the algorithm in F|gl_Jre 1 arise to preserve
We now describe the operation of a servemwhen it receives a  atomicity between the different read operations. _
messagémsgType, ts', rCounter’, vid) from a non-server pro- Note here that the gbove result is true if the unique |d3 of the
cessp;. Upon receipt of this message, serveupdates its times- readers are recorded in theenset. If we record the virtual ids of

tampts if ts' > ts and initializes itseerset to{v(p;)}, the virtual ri andr; (as itis done in our implementation) we only get the same
id of p,. Otherwise, ifts’ < s, s; sets itsseenset to be equal to result if the two readers are not S|bI|ngs_. In different case, namely
seen U {v(p;)} declaring thap; perceiveds;’s timestamp. This ~ Wherev(ri) = v(r;) = vi, theseenset witnessed by botn and

is a departure from the algorithm in [3]: we record the virtual iden- ©2 In &2 could be| Nienrs, m.seen| = | Nmens, m.seen| =

tifier of p;, using its unique identifier only for message exchange. |{%;¥x}| = 2. If so the predicate would not hold f@s, returning

By doing so we manage to keggeen| < £ — 2 (required for cor- mazTS — 1 and violating atomicity.



at the writerw
procedure initialization:
ts «— 1, rCounter «— 0
procedur e write(v)
rCounter «— rCounter + 1
sendW RITE, ts, rCounter, 0) to all servers
wait until receiveW RITEACK, ts, x, rCounter, x) from S — ¢ servers
ts «— ts+1
return(OK)

at each reader;
procedure initialization:
vid(r;) « (imod (£ — 2) + 1), ts < 0, rCounter « 0, mazTS < 0, mazPS « 0
procedure read()
rCounter «— rCounter + 1
ts «— mazTS
sendREAD, ts, rCounter, vid(r;))to all servers
wait until receiveREADACK, x, *, rCounter, *)from S — t servers
rcoMsg «— {m/|r; receivedn = (READACK, x, %, rCounter, x)}
mazTS «— Maximum{ts'|(READACK, ts’, x, rCounter, x) € rcvMsg}
mazxTSmsg «— {m|m.ts = mazTS andm € rcvMsg}
maxzPS «— Maximum{postit|( READACK, =%, =, rCounter, postit) € rcvMsg}
maxPSmsg «— {m|m.postit = maxPS andm € rcvMsg}
if thereisaw € [1,V + 1] and there isMS C mazTSmsgst. (|MS| > S — at)and (| Nmems m.seen| > «) then
if | Nimenrs m.seen| = aand (maxPS < maxTS or [maxPSmsg| <t + 1) then
send(NFORM, maxzT'S, rCounter, vid(r;)) to 3t 4+ 1 servers
wait until receive(NFORMACK x, *, rCounter, ) from 2t 4 1 servers
end if
returngnaxzT'S)
eseif maxzPS = maxTS then
if [/maxPSmsg| < t + 1then
send(NFORM, maxzT'S, rCounter, vid(r;)) to 3t 4+ 1 servers
wait until receive(NFORMACK x*, *, rCounter, *)from 2t + 1 servers
end if
returngnazT'S)
else
retutnnazT'S — 1)
end if

at each serves;
procedure initialization:
ts «— 0, seen «— 0, counter[0...R] < 0, postit «— 0

procedure serve()
upon receive(nsgType, ts’', rCounter’, vid)fromq € {w,r1,...,rr} and rCounter’ > counter[pid(q)] do
if ts’” > tsthen
ts «— ts’; seen «— {vid};
else
seen — seen U {vid}
end if

counter[pid(q)] <« rCounter’ I* pid(q) returns 0 ifg = w andi if g = r; */
if msgType =READ

sendREADACK ts, seen, rCounter’, postit)toq
eseif msgType =WRITE

sendWRITEACK ts, seen, rCounter’, postit)toq
eseif msgType =INFORM

if postit < ts’ then

postit «— ts’

end if

send(NFORMACK *, x, rCounter’, postit)toq
end if

Figure 1: Implementation SF



A second communication round is necessary whesatisfies set of servers that replied with the maximum timestamp,tand
the predicate such théf,,,errs m.seen| = a. During the second thereforeM azS; C S;. The set of messages received frpnton-
communication roundy;; informs 3¢ + 1 servers about the times-  taining the maximum timestamp and sent by the servekgin:S;,

tamp it is about to return. Singeservers might be faulty;; com- is represented by/.S;. The maximum timestamp received by the
pletes as soon as it receives+ 1 acknowledgments and returns  readp; is represented &8.5;. If a read operatiom; performs a
maxT'S. second communication round, then we denot&/#5 to be the set

