Brief Announcement: Fault-Tolerant SemiFast
| mplementations of Atomic Read/Write Registers

Chryssis Georgioly Nicolas C. Nicolao?, and Alexander A. Shvartsmah

! Dept. of Computer Science, University of Cyprus, CY-1678 NicosiarGs
2 Dept. of Computer Science, University of Connecticut, USA
3 Computer Science and Atrtificial Intelligence Laboratory, MIT, USA

Problem and Mativation Atomic (linearizable) read/write memory is among the funda
mental abstractions in distributed computing. Faultrenhé implementations of atomic
objects in message-passing systems allow processes wisfamation with precise
consistency guarantees in the presence of asynchrony #imed$a A seminal imple-
mentation of atomic memory of Attiyat al. [1] gives a single-writer, multiple reader
(SWMR) solution where each data object is replicatedmessage-passing nodes. Fol-
lowing this development, a folklore belief developed thatriessaging-passing atomic
memory implementations “atomic reads must write”. Howevecent work by Dutta
et al. [2] established that if the number of readers is approgyiaenstrained with re-
spect to the number of replicas, then single communicatond implementations of
reads are possible. Such an implementation given in [2]lled#ast Furthermore it
was shown that any implementation with a larger set of readannot have only the
single round-trip reads. Thus when the number of readerbedarge, it is interesting
to considersemifasimplementations where the writes involve a single commation
round and where the reads may involve one or two rounds wétgtal of having as
many as possible single round reads.

Our Contributions. Our goal is to develop atomic memory algorithms where a large
number of read and write operations are fast. In particwarwant to remove con-
straints on the number of readers while preserving atoynigie say that an atomic
SWMR implementation isemifastif write operations take a single communication
round and where read operations take one or two rounds. \We ttad one can ob-
tain semifast implementations with unbounded number afeesa where in many cases
reads take a single round. Our approach is based on forminggiof processes where
each group is given a unique virtual identifier. The alganitls patterned after the gen-
eral scheme of the algorithm in [2]. We show that for eachevdperation at most
one complete read operation returning the written value nesg to perform a second
communication round. Furthermore, our implementatiorb&sanon-trivial executions
where both reads and writes are fast. We also provide simonlatsults for our algo-
rithm, and we consider semifast implementations for migtpriters.

Semifast Implementations and Virtual Nod&Je consider the single writer, multiple
reader (SWMR) model, where a distinguished process the writer, the set of?
readers are processes with unique identifiers from th2 set{r, ..., rr}, and where
the object replicas are maintained by the sef afervers with unique identifiers from
the setS = {sy,...,ss} such that at mostservers can crash.

To accommodate arbitrarily many readers, we introduce otiem of virtual identi-
fiers We allow multiple readers to share the same virtual idemtifhus forming groups
of nodes that we callirtual nodes More formally each virtual node has a unique iden-
tifier fromase® = {v4, ..., vy}, and each readef that is a member of a virtual node
v; maintains its own identifier; and its virtual identifier(r;) = v;; we identify such
process by the paifr;, v;). We assume that some external service is used to create vir-
tual nodes by assigning virtual identifiers to reader preessFor a read operation, the
determination of the proper return value is based on tharity of a set maintained
by the servers, known agenset, which contains virtual node identifiers and probably
the writer identifier. Thus we use virtual nodes to set thenolawy limits of theseenset
even though arbitrarily many readers may use the servicen$are the correctness of
our algorithm we restrict the cardinality of the seen setdddss thanf— — 1 and hence
the number of virtual node3’| to be less thaf® — 2.

A semifast atomic implementation, as suggested in [2], isvgiementation that

either has all reads that are fastall writes that are fast. We formalize the definition
of semifasimplementations that requires all writes to be fast and spatifies which
atomic reads are required to perform a second communicediord. In this brief an-
nouncement we present an informal version of our definitiene, for each write op-
eration, onlyone completeead operation is allowed to perform two communication
rounds. In more detail a SWMR implementatibiis semifasif the following proper-
ties are satisfied: (1) All writes affast (2) all complete read operations perfoome
or two communication rounds, (3) if a read operatjgnperforms two communication
rounds, then all read operations that precede or suggeaad return the same value as
p1 are fast, and (4) there exists some execution which contains only fast read and
write operations.
ImplementatiorSF. We now overview a semifast implementation, called SF, thpt s
ports one writer and arbitrarily many readers. We use tiamept to impose a partial
order on the read and write operations, as in [1]. Of intdeetfte way in which times-
tamps are associated with the values.

