2011 IEEE International Symposium on Network Computing and Applications

Towards Feasible Implementations of
Low-Latency Multi-Writer Atomic Registers

Chryssis Georgiou Nicolas Nicolaou

Univ. of Cyprus

chryssis@cs.ucy.ac.cy nicolas @engr.uconn.edu

Abstract—This work explores implementations of multi-
writer/multi-reader (MWMR) atomic registers in asyn-
chronous, crash-prone, message-passing systems with the focus
on low latency and computational feasibility. The efficiency
of atomic read/write register implementations is traditionally
measured in terms of the latency of read and write operations.
To reduce operation latency researchers focused on the com-
munication costs, expressed as the number of communication
round-trips (or rounds), often ignoring the computation costs.

In this paper we consider efficiency of a register imple-
mentation in terms of both communication and computation
costs. As of this writing, algorithm SFw is the sole known
MWMR algorithm that allows single round read and write
operations. The algorithm uses collections of intersecting
sets (quorums), and to enable single round operations, SFw
relies on the evaluation of certain predicates. We formulate a
new combinatorial problem that captures the computational
burden of evaluating the predicates in algorithm SFw and we
show that it is NP-Complete. To make the evaluation of the
predicates feasible, we present a polynomial log-approximation
algorithm for this problem and we show how to use it
with algorithm SFw. Then we present a new algorithm,
called CWFR, that allows fast operations independently of
the underlying quorum system construction. The algorithm
implements two-round writes and allows reads to complete in
a single round. We conclude with experimental evaluations of
our algorithms obtained from simulations in NS2.

Keywords-Atomic Memory; NP-Complete; Approximation
Algorithms; MWMR Registers;

[. INTRODUCTION

Emulating atomic registers in asynchronous, crash-prone,
message-passing systems is one of the basic problems
in distributed computing. In such settings the register is
replicated among a set of replica hosts or servers to provide
fault-tolerance and availability. Then read and write oper-
ations are implemented as communication protocols that
ensure atomic consistency.

Efficiency of register implementations is normally mea-
sured in terms of the latency of read and write operations.
Two factors affect operation latency: (a) computation, and
(b) communication delays. An operation may need to com-
municate with servers to read or write the register value.
This involves at least a single communication round-trip,
or round, i.e., messages from the invoking process to some
servers and then the replies from these servers. Previous

This work is supported in part by the Cyprus Research Promotion
Foundation’s grant IIENEK/0609/31, the European Regional Development
Fund, and the NSF award 1017232.

978-0-7695-4489-2/11 $26.00 © 2011 IEEE
DOI 10.1109/NCA.2011.18

Univ. of Cyprus & Univ. of Connecticut

75

Alexander C. Russell
Univ. of Connecticut
acr@cse.uconn.edu

Alexander A. Shvartsman
Univ. of Connecticut
aas @cse.uconn.edu

works focused on minimizing the number of rounds re-
quired by each operation. Dutta et al. [6] developed the
first single-writer/multi-reader (SWMR) algorithm, where
all operations complete in a single round. Such operations
are called fast. They also showed that it is impossible to
have multi-writer/multi-reader (MWMR) implementations
where all operations are fast.

As of this writing, algorithm SFW of Englert et al. [7],
is the only MWMR algorithm that enables some reads and
writes to be fast. The algorithm uses quorum systems, sets
of intersecting subsets of servers, to handle server failures.
To decide whether an operation can terminate after its
first round, the algorithm employs specialized predicates.
The main drawbacks of this algorithm is that it contains
evaluations of the predicates that require substantial compu-
tational effort, and that it relies on very specialized quorum
constructions. Thus this algorithm is primarily of theoretical
importance and it is not sufficiently practical.

Contributions: Our goal is to provide efficient and practical
implementations of atomic MWMR registers. We examined
algorithm SFw [7], and we identified two weaknesses
with respect to its practicality: (1) the algorithm uses two
computationally hard predicates to decide on the value of
the register, and (2) fast write operations are enabled only
if the quorum system satisfies specific quorum intersection
properties. Motivated by these observations, our contribu-
tions are as follows:

(1) We define a new combinatorial problem, called K-
SET-INTERSECTION, that represents both predicates used in
algorithm SFW. We prove that the problem, and hence the
evaluation of the predicates, are NP-Complete by reduction
from the 3-SAT problem. We present a polynomial time
approximation algorithm that uses as its core a greedy
approximation algorithm for the SET COVER problem.
Our approximation provides a log u-approximation for the
number of sets included in the solution, where u is the size
of the set given as the input; for algorithm SFW, u is the
number of severs. We derive a new atomic register algo-
rithm, called APRX-SFW, by embedding our approximation
algorithm to evaluate the predicates in algorithm SFw. For
O(logu) predicate evaluations, the approximation used by
algorithm APRX-SFW may yield false negatives, however
this is a performance, not a correctness, issue.

(2) We examine whether fast operations can be achieved if
one uses general quorum constructions. By generalizing the

IEEE
@ computer
socle

ty

client side decision tools, called Quorum Views, developed
for the SWMR setting in [9], we derive algorithm CWFR.
The new algorithm uses the conventional two round writes.
To allow fast read operations the algorithm analyzes, using
quorum views, the distribution of a value within a quorum
of replies from servers. As multiple writes can occur
concurrently, an iterative technique is used to discover the
latest potentially completed write operation.