In the case where the predicate is false, readehecks if there of servers that received the messages from the second communica-
was anypostitequal tomaxT'S observed, as advertised within the tion round ofp; and replied to those messages. We say that a read
received messages. If so, then some reader (previously orreoncu operatiorp; is invoked by the readdr;, v« ), wherer; is the iden-
rently withr;) returned or is about to returnaxzT'S. If r; receives tifier andvy, the virtual identifier of the reader. Lastly for a process

more thant + 1 messages containing that postit, it retunasz7'S p we denote ass, the value of the timestamp efand agpostit,,
without performing a second communication round; otherwise a the value of the postit variable at

second communication round is required/hyto ensure that any We begin with a lemma that plays a significant role in the cor-
subsequent reader will receive the same postit. If neitheatit rectness of our implementation. The lemma follows from the fact
equalsmaxT'S, thenr; returnsmaxT'S — 1 in one communica- that no more tham servers might fail and that the communication
tion round. channels are reliable.

Remark:By the above implementation, if all readers form one vir-
tual node ¥ = 1), then a read operatignwill return maxzT'S only
when it receives at least— 2t replies which contaimaxT'S. But
this implies that the write operation which wrateazT'S must be
either completed or requires at masinore replies to complete.
Consequently in order to achieve efficiency, it is important to study
the division of the reader processes among the virtual nodes. This
is left as an open question. LEMMA 4.2. In any executior¢ of SF, if a servers; sets its
timestamps,, to x at stepo, then, given any step’ of £such that

Returning values with timestamps.slight modification o < o’ andts;s, = y, we have thay > z.
needs to be applied to the algorithm to associate returned times-
tamps with values. To do this the writer attaches two values to the
timestamp in each write operation: (1) the current value to be writ-  \ve now show the monotonicity of the postits for any server.
ten, and (2) the value written by the immediately preceding write
operation (for the first write this id). The reader receives the LEMMA 4.3. In any executior¢of SF, if a servers; sets its
timestamp with its two associated values and if it decides (as be- postits, to x at a stepo, then, given any step’ of £such that
fore) to returnmaxT'S, then it returns the current value attached 4 < o/ andpostits, = y, we have thay > z.
to maxTS. If the reader decides to returnaxT'S — 1, then it . . .
returns the second value (that of the preceding write). PROOF. This can be ensured by line 55 of Figure L]

We now give the correctness of algorithm SF.

LEMMA 4.1. Let two readers(r;,v.) and (r;,v.) perform
subsequent reads, and p2, respectively. Then, for any execution
& of SF| |[MaxS:i| — |MaxSs2| | < t.

The proofs of the first and third atomicity conditions (as given
above) are omitted because of their triviality.

PROOF. This can be ensured by line 44 of Figure 1.]

The following lemma ensures that ifi@stit = x is introduced
THEOREM 3.1. Algorithm SF implements a semifast atomic to the system, then there exists a maximum timestamip the
SWMR read/write register. system such that > x.

PROOF (Sketch.) The proof is done in two parts. We first show
that SF implements an atomic read/write register in the SWMR
model by showing that in any execution the atomicity properties
are not violated (see Section 4). Then we show that SF is a semifas
implementation by showing that the requirements of Definition 2.2
are met. PrROOF Consider an executiofof SF where the read operation

p1 introduced a postit equal to the system. It follows that;

4. CORRECTNESSOF SF observed as the maximum timestamp in the sysfesh = . As

Since the correctness of our implementation depends mainly on \M$1f| > 5 — at and| Nmenrs, m.seen| = a'dﬂl performs
the timestamps written and returned, we reduce the properties of2" I" ormat|v§ 0?\;?“0”' Slnsae ef [lv‘é +1] at? S h> v +f
the atomicity presented in Section 2, to the following: (1) [faread 2)t: We get thafMS,| > ¢. So, if we denote by, the set o

operation returns, it returns a non-negative integer, (2) if a read servLers thatiezplfd tq a subseque?\zrp@gmszgz r‘? N t),llthen
p is complete and succeeds some wifijethen p returnsé such per Lemma 4.2 there is a servey,€ MaxS: N 52 that replies to

that¢ > k, (3) if a readp retumnsk(k > 1), then writeg) ei- P2 with atimestamp/s’ > x. Thereforep, will detect a maximum
ther precedep or is concurrent wittp, (4) if some reag; returns timestampl’Sz > ts', and hencd’Sz > z. [

k(k > 0) and a reagh. that succeeds, returnst, then? > k. We

will show that implementation SF preserves each and every of the
above conditions in any given execution.

