
Brief Announcement: Fault-Tolerant SemiFast
Implementations of Atomic Read/Write Registers

Chryssis Georgiou1, Nicolas C. Nicolaou2, and Alexander A. Shvartsman2,3

1 Dept. of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus
2 Dept. of Computer Science, University of Connecticut, USA

3 Computer Science and Artificial Intelligence Laboratory, MIT, USA

Problem and Motivation.Atomic (linearizable) read/write memory is among the funda-
mental abstractions in distributed computing. Fault-tolerant implementations of atomic
objects in message-passing systems allow processes to share information with precise
consistency guarantees in the presence of asynchrony and failures. A seminal imple-
mentation of atomic memory of Attiyaet al. [1] gives a single-writer, multiple reader
(SWMR) solution where each data object is replicated atn message-passing nodes. Fol-
lowing this development, a folklore belief developed that in messaging-passing atomic
memory implementations “atomic reads must write”. However, recent work by Dutta
et al. [2] established that if the number of readers is appropriately constrained with re-
spect to the number of replicas, then single communication round implementations of
reads are possible. Such an implementation given in [2] is called fast. Furthermore it
was shown that any implementation with a larger set of readers cannot have only the
single round-trip reads. Thus when the number of readers canbe large, it is interesting
to considersemifastimplementations where the writes involve a single communication
round and where the reads may involve one or two rounds with the goal of having as
many as possible single round reads.
Our Contributions. Our goal is to develop atomic memory algorithms where a large
number of read and write operations are fast. In particular,we want to remove con-
straints on the number of readers while preserving atomicity. We say that an atomic
SWMR implementation issemifastif write operations take a single communication
round and where read operations take one or two rounds. We show that one can ob-
tain semifast implementations with unbounded number of readers, where in many cases
reads take a single round. Our approach is based on forming groups of processes where
each group is given a unique virtual identifier. The algorithm is patterned after the gen-
eral scheme of the algorithm in [2]. We show that for each write operation at most
one complete read operation returning the written value mayneed to perform a second
communication round. Furthermore, our implementation enables non-trivial executions
where both reads and writes are fast. We also provide simulation results for our algo-
rithm, and we consider semifast implementations for multiple writers.
Semifast Implementations and Virtual Nodes.We consider the single writer, multiple
reader (SWMR) model, where a distinguished processw is the writer, the set ofR
readers are processes with unique identifiers from the setR = {r1, . . . , rR}, and where
the object replicas are maintained by the set ofS servers with unique identifiers from
the setS = {s1, . . . , sS} such that at mostt servers can crash.

2

To accommodate arbitrarily many readers, we introduce the notion ofvirtual identi-
fiers. We allow multiple readers to share the same virtual identifier, thus forming groups
of nodes that we callvirtual nodes. More formally each virtual node has a unique iden-
tifier from a setV = {ν1, . . . , νV }, and each readerri that is a member of a virtual node
νj maintains its own identifierri and its virtual identifierν(ri) = νj ; we identify such
process by the pair〈ri, νj〉. We assume that some external service is used to create vir-
tual nodes by assigning virtual identifiers to reader processes. For a read operation, the
determination of the proper return value is based on the cardinality of a set maintained
by the servers, known asseenset, which contains virtual node identifiers and probably
the writer identifier. Thus we use virtual nodes to set the boundary limits of theseenset
even though arbitrarily many readers may use the service. Toensure the correctness of
our algorithm we restrict the cardinality of the seen set to be less thanS

t
− 1 and hence

the number of virtual nodes|V| to be less thanS
t
− 2.

A semifast atomic implementation, as suggested in [2], is animplementation that
either has all reads that are fastor all writes that are fast. We formalize the definition
of semifastimplementations that requires all writes to be fast and thatspecifies which
atomic reads are required to perform a second communicationround. In this brief an-
nouncement we present an informal version of our definition:here, for each write op-
eration, onlyone completeread operation is allowed to perform two communication
rounds. In more detail a SWMR implementationI is semifastif the following proper-
ties are satisfied: (1) All writes arefast, (2) all complete read operations performone
or two communication rounds, (3) if a read operationρ1 performs two communication
rounds, then all read operations that precede or succeedρ1 and return the same value as
ρ1 are fast, and (4) there exists some execution ofI which contains only fast read and
write operations.