(3) We obtained experimental results by simulating our
algorithms on the NS2 simulator. In particular, we first
compare algorithms SFW and APRX-SFW in terms of the
number of second communication rounds and show that
the experimental results are within the theoretical approxi-
mation bounds. Furthermore, the hardness of the predicate
evaluation computation is made evident from the observed
operation latency (as the number of servers increases). We
then compare the operation latency of algorithms APRX-
SFW, CWFR, and a traditional two-round algorithm that
incurs a low computational overhead. We observe that
the first two algorithms achieve lower latency despite the
computational burden. Finally, we compare the operation
latency and the percentage of fast reads of algorithms
CWwFR and APRX-SFW. We observe that in quorum systems
with small intersection degree, CWFR seems to perform
better than APRX-SFW; in quorums with large intersection
degree APRX-SFW performs better.

Background and prior work: Attiya et al. [2] gave
a SWMR algorithm that achieves consistency by using
intersecting majorities of servers in combination with
(timestamp, value) value tags. A write operation incre-
ments the writer’s local timestamp and delivers the new tag-
value pair to a majority of servers, taking one round. A read
operation obtains tag-value pairs from some majority, then
propagates the pair corresponding to the highest timestamp
to some majority of servers, thus taking two rounds.

The majority-based approach in [2] is readily general-
ized to quorum-based approaches in the MWMR setting
(e.g., [14], [13], [8], [11]). Such algorithms requires at
least two communication rounds for each read and write
operation. Both write and read operations query the servers
for the latest value of the replica during the first round.
In the second round the write operation generates a new
tag and propagates the tag along with the new value to a
quorum of servers. A read operation propagates to a quorum
of servers the largest value it discovers during its first round.
Dolev et al. [5] and Chockler et al. [3], providle MWMR
implementations where some reads involve a single com-
munication round when it is confirmed that the value read
was already propagated to some quorum.

Dutta et al. [6] present the first fast atomic SWMR
implementation where all operations take a single commu-
nication round. They show that fast behavior is achievable
only when the number of reader processes R is inferior
to % — 2, where S the number of servers, ¢t of whom may
crash. They also showed that fast MWMR implementations
are impossible even in the presence of a single server

76

failure. Georgiou et al. [10] introduced the notion of virtual
nodes that enables an unbounded number of readers. They
define the notion of semifast implementations where only
a single read operation per write needs to be “slow” (take
two rounds). They also show the impossibility of semifast
MWMR implementations.

Georgiou et al. [9] showed that fast and semifast quorum-
based SWMR implementations are possible iff a common
intersection exists among all quorums. Hence a single
point of failure exists in such solutions (i.e., any server
in the common intersection), making such implementations
not fault-tolerant. To trade efficiency for improved fault-
tolerance, weak-semifast implementations in [9] allow more
than a single slow read per write operation, and all writes
to be fast. To obtain a weak-semifast implementation they
introduced a client-side decision tool called Quorum Views
that enables fast read operations under read/write concur-
rency when general quorum systems are used.

Recently, Englert et al. [7] developed an atomic MWMR
register implementation, called algorithm SFw, that allows
both reads and writes to complete in a single round. To
handle server failures, their algorithm uses n-wise quorum
systems: a set of subsets of servers, such that each n
of these subsets intersect. The parameter n is called the
intersection degree of the quorum system. The algorithm
relies on (tag, value) pairs to totally order write operations.
In contrast with traditional approaches, the algorithm uses
the server side ordering (SSO) approach that transfers the
responsibility of incrementing the tag from the writers to
the servers. This way, the guery round of write operations is
eliminated. The authors proved that fast MWMR implemen-
tations are possible if and only if they allow not more than
n—1 successive write operations, where n is the intersection
degree of the quorum system. If read operations are also
allowed to modify the value of the register then from the
provided bound it follows that a fast implementation can
accommodate up to n — 1 readers and writers.

Paper organization: In Section II we give the model of
computation and the notation we use throughout. In Section
III we overview algorithm SFW. Section IV introduces the
new combinatorial problem, its analysis, and the approx-
imation algorithm. Algorithm CWFR is presented in Sec-
tion V. Simulation results and comparisons of algorithms
are in Section VI. We conclude in Section VII. Omitted
discussion and proofs are found in [1].

II. MODEL AND DEFINITIONS

We consider the asynchronous message-passing model.
There are three distinct finite sets of crash-prone processors:
a set of readers R, a set of writers W, and a set of servers S.
The identifiers of all processors are unique and comparable.
Communication among the processors is accomplished via
reliable communication channels.

Servers and quorums: Servers are arranged into inter-
secting sets, or quorums, that together form a quorum
system Q. For a set of quorums .4 C Q we denote the

intersection of the quorums in A by a4 = g4 @- A
quorum system Q is called an n-wise quorum system if for
any A C Q, s.t. |A4] n we have T4 # 0. We call n
the intersection degree of Q. Any quorum system is a 2-
wise (pairwise) quorum system because any two quorums
intersect. At the other extreme, a |Q|-wise quorum system
has a common intersection among all quorums. Note that
an n-wise quorum system is also a k-wise quorum system,
for 2 < k <n.