Before proceeding to the proof we first introduce some notation =~ PROOF Consider an executiofof SFwhich contains a read op-
we use throughout this section. Each read operation is denoted byerationp: by a readerr;,v;). It follows from Lemma 4.4 that
pi. For each read operatign, let S; denote the set of servers that  if read p; receives aostit = x, then it will detect a maximum
received messages from and replied to those messages. For the timestampl'S; > z. LetT'S; = x and so either the predicate will
writer we denote the set of servers that received messages fromhold and therp; will returny = T'S;, or the condition whether
the k" write operation asS,, (). Furthermore let\/axS; be the postit,, = TS1 will be true and sop; will in this case return

LEMMA 4.4. For any executiorgof SF, if apostit = z is in-
troduced in the system by a read operatignthen any subsequent
read operation will observe a maximum timestamapsuch that
ts' > x

LEmMA 4.5. For any executiorfof SF if a read operatiom,
receives gostit = = thenp, will return a valuey > x.



y = TS, as well. Thusp;, will returny = z. If now T'S1 > «

thenp, will returny = T'S; if the predicate holds ay = T'S; — 1

otherwise. Note that singestit = =z, it is less tharil’S; and so
the postit condition does not hold. Either caseawill return a value
y>z O

The following lemma ensures the second atomicity property.

LEMMA 4.6. Forany executiog of SF, if areadp, is complete
and succeeds some wrikg(thenp; returns¢ such that? > k.

PROOF Suppose that the writep performs awrite(k) oper-
ation and precedes the read operation by reader; with virtual
id v; during an executiogof SF. LetS,, be theS — t servers that
replied tow in the same execution. The intersection betwSgn
andSi, MaxS1 = Sw N Si, is obviously|MazS:| > S — 2t.
Sincewr precedeg; the timestamps for each server idfaxS1,
per Lemma 4.2 it is greater or equalko So p; received a maxi-
mum timestamp'S; such thatl’S; > k. From the implementa-
tion we know that the reader returns eittiés; or 7’'S; — 1. We
consider two cases:
Case 1 T'S1 > k. Sincep; returns eithefl'S; or T'S; — 1, it
follows that either case it returns a timestamp greater or equal to
Case 2T'S; = k. As we mentioned above each servedifuzS,
replies with ats > k. SinceT'S; = k every serves; € MazS,
replies with a timestamps = k to p;. So the setM .Sy, which
contains the messages receiveddaywith the highest timestamp,
will include the messages sent by all the serverddnzS,. So
|MS| > S — 2t. But since the writer sent a message with times-
tampk to the servers before,, thenw is included in theseen set
of each server id/axS,. Before the servers if/ axS; responded
to p1 they also included; in their seen set. So the predicate will
be true fora. = 2 andp, will return T'S1 = k. Observe that no
reader will returril’S; because of a postit in the system because the
predicate will hold for every process in the systemdoe 2, since
the writerw has no sibling processes[]

In order to prove the forth atomicity property, we first need to

beforep, has completed and moreover befpreis executed since
p1 precede,. Thus by Lemma 4.6, returns a valug > .

Case 2:In this casex TS:. Hence either there is
somea € [1,V + 1] such that|MS;|] > S — ot and
| Nmems, m.seen| > « or p; received apostit equal to
TS, from some server. We examine those two possibilities
separately.