ImplementationSF. We now overview a semifast implementation, called SF, that sup-
ports one writer and arbitrarily many readers. We use timestamps to impose a partial
order on the read and write operations, as in [1]. Of interestis the way in which times-
tamps are associated with the values.

To perform a write operation, the writer increases the timestamp and sends the new
value toS − t servers. The timestamps impose a natural order on the writessince there
is only one writer.

The server processes maintain object replicas and do not invoke any read or write
operations. To implement the fast operation behavior, the servers use a bookkeeping
mechanism to record all the processes to whom they sent theirlatest timestamp. There-
fore when a serversi receives a message〈msgType, ts, ∗, vid〉 from a non-server pro-
cesspj , it updates its local timestamptsℓ to be equal tots, if ts > tsℓ, and it initializes
the recording set calledseen, to {vid}. Otherwise, ifts ≤ tsℓ, si sets itsseenset to be
equal toseen ∪ {vid} declaring thatpj inquiredsi’s local timestamp. When a reader
performs a second communication round, then the serversi updates its postit valueps

if ts ≥ ps. This declares that the timestampts is about to be returned by some reader.

When a reader process invokes a read operation it sends messages to all servers and
waits forS − t responses. It determines the maximum timestampmaxTS = ts′ and
the maximum postitmaxPS = ps′ value contained among the received messages, and
it computes the set of the messages that contain the discoveredmaxTS (maxTSmsg).

3

Then the following key predicate is used to decide on the return value:
∃α ∈ [1, V + 1] ∃MS ⊆ maxTSmsg s.t. |MS| ≥ S − αt ∧ | ∩m∈MS m.seen| ≥ α

The above predicate is derived from the observation that forany two read operationsρ1

andρ2 that witness the samemaxTS and computedmaxTSmsg1 andmaxTSmsg2

respectively, the difference||maxTSmsg1| − |maxTSmsg2|| is less than or equal to
t. If the predicate is true or ifmaxPS = maxTS the reader returnsmaxTS otherwise
it returnsmaxTS − 1. If a reader observes that| ∩m∈MS m.seen| = α or less than
2t + 1 messages containingmaxPS are discovered in the system, then it performs a
second communication round before returningmaxTS.

To associate the timestamps with the values we maintain a triple 〈ts, vts, vts−1〉,
wherets is the current timestamp,vts the value written with this timestamp, andvts−1

the value written with the previous timestamp. We prove the correctness (atomicity) of
the new implementation. Note that SF is not a straightforward extension of [2]. The
introduction of virtual nodes raises new challenges such asensuring consistency within
groups so that atomicity is not violated by processes sharing the same virtual identifier.
Impossibility and MWMR model.We consider two families of algorithms, one that does
not use reader grouping mechanisms and the other that assumes grouping mechanisms
such as our algorithm. For both families we show that there isno semifast atomic im-
plementation whenS

t
− 2 or more virtual identifiers (virtual nodes) exist in the system.

The idea behind the proof is to show by contradiction that ifV ≥ S
t
− 2, then the fast

behavior of the system violates atomicity, and as a result property (4) of the semifast
definition cannot hold. Additionally it is shown that any semifast algorithm must inform
no less than3t+1 server processes during a second communication round — otherwise
either property (3) of the semifast definition does not hold,or atomicity is violated.

Examining the applicability of the result in the multiple writer multiple reader
(MWMR) model, we show that there does not exist semifast atomic implementations
even in the case of 2 writers, 2 readers andt = 1. Our proof assumes that the read
operations are allowed to perform one or more communicationrounds.
Simulations.We simulated our SWMR implementation using the NS2 network simu-
lator and we obtained preliminary results demonstrating that only a small fraction of
read operations need to perform a second communication round. Specifically, under
reasonable execution conditions in our simulations no morethan10% of the read oper-
ations required a second round. Our simulations assume thatthe readers are uniformly
distributed among the virtual nodes. Furthermore we assumeboth stochastic and static
environments and several plausible frequencies on the invocation of read and write op-
erations.
Acknowledgment:We thank Rachid Guerraoui and Peter Musial for their helpfulcom-
ments.

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems.
J. of the ACM, 42(1):124–142, 1996.

2. P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fastcan a distributed atomic read
be? InProceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 236–245. ACM Press, 2004.