Our system allows processes to fail by crashing. A
process % is faulty in an execution if % crashes in the
execution (once a process crashes, it does not recover);
otherwise i is correct. A quorum) € Q is non-faulty if
Vi € Q, i is correct; otherwise () is faulty. We assume that
at least one quorum in Q is non-faulty in any execution.

Atomicity: We study atomic read/write register implemen-
tations, where the register is replicated at servers. Reader
p requests a read operation p on the register using action
read,,. Similarly, a write operation is requested using action
write(x),, at writer p. The steps corresponding to such
actions are called invocation steps. An operation terminates
with the corresponding acknowledgment action; these steps
are called response steps. An operation 7 is incomplete in
an execution when the invocation step of 7w does not have
the associated response step; otherwise we say that 7 is
complete. Requests made by read and write processes are
well-formed: a process does not request a new operation
until it receives the response for a previously invoked
operation.

In an execution, we say that an operation (read or write)
w1 precedes another operation 7y, or 7y succeeds w1, if the
response step for m; precedes in real time the invocation
step of 7o; this is denoted by m; — 2. Two operations are
concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write
object is defined in terms of the atomicity and termination
properties. Assuming the failure model discussed earlier,
the termination property requires that any operation invoked
by a correct process eventually completes. Atomicity is
defined as follows [12]. For any execution if all read
and write operations that are invoked complete, then the
operations can be partially ordered by an ordering <, so
that the following properties are satisfied:

P1. The partial order is consistent with the external order
of invocation and responses, that is, there do not exist
operations 7y and 7o, such that m; — 79, yet mo < 7.
All write operations are totally ordered and every read
operation is ordered with respect to all the writes.
Every read operation ordered after any writes returns
the value of the last write preceding it in the partial
order, and any read operation ordered before all writes
returns the initial value of the register.

P2.

P3.

Efficiency and Fastness: We measure the efficiency of an
atomic register implementation in terms of computation and
communication round-trips (or simply rounds). A round is
defined as follows [6], [10], [9]:

77

Definition 2.1: Process p performs a communication
round during operation 7 if all of the following hold:

1. p sends request messages for 7 to a set of processes,

2. any process ¢ that receives a request message from p
for operation 7, replies without delay.

3. when process p receives enough replies it terminates
the round (either completing 7 or starting a new round).

Operation 7 is fast [6] if it completes after its first
communication round; an implementation is fast if in each
execution all operations are fast. We use quorum systems
and tags to maintain and impose an ordering on the values
written to the register replicas. We say that a quorum
Q € Q, replies to a process p for an operation 7 during a
round, if Vs € @, s receives a message during the round
and replies to this message, and p receives all such replies.

Given that any subset of readers or writers may crash,
the termination of an operation cannot depend on the
progress of any other operation. Furthermore we guarantee
termination only if servers’ replies within a round of some
operation do not depend on receipt of any message sent by
other processes. Thus we can construct executions where
only the messages from the invoking processes to the
servers, and from the servers to the invoking processes
are delivered. Lastly, to guarantee termination under the
assumed failure model, no operation can wait for more than
a singe quorum to reply within any a single round.

ITII. BRIEF DESCRIPTION OF ALGORITHM SFW

Algortihm SFW assumes that the servers are arranged in
an n-wise quorum system. To order the written values the
algorithm uses (tag, value) pairs. To enable fast writes the
algorithm assigns partial responsibility to the servers for
the ordering of the values written. If a server receives a
write request it generates a new tag, larger than any of the
tags it witnessed, and assigns it to the value enclosed in the
write message. The server records a generated tag, along
with the write operation it was created for, in a set called
inprogress. The set holds only the latest tag generated for
each writer.

Each reader or writer must communicate with a quorum
of servers, say (), during the first round of each read/write
operation. Due to concurrency different servers can receive
messages from write operations in different order, thus an
operation may witness different tags assigned to a single
write operation. To deal with this algorithm SFW uses two
predicates to determine whether “enough” servers in the
replying quorum assigned the same tag to a particular write
operation. Let n be the intersection degree of the quorum
system, and inprogress,(mw) be the inprogress set that
server s enclosed in the message it sent to the process that
invoked operation 7. The write and read predicates are:

PW: Writer predicate for a write w: 3 7, A, M S where:
7 € {{L,w) : (,w) € inprogressy;(w) A s € Q}, A C
QO<|Al <5 —-1and MS ={s:s5€Q AN Tc€
inprogress (w)}, s.t. either |[A| 0 and T4 NQ C MS or
|A|=0and Q = MS.

PR: Reader predicate for a read p: 3 7, B, M S, where:
max(7) € U,cq inprogress (p), B C Q,0 < B[< 3 -2,
and MS ={s:se€Q A T € inprogress,(p)}, s.t. either
|B|#0and IgNQ C MSor |Bl=0and Q = MS.

The predicates examine whether the same tag for a write
operation is contained in the replies of all servers in the
intersection among the replying quorum and § — 1 for PW
(resp. 5 —2 for PR) of other replying quorums. Satisfaction
of the predicates for a tag 7 guarantees that any subsequent
operation will also determine that the write operation is
assigned tag 7. If the predicates hold with |A| > § — 1 or
|B| = % — 2 then the write or read operation respectively
needs to proceed to a second round. A write operation can
only be fast if PW holds. A read operation can be fast
even if PR does not hold, but the read observed enough
confirmed tags with the same value. Confirmed tags are
maintained in the servers and they indicate that either the
write of the value with that tag is complete, or the tag was
returned by some read operation. See [7] for full details.