Case 2(a): It follows that x TS:, and there is some
a € [1,V + 1] such thatM/ S, consist at least — at messages
received byp, with ts = = and| Nmears, m.seen| > a. Since
V <2 —2anda € [1,V + 1], then|M S| = S — at > t. We
have two cases to consider for: (1) First let examine the case
wherep; returnsz = T'S; becausq Nmenms, m.seen| = a.
According to the implementatiop; has to inform| N.Sq| > 2t+1
servers about its return value, Sincep; precedes,, at least
|NS1 N S2| > 2t + 1 servers, that informed by, , will reply to
p2. Any servers; € NSi N S, by Lemma 4.4 will reply with a
postit > x 10 p2 and with a timestamps > z. Sop. will observe
a maximum timestamf@'S, > x. According now to Lemma 4.5
p2 will return a valuey > z. (2) The second case arise when
p1 returnsz = T'S; becausd Nimens, m.seen| > a. We can
split this case in two subcases regarding the value returned by
p2. The two possible values that might return isy = T'S» or

Yy = TS> — 1:

(i) Let first consider the case whege= T'S>. Sincep; returned
x = TS1, as we mentioned in (1) , there is a writg bperation that
preceded or was concurrent with. As stated aboveM Si| > ¢
and hence there is a serversuch thats; € MaxS: N S2. By
Lemma 4.2,s; will send a timestamps > x to p2, and hence
TSy > ts. Soy > x.

(ii)We now get down to the case whepe returnsy = TS, — 1.
Since|MaxS1| > t, there must be a server € MaxS1 NS> and
s; replies with a timestamfs > z to p2. So the highest timestamp
in Sa(i.e. TSy y + 1) will be greater or equal ta. If the
inequality is true, namely+1 > x, then clearly the value returned

show that readers who belong to the same virtual node (siblings) by p2 isy > z. If the equality holds ang +1 = =z then the highest

satisfy that property. Then we show that the property is also true
for any two non-sibling readers in the system.

LEMMA 4.7. Let the readergr;, v,) and (r;, vi) be siblings
and perform the read operations and p2 respectively. For any
executior¢of SF that containg; and p., if p1 precedess, andp:
returnsz thenp, returnsy, such thaty > x.

PrROOF Consider an executiofof SF. Let first investigate the
case where; = r;. In this casep; denotes the first read operation
of r; and p» a succeeding read operation from the same reader.
Let z be the value returned fromy. During the reag., r; sends
a READ message Witlts,, = T'S1 > z. This message will be
received by all servers i§2 which according to Lemma 4.2 will
reply with a timestamps’ > T'S1 > z. S0T'S2 > 2. f T'S> =z
then|MSz| = S — t and the predicate holds fer = 1. Thus
y = TS = z. Otherwise, ifT'S> > x, the return valuey will be
equal toT'S» or 'S — 1 and thugy > z. By a simple induction we
can show that this is true for every read operatiom gincluding
p2) after p,. For the rest of the proof we assume that~ r;. We
investigate the following two possible cases: fl)returnsz =
TS, — 1 and (2)p: returnse = T'S;. In all of the cases we show
thatz < y or that the case is impossible.

Case 1:In this casex = T'S; — 1. Therefore, some servers
replied top; with T'S; = = + 1, and hence a write(+ 1) oper-
ation had started before, is completed. So writa{) completed

timestamp received by, T'S2 = y+1 = z. Hence all the servers
in MaxS; NS> replied with a timestamps = = = y + 1 to po.
Recall that this case arise only whém,.enrs, m.seen| > a.
Also according to Lemma 4.1}M S| — |[M S1|| < ¢ and hence
|MSz| > S — (a+ 1)t. For anys; € MaxzS1 NSz, we denote
asm, the message sent by to p1 and mo the message sent
to p2. Obviouslym,.ts ma.ts x. Since the timestamp
is the same andr; sent beforens thenmi.seen C ms.seen.

As a result| Nmems, m.seen| < | Nmems, m.seen|.
Notice that, since the two readers are siblings, if no
non-sibling reader received replies from those servers
in between p; and p2, then m;.seen mo.seen and

| Nmems, m.seen| | Nmems, m.seen|. Either case,

| Nmens, m.seen| > o and henceé Npenrs, m.seen| > a + 1.
Observe that the predicate now is true far + 1 since
|MS3| > S — (a+1)t, and thugp, mustreturril’S; = ¢ = y+1,
contradicting the initial assumption thgat= x + 1. The same
result applies in both cases where< V anda = V' + 1 since the
seen set remains unchanged.

