
Brief Announcement: On the Robustness of (Semi)Fast
Quorum-Based Implementations of Atomic Shared

Memory

Chryssis Georgiou
University of Cyprus

chryssis@cs.ucy.ac.cy

Nicolas C. Nicolaou
University of Connecticut
nicolas@engr.uconn.edu

Alexander A. Shvartsman
University of Connecticut

aas@cse.uconn.edu

ABSTRACT
Atomic (linearizable) read/write memory is a fundamental abstrac-
tions in distributed computing. Following a seminal implementa-
tion of atomic memory of Attiya et al. [6], a folklore belief devel-
oped that in messaging-passing atomic memory implementations
“reads must write.” However, work by Dutta et al. [4] established
that if the number of readers R is constrained with respect to the
number of replicas S and the maximum number of crash-failures
t so that R < S

t
− 2, then single communication round-trip reads

are possible. Such an implementation given in [4] is called fast.
Subsequently, Georgiou et al. [3] relaxed the constraint in [4],
and proposed semifast implementations with unbounded number
of readers, where under realistic conditions most reads need only
a single communication round-trip to complete. Their approach
groups collections of readers into virtual nodes. Semifast behav-
ior of their algorithm is preserved as long as the number of virtual
nodes V is constrained by V < S

t
− 2.

Quorum systems are well-known mathematical tools that pro-
vide means for achieving coordination between processors in dis-
tributed systems. Given that the approach of Attiya et al. [6] is
readily generalized from majorities to quorums (e.g., [5, 2]), and
that the algorithms in [4] and [3] rely on intersections in specific
sets of responding servers, one may ask: Can we characterize the
conditions enabling fast implementations in a general quorum-
based framework? This is what we establish in this work.

1. COMPUTATIONAL MODEL
An atomic SWMR implementation is fast if all read and write op-
erations complete in a single communication round-trip in any ex-
ecution. A semifast implementation [3] allows one complete slow
read operation for each write, and all the rest read/write operations
must be fast. Lastly an implementation is non-robust if it has a
single point of failure. A quorum system Q is a collection of sets
Qi such that, ∀Qi, Qj ∈ Q : Qi ∩Qj 6= ∅. A quorum Qi ∈ Q is
faulty if it contains a crashed process. We assume that at least one
quorum in Q is non-faulty in any execution of the algorithm.

2. OUR RESULTS
Fast Implementations: We show that a quorum-based fast im-
plementation is possible iff a common intersection exist among all
quorums. Since a single failure in the common intersection may
collapse the quorum system then this leads to the conclusion that
robust fast quorum-based implementations are impossible.
SemiFast Implementations: The third semifast property as de-
fined in [3] states that only a single complete read operation is
allowed to perform a second communication round-trip for every

Copyright is held by the author/owner(s).
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
ACM 978-1-59593-989-0/08/08.

write operation. We prove that a single complete slow read is not
enough, for any quorum-based implementation without common
intersection. Thus robust semifast quorum-based implementations
are also impossible.
Quorum Views and a New Algorithm: Consequently we seek
implementations that enable fast reads, but permit multiple slow
reads per write. We call such implementations weak-semifast. We
introduce the notion of Quorum Views that refer to the distribution
of the maximum timestamp that a read operation ρi witnesses after
its first communication round. Consider that ρi contacts quorum
Qi during its first communication round. For each s ∈ Qi, ρi

receives a timestamp s.ts and maxTS = max(s.ts). Quorum
views for ρi are defined as follows:
1. [qV iew(1)] ∀s ∈ Qi : s.ts = maxTS,
2. [qV iew(2)] ∀Qj ∈ Q, i 6= j, ∃A ⊆ Qi ∩Qj , s.t. A 6= ∅

and ∀s ∈ A : s.ts < maxTS, and
3. [qV iew(3)] ∃Qj ∈ Q, i 6= j and ∀s ∈ Qi ∩Qj :
s.ts = maxTS.

A quorum view may provide “sufficient” information on whether
or not a write operation is complete. Our new algorithm makes
use of this idea. Briefly the write protocol propagates the value-
timestamp pair to a full quorum, increments its timestamp and
completes. The read protocol propagates read messages to a full
quorum and examines the quorum’smaxTS distribution. If either
qV iew(1) or qV iew(2) are satisfied, then the reader terminates in
the first communication round and returnsmaxTS ormaxTS−1
respectively. If the view satisfies qV iew(3), then the reader pro-
ceeds to a second communication round where it propagates the
maximum timestamp to a full quorum and then returns maxTS.
Simulations: We simulated our algorithm and observed that under
realistic scenarios less than 13% of the reads need to be slow.

For more details we refer the reader to [1].

3. REFERENCES
[1] C. Georgiou, N. Nicolaou, and A. Shvartsman. On the Robustness of

(Semi)Fast Quorum-Based Implementations of Atomic Shared Memory.
http://www.cse.uconn.edu/~ncn03001/TRs/GNS08TR.pdf

[2] R. Guerraoui and M. Vukolić. Refined quorum systems. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of distributed computing
(PODC), pages 119–128, 2007.

[3] C. Georgiou, N. Nicolaou, and A. Shvartsman. Fault-tolerant semifast
implementations for atomic read/write registers. In Proceedings of the 18th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 281–290, 2006.

[4] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fast can a
distributed atomic read be? In Proceedings of the 23rd ACM symposium on
Principles of Distributed Computing (PODC), pages 236–245, 2004.

[5] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory
service for dynamic networks. In Proceedings of 16th International
Symposium on Distributed Computing (DISC), pages 173–190, 2002.

[6] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message
passing systems. Journal of the ACM, 42(1):124–142, 1996.