IV. NP-COMPLETENESS AND APPROXIMATION

The complexity of the predicates raises the question
whether they can be computed efficiently. The two pred-
icates can be captured by a decision problem that we
formalize as follows:

Definition 4.1 (k-SET-INTERSECTION): Given a set of
elements U, a subset of those elements M C U and a set
of subsets Q = {Q1,...,Qn} st. @; C U, aset I is an

intersecting set if I C Q, (e, Q@ # 0, and N, Q € M.
If |[I| = k then [is a k intersecting set.

To the best of our knowledge this is a new combinatorial
problem and it is similar to the open problem stated in [4].
In the context of [7], the universe of elements U is the
set of servers, and the set of subsets of U is the deployed
quorum system. Clearly k-SET-INTERSECTION is in N P:
given (U, M,Q) and aset I C Q, s.t. |I| = k, we can verify
in polynomial time (with respect to |Q[) if (g, @ € M.

A. Polynomial Reduction from 3-SAT

We now show that the k-SET-INTERSECTION problem
is NP-Complete by providing a polynomial reduction from
the 3-SAT problem. The reduction involves a polynomial
transformation of the input to 3-SAT to an instance of k-
SET-INTERSECTION. We first provide the definition of 3-
SAT [15]:

Definition 4.2 (3-SAT): Let X = {x1,...,z,} be a set
of variables and ® a boolean formula in CNF (Conjuctive
Normal Form) where each clause contains at most three
literals (variable or its negation). Is there a truth assignment
to every x; € X s.t. & becomes true?

Construction: We transform an instance of the 3-SAT prob-
lem to an instance (U, M,Q, k) of k-SET-INTERSECTION
as follows. Let k n the total number of variables.
The universe consists of an element for each variable, the
negation of each variable and an element for each clause

78

C; of 3-SAT. It also includes n elements which will ensure
that each variable is chosen at least once:

U= {Cl,’l,...,In,fl,...,fn,cl,...,Cm,fh...,gn}
The set M C U contains all the elements that appear in
the clauses. Both the variable x; and its negation T; may
appear in M, if they appear is some clause of the boolean
formula. Thus the set M is constructed in O(2nm) time as
follows:

M = {xL : EICj,xi S CJ} U {fl : HCj,fi S CJ}

Lastly we construct the set of subsets Q. For each
variable x; € M we construct a subset, (); and for each
variable T; € M we construct a subset Q). Every Q;
contains the variable x;, the variables x; for j # ¢ and
their negations, and the clauses that do not contain x; or
contain ;. Intuitively, those are the clauses that are not
directly satisfied if we set x; = true. Finally, we include
one element £; for each j # i. These elements will ensure
that for a variable x; we choose either (); or)} but not
both. We construct @} similarly for Z;. More formally the
sets we obtain are the following:

Q; = {xi:xiGM}U{xj,fj:j#i}
U{Cji(L’i§éCj OI’fiECj}U{éj]752}
Q; = {ji:fiEM}U{ﬂij,fjlj?éi}

U{Cjiii¢Cj Or.TiECj}U{gjij#i}

Given the above sets, the set of subsets Q is: Q =

{Ua,en{Qi}} U {Usz, e {Qi}}. The construction of all
sets (Q; and @’ takes at most O(2n2m).

The idea of this construction is to find a set of subsets
such that their intersection contains positive and negative
variables and no clauses or elements /;. In our construction
this implies that setting the variables of the intersection to
true satisfies all clauses. In addition, the elimination of the
elements /;, in combination with k being equal to n, implies
that we choose either); or @ but not both. Therefore, the
intersection of n subsets implies that we chose a single truth
value for every variable. With this construction we formally
show that 3-SAT <,, k-SET-INTERSECTION, obtaining the
following theorem:

Theorem 4.3: k-SET-INTERSECTION is NP-Complete.

B. Approximation Algorithm

Here we provide a polynomial time algorithm that yields
an approximate solution to the problem given in Definition
4.1. As a part of our algorithm we use the standard SET-
COVER greedy log-approximation algorithm (cf. [15]). The
set cover problem is defined as follows [15]:

Definition 4.4 (SET-COVER).: Given a universe U of el-
ements, a collection of subsets of U, S = {S1,...,5,},
and a number k, find at most k sets of S such that their
union covers all elements in U.

We now present the steps of the algorithm in Figure 1
and provide an explanation of the algorithm’s rationale.

Every T,, contains the complements of the quorums that
contain m. Let R,,,; = (U — M) — (Q; — M) for m €

For an instance (U, M, Q, k) of k-SET-INTERSECTION do:
Step 1: Ym € M
let T, ={(U—-M)—(Qi — M) :m € Q;}
Step 2: Run SET-COVER greedy algorithm on
the instance {U — M, Ty, k} for every m € M:
Step 2a: Pick the set R; € T, with
the maximum uncovered elements
Take the union of every R € Ty,
picked in Step 2a (incl. R;)
If the union equals U — M go to Step 3;
else if there are more sets in 7},, go to Step 2a
else repeat for another m € M
Step 3: For any set (U — M) — (Q; — M) in the solution
of set cover, add @Q; in the intersecting set.