Case 2(b)Here p; returnsxz = T'S; because there was not
a€[l,...,V +1], such that Nmenrs, m.seen| > a, but some
postits equal td"S; received byp;. We have to consider 2 cases
here. Either (1)p; received more tham + 1 postits, or (2)p1
received less thah+ 1 postits. Both cases imply that, a reader
(rm,vn) perform a reado1,, and is about to return or already



returned the maximum timestamp(which is equalli;) in the
system. Furthermore implies that, initiated an informative
phase which is concurrent or precedes the read operatiomBy
analyzing the cases we obtain the following results:

(1) If p1 received more than or equalte+ 1 messages containing
a postit with valuepostit = T'S1 = x, then the writerw initiated

a write(r) operation during or before; completed. It follows
that N.S1, N S1 denote the set of servers that repliedstoand
contained thepostit = TS,. The readerp. receives replies
from |Sz| = S — t servers. SincéNSi, N Si| > ¢+ 1, then
|S2 N (NSia N S1)| > 1. So the read operation, will receive

a reply from at least one server € NS;, N S;. Hence, from
Lemma 4.3,p2 receives gostit > x from s; and according to
Lemma 4.5 will return a valug > postit and thusy > x.

(2) Let now examine ifp; received less tham + 1 messages
containing postits with value equal t6S;. Let assume again
that |[NS1. N S1| < t + 1 is the set of servers that replied with
postit = TSy to p1. However, in contrary to the previous case,
the situation wheré(NSi, N S1) N S2| = 0 might arise. So
r; gets into the information process in order to inform sufficient

servers about its potential return timestamp. So at the time where

p1 is completed|N.S1| > 2t + 1 servers contain postit > T'Sy.
When p, is performed,T'S; is greater than or equal te, since
there is a serves; € M S; N S2 and, according to Lemma 4.4,
s; returns a timestamps > z. Furthermore there is a server
s; € NS1 NSz, and so according to Lemma 4.3, replies with a
postit > x. S0, by Lemma 4.5 returns avalug > z. O

Similarly we proof that the fourth atomicity properties is also
satisfied for any two non-sibling reader processes in the system.

LEMMA 4.8. Let the readers(r;,v;) and (r;,v;) be non-
siblings and perform the read operatiops and p» respectively.
For any executiorgof SF that containg; and p2, if p1 precedes
p2, andp; returnsz thenp, returnsy, such thaty > «.

THEOREM 4.9. Algorithm SF implements an atomic read/write
register in the SWMR model.

PrOOF It follows from the fact that every process guarantees
termination by waiting for onlys —¢ replies and the lemmas proved
above. [

5. IMPOSSIBILITY

As itis shown in [3], no fast implementations exist if the number
of readersR in the system is such thdt > % — 2. Our approach

read/write register iR > % — 2. However this violates the fourth
property of the semifast definition and thus no such systems can be
semifast. Hence our bound applies in these kind of systems. We
now show the following considering algorithms using a grouping
mechanism similar to SF:

LEMMA 5.1. No semifast implementation exists if the number
of node groupd/ in the system i& % -2

The following lemma shows that the existence of a semifast im-
plementation also depends on the number of minimum messages
sent by a process during its second communication round.

LEMMA 5.2. There is no semifast implementation of an atomic
register if a read operation inform3t or fewer servers during its
second communication round.

We now state the main result of this section.

THEOREM 5.3. No semifastimplementatidnexists if the num-
ber of virtual nodes in the systemJs % — 2 and if 3t or fewer
servers are informed during a second communication round.

PROOF It follows directly from Lemmas 5.1 and 5.2[]

6. MWMR MODEL

In this section we consider the multiple writer - multiple reader
(MWMR) model and show that no semifast implementations of
atomic registers are possible in this setting in the presence of server
failures.

Preliminaries. For the MWMR model we relax the definition

of a semifast implementation as presented for the SWMR model,
by allowing read operations to perform more than two communica-
tion rounds (i.e., instead of two rounds we allow multiple rounds in
Definition 2.2). First we extract several immediate properties from
the definition of atomicity presented in Section 2. If for given oper-
ationsm; andm in an execution, the response steprefprecedes

the invocation step ofrz, we denote this byr; — m2. To sat-

isfy the atomicity definition the following properties must be true
for any execution of the MWMR semifast implementatiorrad®
ERTY P1: if there is a write operatiomr that writes value and a
read operatiom; such thatur — p;, and all other writes precede
wr thenp; returnsv. PROPERTY P2: if the response steps of all
write operations precede the invocation steps of the read operations
p; andp;, i # j, thenp; andp; must return the same valuer®pr-
ERTY P3: If the response steps of all the write operations precede