To perform a write operation, the writer increases the ttarap and sends the new
value toS — t servers. The timestamps impose a natural order on the \gittes there
is only one writer.

The server processes maintain object replicas and do nokeérany read or write
operations. To implement the fast operation behavior, greess use a bookkeeping
mechanism to record all the processes to whom they sentiabest timestamp. There-
fore when a servey; receives a messadeisgType, ts, x, vid) from a non-server pro-
cessp;, it updates its local timestanip, to be equal tds, if ts > ts,, and it initializes
the recording set callegken, to {vid}. Otherwise, ifts < tsy, s; sets itsseenset to be
equal toseen U {vid} declaring thap; inquireds;’s local timestamp. When a reader
performs a second communication round, then the servapdates its postit valugs
if ts > ps. This declares that the timestanis about to be returned by some reader.

When a reader process invokes a read operation it sends raseseadl servers and
waits for S — ¢ responses. It determines the maximum timestamapTS = ts’ and
the maximum postitnaz PS = ps’ value contained among the received messages, and
it computes the set of the messages that contain the diswbverzT'S (maxT Smsg).

Then the following key predicate is used to decide on the'metalue:
Ja €1,V 4+ 1] 3IMS C maxTSmsg s.t. [IMS| > S — at A| Nmenrs m.seen| > «

The above predicate is derived from the observation thatrigrtwo read operations
andp, that witness the sameazT'S and computednaxT'Smsg: andmazT Smsgs
respectively, the differencgmazT Smsg1| — [maxTSmsgz|| is less than or equal to
t. If the predicate is true or ihaxz PS = maxT'S the reader returnsiaz1'S otherwise
it returnsmaxTS — 1. If a reader observes than,,cars m.seen| = « or less than
2t + 1 messages containingax P.S are discovered in the system, then it performs a
second communication round before returningz1'S.

To associate the timestamps with the values we maintairpke tfis, v;s, vis—1),
wherets is the current timestamp;; the value written with this timestamp, ang _,
the value written with the previous timestamp. We prove theertness (atomicity) of
the new implementation. Note that SF is not a straightfodwextension of [2]. The
introduction of virtual nodes raises new challenges su@nasring consistency within
groups so that atomicity is not violated by processes shéhia same virtual identifier.
Impossibility and MWMR modele consider two families of algorithms, one that does
not use reader grouping mechanisms and the other that asgmoging mechanisms
such as our algorithm. For both families we show that thermisemifast atomic im-
plementation wherf — 2 or more virtual identifiers (virtual nodes) exist in the gyat
The idea behind the proof is to show by contradiction th&t i % — 2, then the fast
behavior of the system violates atomicity, and as a resolpgmnty (4) of the semifast
definition cannot hold. Additionally it is shown that any séast algorithm must inform
no less thamt + 1 server processes during a second communication round —rrosiee
either property (3) of the semifast definition does not hofchtomicity is violated.

Examining the applicability of the result in the multiple iter multiple reader
(MWMR) model, we show that there does not exist semifast atomplementations
even in the case of 2 writers, 2 readers andg 1. Our proof assumes that the read
operations are allowed to perform one or more communicatiands.

Simulations.We simulated our SWMR implementation using the NS2 netwariusi
lator and we obtained preliminary results demonstratirag ¢mly a small fraction of
read operations need to perform a second communicatiordré&pecifically, under
reasonable execution conditions in our simulations no rtteae10% of the read oper-
ations required a second round. Our simulations assuméhinataders are uniformly
distributed among the virtual nodes. Furthermore we assotiestochastic and static
environments and several plausible frequencies on theatiom of read and write op-
erations.

AcknowledgmentWe thank Rachid Guerraoui and Peter Musial for their helpunh-
ments.

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in naggspassing systems.
J. of the ACM42(1):124-142, 1996.

2. P.Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. Howdasta distributed atomic read
be? InProceedings of the twenty-third annual ACM symposium on Principlestfiaited
computing pages 236—245. ACM Press, 2004.