Step 2b:

Step 2c:

Figure 1. k-SET-

INTERSECTION.

Polynomial approximation algorithm for

Q;. Given the sets R,,; if we can find k of those that
Rpi1U...UR,, = U — M, then by de Morgan’s Law
it follows that R, 1 N ... N Ry, = 0. Since, Ry, =
(U—-M)—(Q;— M), then R, ; = (Q; — M) and

Rm,lﬂ...ﬂRmyk:(Qi—M)ﬂ...ﬂ(Qk—M):Q) (1)

By construction VYR,, ; € T,,,, m € @;, and thus {m} C
QiN...NQy. From this and (1) it follows that Q;N...NQ
is a non-trivial subset of M.

It is known [15] that SET-COVER greedy algorithm is a
log u-approximation algorithm, where u = |U|. That is, if
k is the optimal solution, then the greedy algorithm will
include at most klogw sets in its solution. As the number
of subsets in the solution of k-SET-INTERSECTION is the
same as the number of subsets in the solution of SET-
COVER, we obtain the following lemma:

Lemma 4.5: The algorithm in Figure 1 is a logu-
approximation algorithm for the k-SET-INTERSECTION
problem, where u = |U|.

If we use the above algorithm to evaluate the predicates
of algorithm SFW, the resulting implementation yields a
logarithmic in the number of servers increase in the number
of second communication rounds. This is a modest price to
pay in exchange for substantial reduction in the computa-
tion overhead of algorithm SFw. In Section VI we present
an empirical evaluation of the approximate algorithm SFw
comparing it to the original algorithm SFw.

V. ALGORITHM CWFR
In this section we explore the possibility of introducing

fast operations in the MWMR setting when servers are
organized as an arbitrary quorum system. We introduce a
new algorithm, called algorithm CWFR, that enables fast
read operations by adopting the general idea of Quorum
Views [9]. The algorithm employs two techniques:

(i) the typical query and propagate approach (two rounds)
for write operations, and
(ii) analysis of Quorum Views [9] for potentially fast
(single round) read operations.
Read operations can be fast in algorithm CWFR even
when the value returned is not yet propagated to a full
quorum. This distinguishes algorithm CWFR from previous

79

approaches [5], [3]. To impose a total ordering on the
written values, algorithm CWFR uses (tag, value) pairs.
A tag is a tuple of the form (7,w) € N x W, where 7 is
the timestamp and w is a writer identifier. Such tags are
compared lexicographically.

A. Quorum Views

We generalize the definition of quorum views from [9]
for use with structured tags:

Definition 5.1: Let process p receive replies from every
server s in some quorum () € Q for a read or write
operation 7. Let a reply from s include a tag tags(w) and
let mazTag = maxsecq(tags(m)). We say that p observes
one of the following quorum views for Q:

e qView(1): Vs € Q : tags(m) = mazxTag,

e View(2):VQ' € Q: Q#Q ANFACQRNQ, st

A+ and Vs € A: tags(n) < maxTag,
e ¢View(3): 3¢’ € Q : tagy (1) < mazTag and Q" €
Qst. Q#AQ NVseQNQ :tags(m) = mazxTag

Restating the above definition, ¢View(1) requires that all
servers in some quorum reply with the same tag. ¢View(3)
reveals that some servers in the quorum contain an older
value, but there exists an intersection where all of its servers
contain the new value. Finally ¢qView(2) is the negation
of the other two views, revealing a quorum where the new
value is neither distributed to the full quorum nor distributed
fully in any of its intersections.

B. Description of CWFR

The original quorum views algorithm [9] relies on the
fact that there is a single writer. If a quorum view is able to
predict the non-completeness of the latest write operation, it
is immediately understood that — by the well-formedness of
the single writer — any previous write operation is already
complete. Multiple writers invalidate such a conclusion:
different values (and tags) may be written concurrently.
Hence, the discovery of a write operation that propagates
some tag does not imply the completion of the write opera-
tions that propagate a smaller tag. Thus a direct adaptation
of the quorum view idea from the SWMR model to the
MWMR model is not possible. Consequently, algorithm
CWFR incorporates an iterative technique around quorum
views that not only predicts the completion status of a write
operation, but also detects the last potentially complete
write operation. Below we provide a description of our
algorithm and present the main idea behind our technique.
The pseudocode of the algorithm appears in Figure 2.
Writers: The write protocol has two rounds. During the
first round the writer discovers the maximum tag among the
servers: it sends read messages to all servers and waits for
replies from all members of some quorum. It then discovers
the maximum tag among the replies and generates a new
tag in which it encloses the incremented timestamp of the
maximum tag, and the writer’s identifier. In the second
round, the writer associates the value to be written with
the new tag, it propagates the pair to some quorum, and
completes the write.

write(val):

init: tag=(0, wid), v=_L, wcounter=0

1: wecounter++

2: send (READ, (tag,v), wcounter) to all servers
3: wait for the servers of a quorum Q to reply

4: /* find maximum tag among the replies */

5: tag = maxseq(s.tag)

6: /* increment the maximum tag and generate a new tag */
7: tag = (tag.ts + 1, wid)

8: v =wal

9: weounter++

: send (WRITE, (tag, v), wcounter) to all servers
: wait for the servers of a quorum Q to reply