to semifast solutions is to trade fast implementation for increased the invocation step of a read operatipnthen p; returns a value
number of readers, while enabling some (many) reads to be fast.written by some complete write.
Here we show that semifast implementations are possible if and For the reasons discussed in Section 2, we assume the commu-

only if the number of virtual identifiers (virtual nodes) in the sys-
tem is less thantS — 2. We show that the bound on the virtual

nication scheme where a server replies tREnD (or WRITE Or
INFORM) message without waiting to receive any otir&AD (or

identifiers is tight for algorithms that: (1) do not use any group- WRITE or INFORM) messages. In this proof we say that an oper-
ing assumptions and thus consider each node acting individually in ation performs aead phaseduring a communication round if it
the system, and (2) consider grouping mechanisms such as in algogathers information from the system at that round. We say that an
rithm SF. In our context by “grouping mechanism” we only mean operation performs write phaseduring a communication round if
the grouping of the reader processes in any arbitrary fashion. In it propagates information to other participants at that round. A read
other words we omit the grouping techniques that involve grouping phase of an operation (read or write) does not modify the value of
of non-reader processes in the system. Additionally, Lemma 5.2, the atomic object. On the other hand a write phase of an operation
shows that informing at lea8t + 1 servers during a second com-  « behaves as follows according to its type: (1) a new, currently un-
munication round is a tight bound for any semifast implementation. known value is written to the register,4fis a write operation (2)

In algorithms where there is no grouping mechanisms assumedonly previously known values are written to the register ifs a
we can consider each reader to form an individual group. So the read operation.
number of virtual node¥ is equal to the number of readeRs As We say that a complete operatianskipsa servers; if s; does
showed in [3] in such systems there is no fast implementation of the not receive any messages from the progebst invokedr and and



the procesp does not receive any replies fram All other servers readerr, will perform awrite(2) operations during its last com-
that receive th&READ, WRITE Or INFORM messages from reply munication round.

to these, ang receives these replies. All other messages remainin  Obviously we have the same setting as in Claim 6.1 and so by
transit. Since we assume thiat= 1, any complete operation may the same claim the decision for the return value must be made in

skip at most one server. We say that an operaticskig-freeif it r1(n — 1). Notice that the decision of; taken inr;(n — 1) is not
does not skip any server. affected from the operations ir(n — 1). So we can assume that
Since we consider read operations that might perform multiple ¢1, and g2, contain only read phases by. According now to
communication rounds to complete, we denoterbyj) the 5" property P27 will return 1 by the end of1(n — 1) in @14 and2
communication round of a read operation from reagder An by the end of-1 (n — 1) in 4. Since we assume that we only have

arbitrary delay may occur between two communication rounds 2 readers in the system andr. and sincer. does not perform
r;(j) andr;(7 + 1) where other read (write) operations or read any read operation in either;, or @24, we have that all the sets
(write) phases might be executed. So we defineragj — 1) a sri(i — 1) = @ for 1 < i < nin both executiong, andpa,.

set of operation phases (read or write) with the property that any
m € sri(j—1), 7 — ri(j). Asetsr;(j — 1) might be equal to the
empty set containing no operations.

CLaiM 6.1. Aread operatiorp that succeeds any write opera- ) )
tion w or write phasewp of an operationr # p, returns the value PrROOF. The proof follows by reasoning on the construction pre-
decided by the read phase preceding its last write phase. sented above. See [5] for full details[]

THEOREM 6.2. If the number of writers in the systemlig >
2, the number of readers B > 2, andt > 1 servers may fail, then
there is no semifast atomic register implementation.

Construction and Main Resultve now present the con- 7. SIMULATION RESULTS
struction we use to prove the main result. We show execution con-
structions assuming that two writerg+( andw-), and two read-

ers 1 andr3) participate in the system. We assume skip-free
operations since they comprise the best case scenario and thus
lower bound for these is sufficient. Let us first consider the fi-
nite execution fragmenp;, constructed from the following skip-

free, complete operations: (a) operation:te(2) by w-, (b) op- S

erationwrite(1) by w1, and () operatiomead, () by r1. These mr?lntaln st Iee]}st oge group we can t_oleré\te uét[aulty sgrvers.
operations are not concurrent and they are executed in the order! N€ number of reader processes varies between 10 and 80. We use
write(2) — write(1) — reads(). By property P2, operation rInt andwlint to stand for the time intervals between each read

reads () returnsl. and write operations respectively. Several scenarios were tested:

We now invert the write operations of the above execution and (¢) frequent ree(ljds andd mfrequentﬁlv r};t;f' v_vherlat < wdm?.’ (.ii)
we obtain executiom., consisting of the following skip-free, com- ~ coneurrent reads and writes, such thabt = wint, an (i) in-

plete operations in the following order: (a) operationite(1) by frequent reads and _frequent writes, such #iait > wint. The
w1, (b) operationwrite(2) by we, and (c) operatiomead; () by processes send_thelr messages after a random delay to model asyn-
r1. As before, these operations are not concurrent. So in this casef:hror!y' According to our setting only the messages between the
by property P2, operatioread; () returns2. invoking processes and the servers, and the replies from the servers
The generali’zatiogaal of o1, for 1 < i < n, when the reader, are delivered (no messages are exchanged between any servers o
g 1 ~ =~ )

performsn, communication rounds is the following: (a)arite(2) among the.lnvo.klng pr(?cesses).
operation fromws, (b) awrite(1) operation fromws, (c) a set of Stochastic simulationsthis is the class of executions where
read operationsri (i — 1) from readers;;, j # 1, and (d) aread or each read (resp. write) operation from an invoking process is sched-

To evaluate the effectiveness of our implementation, we simu-
lated algortihmS F using the NS2 network simulator and measured
the percentage of two-round read operations as a function of the
flumber of readers and the number of faulty servers. The testbed
of our simulations included 20 servers out gf which 5 may fail at

arbitrary times. Since we require thet < 2 — 2, in order to

awrite phase () of theread; () operation from reader; . Notice uled at random time betweenrs&c andrInt (resp.wint) after the

that forn = 1 and forsr1(0) = @ no process can distinguishi 4 last read (resp. write) operation. Introducing randomness in the

from 1. Clearly at the end of the*” communication round, by ~ operation invocations renders a more realistic scenario where pro-

property P2, the operatiatead; () from r1 returnsl. cesses are interacting with the atomic object independently. Under
Similarly we define ther2, to be the generalization gfz, where this setting, for the three scenari¢g, (i7), and (ii¢), the com-

the write operations are inversed: (ajuaite(1) operation from parisons betweenl/nt andwInt may be satisfied only stochasti-
w1, (b) awrite(2) operation fromws, (c) a set of read operations  cally. A single value ofwint = 4.3 sec was chosen for the upper
sr1(i — 1) from readers-;, j # 1, and (d) a read or a write phase  limit of any write operation. For the read operations the values of
r1(i) of theread, () operation from reader;. In this case by the  rInt = 2.3 sec, rint = 4.3 sec, andrInt = 6.3 sec were cho-

end of then'® communication round af;, and by property P2,the  sen, with the results presented in Figure 2, set a. The results for
read; () operation returng. this family of executions are similar where the percentage of two-
If we assume now, without loss of generality, that the last com- round reads is mainly affected by the number of faulty servers. In
munication roundri(n) of r1 in @14 IS @ write phase, then; all cases the percentage of two-round reads is undét.
should not be able to differentiae:, from the following execu-  Fixed interval simulationsHere the intervals for each read
tion, for 1 < i < n —1: (a) awrite(2) operation fromuws, (b) a (or write) operation are fixed at the beginning of the simulation.
write(1) operation fromwy, (c) a set of read operations, (i — 1) All readers use the same intervalnt, and the writer the interval
from readers;, j # 1, (d) aread phase, (i) of theread, () oper- wlnt. This family of simulations represent conditions where op-
ation from reader, (e) a set of read operations, (n — 1) from erations can be frequent and bursty. The intervéilst andwInt
readers;, j # 1, and (f) awrite(1) operation fromri(n). By whenrInt # wint are chosen to avoid having read operations in-

operatiomwrite(1), the reader, tries to disseminate the informa- oked at the same time with write operations. In Figure 2, b(i) illus-
tion gathered from the previous rounds regarding the value of the yrates the case offnt < wlnt. Aread (write) operation is invoked
atomic object. Similarly we can define,, with the difference that  py every reader (resp. writer) in the system evefyt = 2.3 sec



S

35

~

Percentage of 2comm

Percentage of 2comm
I
Percentage of 2comm
.

Percentage of 2comm

Percentage of 2comm
I

8o
8 n

2
2

100

50 4

3.40) 3.000) 3.aii) 3.b(ii) 3.aiii) 3.b(iii)

Figure 2: Stochastic simulation 3.a; Fixed interval simulation 3.b. The vertical axes show the percentage of two-round reads as a
function of the number of readersand the number of faulty servers.