. return OK

read():

init: tag=maxzTag=(0,0), v=_, rcounter=0

1: rcounter++

2: send (READ, (tag,v), wcounter) to all servers
3: wait for the servers of a quorum @ to reply

4: while (Q # 0) do

5: (maxTag,v) = maxscq((s.tag, s.v))
6 if (Vs € Q : s.tag = maxzTag) then

7 /* qView(1) */

8 tag = maxTag

9

return tag

end if
11: 1* qView(3) */
12 if3Q" : Q' #QAVs € Q' NQ,s.tag = maxTag then
13: tag = maxTag
14: send (WRITE, (tag,v), wcounter) to all servers
15: wait for the servers of a quorum Q to reply
16: return tag
17: end if
18: 1* qView(2) */
19: ifVQ :Q #QA3s € Q' NQ,s.tag < mazTag then
20: Q=Q—{s:s€QAs.tag=mazTag}
21: endif

22: end while

serve():

init: tag=(0, 0), v=_L, pCounter[]=0

1: upon receipt of (msgType, (t,val), counter) from process p
2: /* check message freshness */

3: if counter > pCounter|p] then

4: if t > tag then

5: (tag,v) = (t,val)

6: endif

7 if msgType = WRITE then

8: send (WRITEACK, (tag,v), pCounter[p]) to p
9: else

10: send (READACK, (tag, v), pCounter[p]) to p
11: end if

12: end if

Figure 2. Pseudocode for Writer, Reader and Server of algorithm CWFR.

Readers: The read protocol is more involved. The reader
sends a read message to all servers and waits for some
quorum to reply. Once a quorum replies, the reader deter-
mines mazT'ag. Then the reader analyzes the distribution
of the tag within the responding quorum () in an attempt to
determine the latest, potentially complete, write operation.
This is accomplished by determining the quorum view con-
ditions. Detecting conditions of ¢View(1) and ¢View(3)
are straightforward. When condition for ¢View(1) is de-
tected, the read completes and the value associated with the
discovered mazTag is returned. In the case of ¢qView(3)
the reader continues to the second round, advertising the
latest tag (maxTag) and its associated value. When a full
quorum replies in the second round, the read returns the
value associated with maxTag.

Analysis of ¢View(2) involves the discovery of the
earliest completed write operation. This is done iteratively
by (locally) removing the servers from () that replied with
the largest tags. After each iteration the reader determines

80

the next largest tag in the remaining server set, and then
re-examines the quorum views in the next iteration. This
process eventually leads to either gView(1) or ¢View(3)
being observed. If ¢View(1) is observed, then the read
completes in a single round by returning the value associ-
ated with the maximum tag among the servers that remain
in Q. If ¢View(3) is observed, then the reader proceeds
to the second round as above, and upon completion it re-
turns the value associated with the maximum tag maxTag
discovered among the original respondents in Q).

Servers: The servers play a passive role. They receive read
or write requests, update their object replica accordingly,
and reply to the process that invoked the operation. Upon
receipt of any message, the server compares its local tag
with the tag included in the message. If the tag of the
message is higher than its local tag, the server adopts the
higher tag along with its corresponding value. Once this is
done the server replies to the invoking process.

Main Idea: We now explain the idea behind our technique.
Observe that under our failure model, any write operation
can expect a response from at least one full quorum.
Moreover a write w distributes its tag tag,, to some quorum,
say @Q;, before completing. Thus, when a read operation
p, s.t. w — p, receives replies from some quorum @),
it observes one of the following tag distributions: (a) if
Q; = Q;, then Vs € Q;,tags = tag., (¢View(1)), or (b)
if Q; # Q;, then Vs € Q; N Qj, tags = tag, (gView(3)).
Hence, if p observes a distribution as in gView(1) then the
write operation potentially completed and received replies
from the same quorum that replied to p. Alternatively, if
only an intersection contains a uniform tag (i.e., the case
of ¢View(3)) then there is a possibility that the write com-
pleted in an intersecting quorum (in this example @);). The
read operation is fast in ¢View(1) since it is determinable
that the write potentially completed. The read proceeds to
the second round in gView(3), since the completion of
the write is indeterminable and it is necessary to ensure
that any subsequent operation observes that tag. If neither
qView(1l) nor gView(3) hold, then ¢View(2) holds, and
it must be the case that the write that yields the maximum
tag is not yet complete. Hence we try to discover the latest
potentially complete write by removing all servers with the
highest tag from @; and repeating the analysis. If at some
iteration, gV iew(1) holds on the remaining tag values, then
a potentially complete write (that was overwritten by greater
tags in the rest of the servers) is discovered and that tag is
returned. If no iteration is interrupted because of gView(1),
then eventually ¢View(3) is observed, in the worst case,
when a single server remains in some intersection of @;.
Since a second round cannot be avoided in this case, we
take the opportunity to propagate the largest tag observed
in @;. At the end of the second round that tag is written
to at least one complete quorum and thus the reader can
safely return the corresponding value.

Theorem 5.2: Algorithm CWFR implements an atomic
MWMR register.

VI. EMPIRICAL RESULTS: SIMULATIONS

We now present experimental evaluations of our algo-
rithms, obtained by using the NS-2 network simulator.
Experimentation Platform: Our test environment consists
of a set of writers, readers, and servers. We use bidirectional
links between the communicating nodes, with 1Mb band-
width, latency of 10ms, and a DropTail queue. To model
asynchrony, the processes send messages after a uniformly
at random delay between 0-0.3 sec. We ran NS2 in Ubuntu,
on a Centrino 1.8GHz processor. The average of 5 samples
per scenario provided the stated operation latencies.

We have evaluated the algorithms with majority quorums.
As discussed in [7], assuming |S| servers out of which
f can crash, we can construct an (@ — 1)-wise quorum
system Q. Each quorum @ of Q has size |Q| = |S| — f.
The processes are not aware of f. The quorum system is
generated a priori and is distributed to each participant. We
model server failures by selecting some quorum of servers
(unknown to the participants) to be correct and allowing
any other server to crash. The positive time parameter cInt
is used to model the failure frequency or reliability of every
server s. We use the positive time parameters rInt = 5sec
and wiInt = 10sec to model operation frequency. Readers
and writers pick a uniformly at random time between
[0...7Int] and [0...wInt], respectively, to invoke their
next read (resp. write) operation.

Algorithm SFW vs. APRX-SFW: First we compare al-
gorithms SFW and APRX-SFW. We examine a specific
scenario where the number of readers is fixed at 40 and
the number of writers is fixed at 20 (other scenarios can
be found in [1]). By assuming a single server failure and
increasing the number of servers in the system, we evaluate
the two algorithms using quorum systems with different
intersection degrees. In particular, we run the scenario using
10, 15, and 25 servers that, with a single failure, yield a
9-wise, 14-wise, and 24-wise quorum system respectively.
Examining the latency of the two algorithms, including both
communication and computation costs, provides evidence
of the heavy computational burden of algorithm SFw.
In particular, we obtained the following numbers for the
average read latency: (i) |S| = 10, SFW RL = 1.72s,
APRX-SFW RL = 1.56s, (ii) |S| = 15, SFw RL = 10.72s,
APRX-SFW RL 1.67s, and (iii) |S| 25, SFw
RL = 45min, APRX-SFW RL = 1.23s. It appears that
the latency of algorithm SFW grows exponentially, whereas
the latency of APRX-SFW can even improve when using
quorum systems with large intersection degree (due to the
larger number of fast reads). The exceedingly large delay
of SFW in the scenario where |S| 25, forced us to
terminate the simulation prior to its completion. The results
presented above were obtained by examining the log files
and taking an average of the time over all the completed
read operations. We then examine the number of two-
round writes. A writer performs two rounds only when the
predicate does not hold. Thus, counting the number of two-
round writes reveals how many times the predicate does not

81

hold for an algorithm. Below we present the number of two
round writes, out of a total 900 writes, that each algorithm
performed in two different scenarios: (i) |S| = 10, SFwW
#2comm = 545, APRX-SFW #2comm = 593, (ii) |S| =
15, SFW #2comm = 428, APRX-SFW #2comm = 592.
According to our theoretical findings, algorithm APRX-
SFW should allow no more than log|S| - RR two-round
reads or log |S| - WR two-round writes in each scenario,
where RR and W R are the number of two-round reads
and writes allowed by the algorithm, respectively. Our
experimental results are within the theoretical upper bound,
illustrating the fact that algorithm APRX-SFW implements
a log |S|-approximation relative to algorithm SFW. These
scenarios demonstrate the performance benefit of using
algorithm APRX-SFW over algorithm SFW.

Algorithm CWFR vs. APRX-SFW: We now proceed to
compare Algorithm APRX-SFW with the new algorithm
CwFR. To examine the impact of computation on the
operation latency, we also compare these algorithms to
algorithm SIMPLE. This is a standard two-round read and
write protocol. Both read and write operations involve a
query phase to discover the maximum tag in the system;
then the write operation increments the maximum tag and
propagates the new tag along with the value to be written to
some quorum, whereas the read operation just propagates
the maximum tag to some quorum. Note that algorithm
SIMPLE requires insignificant computation, and thus the
latency of an operation in this algorithm directly reflects
four communication delays (i.e., two rounds).

To evaluate the efficiency of the algorithms we use
several scenarios. For reasons of space we present only
two scenarios (all scenarios can be found in [1]). The first
uses a quorum system with a small intersection degree and
the second uses a quorum system with a large intersection
degree: (i) |S| = 10, f 2, thus n = 4, and (ii)
|S| = 15, f = 1, thus n = 14. In the scenarios we use
10, 20, 40 and 80 readers, combined with 10, 20, and
40 writers respectively. We observe that in all scenarios
algorithms APRX-SFW and CWFR exhibit better read and
sometimes better write latency than algorithm SIMPLE. This
suggests that the additional computation incurred in these
two algorithms does not exceed the delay associated with a
second communication round. Figures 3 and 4 depict two
specific scenarios that we explain further below.