(resp.wiInt = 4.3 sec). Because of asynchrony not every read op- and readers perform a mixture of fast and semifast operations. An-
eration completes before the invocation of the write operation and other direction is to consider dynamic settings such as [7] where
thus we observe a small percentage of reads that perform two com-nodes might join, leave and arbitrarily fail. The broader question
munication rounds. In b(ii) the condition wherént = wint is we intend to investigate is—given a particular distributed system
illustrated. This is the worst case scenario since all operations, readmodel—how fast can a distributed atomic read be?

or write, are invoked at the same time, that is they are invoked ev-

eryrint = wint = 4.3 sec. Although the conditions in this case ~ Acknowledgment: We thank Rachid Guerraoui for his helpful
are highly adversarial, we observe that only about half of the read comments.

operations perform two communication rounds. Lastly, in b(iii) we

study the case whereInt < rInt. In particular a read opera- 9, REFERENCES

tion is invoked every-Int = 6.3 sec by each reader and a write [1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory

operation everywvInt = 4.3 sec. In this case all write operations robustly in message passing systemaf the ACM
complete before any invocation step of a read operation. So all the 42(1):124-142, 1996 '

servers reply to any read operation with the latest timestamp and .
thus no read operation needs to perform a second communication[z] Z.el())of(\)/}usrﬁglIl?rfrkam.e%m:hégn?iEvn?:;rg?nilna;%gi.Izvaetljcnc.)c
round. Finally, note the common trend that increasing the number 9 - mp 9 y

of readers and the number of faulty servers negatively impacts the 3 Segvorks‘ché)S' i RR.L d A. Chakrab H
performance of the algorithm in the first two scenarios. [3] P. Dutta, - suerraoul, R. K. Levy, and A. Lhakra orty. How
fast can a distributed atomic read be Phoceedings of the

twenty-third annual ACM symposium on Principles of

8. CONCLUSIONSAND FUTURE WORK distributed computingoages 236-245. ACM Press, 2004.

In this paper we investigated the existence of semifast imple- [4] B. Eng'lert and A A. Shvartsman. Qraceful quorum
mentations of a read/write atomic register. It is shown in [3] that reconﬂg_uranon in a robust emglat_lon of shared memory. In
there are no fast SWMR implementations—where both readers and International Conference on Distributed Computing Sysfems
the writer perform one communication round—if there é{& 2 pages 45_4_463’ 2_000'
or more readers. Furthermore a question was posed whether ther&] C- Georgiou, N. Nicolaou, and A. Shvartsman. Fault-tolerant
exist semifast implementations where reads or writes are fast. semifast implementations for atomic read/write registers,

The goal of this paper is to relax the bound on the readers in the 2005.
system at the cost of allowing some reads to perform two commu- _ Nttp//www.cse.uconn.edu/ ncn03001/pubs/TRs/GNS06.pdf.
nication rounds. We formalized the notion of semifast implemen- [6] N. Lynch. Distributed AlgorithmsMorgan Kaufmann
tations and we presented an implementation that meets our goal  Publishers, 1996.
and satisfies the required properties. For our implementation we [7] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
show that between two write operations only one complete read  atomic memory service for dynamic networks Aroc. of
operation needs to perform two communication rounds. We also  16th International Symposium on Distributed Computing
showed that there is no semifast implementation if the number of ~ pages 173-190, 2002.
differentvirtual nodesn the system isf— — 2 or greater. Moreover [8] N. A.Lynch and A. A. Shvartsman. Robust emulation of
we showed that there cannot exist semifast implementations forthe  shared memory using dynamic quorum-acknowledged

MWMR model. Finally, we simulated our algorithm and presented broadcasts. IIsymposium on Fault-Tolerant Computjing
the results that demonstrate that most read operations are fastin our  pages 272-281, 1997.
simulated executions. [9] P. Vitanyi and B. Awerbuch. Atomic shared register access by

Our paper made progress in identifying the tradeoffs between asynchronous hardware. 27th Annual IEEE Symposium on
the concurency in the system and the number of communication Foundations of Computer Sciengages 233-243, 1986.
rounds required to implement atomic registers. The next step is to
better understand the tradeoffs in the MWMR model. One direc-
tion is to consider hybrid semifast implementations where writers