Scenario 1: In this scenario we consider a system with
|S| = 10 servers where 2 of them may crash, resulting in
a 4-wise quorum system. Using a small intersection degree
none of the predicates used in algorithm APRX-SFW can
be satisfied. Reads may be fast even if the predicate does
not hold. Figure 3 illustrates the run where the number
of writers is fixed to 20 in (a) and (b) and the number
of readers is fixed to 40 in (c). Observe from Figure 3(a)
that algorithm CWFR requires fewer two-round reads than
APRX-SFW. For this reason, in Figure 3(b), we observe that
the average read latency of CWFR is overall lower. Since
the write predicate does not hold when assuming small

%% of Slow Reads vs of Readers: AR nw20.alL fastSSOAPRX rounds.maj10.12.data.2D plot

Read Latency vs f of Readers: RL.nw20.all fastSSOAPRX rounds.maj10.£2.data.2D plot

“%2comm-reads
ReadLatency

+ T + T T e T T T T T T
CWFR -
APRX.SFW - 28 4
%

Wite Latency vs # of Writers: WL.nr40.al. astSSOAPRX rounds.ma10.2.data 2D plot

WiteLatency

#Readers

#Readers

#Wiiters

(a) (b) (c)
Figure 3. 4-wise quorum system (|S = 10, f = 2): (a) Percentage of slow reads, (b) Latency of read operations, and (c) Latency of write operations.
4o low e vs of Readors: A w0l asSSOAPR rounds a1t 20 e Foad Ltoney v #f Foadrs: AL w0 all astSSOAPR rounds a1t 20 pe W Ltoney v of Wrirs: WLnvd i fastSSOAPRX rouns i 151t 20 plt
7 T—— e "
w o e wp
w0 27
26 SIMPLE ——|
70 WFR - 26
P o
2 s 1 5 25
§ w L 5 ol
© 22
LT S
e N [x 21
o " 16 * 2l SIMPLE ——
s
P
o , 1 , , , , 1 , , , :
©) E) w0 E) w 7) h E) © w B w 0 % 0 = F) > % 5 0
Readers #Readers wwrers
(a) (b) (c)
Figure 4. 14-wise quorum system (|S = 15, f = 1): (a) Percentage of slow reads, (b) Latency of read operations, and (c) Latency of write operations.

intersection degree, the three algorithms require all write
operations to perform two rounds. The extra computation
required by algorithms CWFR and APRX-SFW explains
why the write latency of these algorithms is slightly higher
than the write latency of algorithm SIMPLE; see Figure 3(c).

Scenario 2: 1In this scenario we consider a system with
|S| = 15 where a single server may crash. This scenario
is designed to test the performance of the algorithms
when quorum systems with large intersection degree are
used. The scenario yields a 14-wise quorum system and
contains 15 quorums. Figure 4 depicts the results obtained
for a specific run of this scenario where the number of
writers is fixed to 20 in (a) and (b) and the number of
readers is fixed to 40 in (c). Due to the large intersection
degree, algorithm APRX-SFW allows more fast reads than
CWFR (see Figure 4(a)). Consequently, as it can be seen
in Figure 4(b), algorithm APRX-SFW achieves better read
latency than CWFR. Moreover, from Figure 4(c) it can be
observed that APRX-SFW allows some write operations to
be fast and thus, its average write latency is better than in
the other approaches.

It is worth mentioning that from scenarios where the
intersection degree of the deployed quorum system is
of “medium” size (see [1]), algorithms APRX-SFW and
CWFR incur very similar operation latencies. In general,
the performance of algorithm APRX-SFW is affected by
both the number of writers and the intersection degree of
the underlying quorum system; algorithm CWFR exhibited
more stable performance in the scenarios we tested.

VII. CONCLUSIONS

We explored the feasibility of implementing multi-writer
atomic registers that enable fast, single round operations.
We determined that the only such previously known algo-
rithm incorporates a decision problem that we showed to

82

be NP-Complete, making the algorithm not practical. We
presented more practical algorithms, one of which uses a
log-approximation to speed up its computation. Simulation
results illustrate the advantages of our approach. We in-
tend to explore next whether there are specialized quorum
constructions that improve the logarithmic approximation
factor.
REFERENCES

Technical Report of this work,
http://www.cs.ucy.ac.cy/fastMWMR/MWMR-TR.pdf.
H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in
message passing systems. J. of the ACM, 42(1):124-142, 1996.

G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvarts-
man. Reconfigurable distributed storage for dynamic networks. J.
of Parallel and Distributed Computing, 69(1):100-116, 2009.

R. Clifford and A. Popa. Maximum subset intersection. Inf. Process.
Lett., 111:323-325, March 2011.

S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geo-
quorums: Implementing atomic memory in mobile ad hoc networks.
In DISC 2003.

P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fast
can a distributed atomic read be? In PODC 2004, pp. 236-245.

B. Englert, C. Georgiou, P. M. Musial, N. Nicolaou, and A. A.
Shvartsman. On the efficiency of atomic multi-reader, multi-writer
distributed memory. In OPODIS 2009, pp. 240-254.

R. Fan and N. Lynch. Efficient replication of large data objects. In
DISC 2003, pp. 75-91.

C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. On the
robustness of (semi) fast quorum-based implementations of atomic
shared memory. In DISC 2008, pp. 289-304.

C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers. J. of
Parallel and Distributed Computing, 69(1):62-79, 2009.

V. Gramoli, E. Anceaume, and A. Virgillito. SQUARE: scalable
quorum-based atomic memory with local reconfiguration. In SAC
2007, pp. 574-579.

N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub., 1996.
N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic
memory service for dynamic networks. In DISC 2002, pp. 173-190.
N. A. Lynch and A. A. Shvartsman. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In FTCS
1997, pp. 272-281.

V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[10]

[11]

[12
[13]

[14]

[15]

