
ANALYZING THE NUMBER OF SLOW READS FOR
SEMIFAST ATOMIC READ/WRITE REGISTER IMPLEMENTATIONS

Chryssis Georgiou
Department of Computer Science

University of Cyprus, Nicosia, Cyprus
Email: chryssis@cs.ucy.ac.cy

Sotirios Kentros, Nicolas Nicolaou, and Alexander A. Shvartsman
Department of Computer Science and Engineering
University of Connecticut, Storrs, CT 06268, USA

Email: {skentros, nicolas, aas}@engr.uconn.edu

ABSTRACT
Developing fast implementations of atomic read/write reg-
isters in the message passing model is among the funda-
mental problems in distributed computing. Typical imple-
mentations require two communication round trips for read
and write operations. Dutta et al. [4] developed the first
fast single writer, multiple reader (SWMR) atomic memory
implementation, where all read and write operations com-
plete in a single communication round trip. It was shown
that fast implementations are possible only if the number of
readers is constrained with respect to the number of regis-
ter replicas and the number of replica failures. Addressing
this constraint, Georgiou et al. [5] developed a solution for
an arbitrary number of readers at the cost of allowing some
reads to be slow, i.e., taking two round trips. They termed
such implementations semifast.

Once some reads are allowed to be slow, it is inter-
esting to quantify the number of occurrences of slow reads
in executions of semifast implementations. This paper an-
alyzes the implementation [5], yielding high probability
bounds on the number of slow read operations per write
operation. The analysis is performed for the settings with
low and high contention of read and write operations. For
scenarios with low contention it is shown that O(log R)
slow read operations may suffice per write operation. For
scenarios with high contention it is shown that if Ω(log R)
reads occur then the system may reach, with high proba-
bility, a state from which up to R slow reads may be per-
formed. These probabilistic results are further supported
by algorithm simulations.

KEY WORD: atomic memory, message-passing, fault-
tolerance, probabilistic analysis

1 Introduction

Implementing atomic (linearizable) read/write memory in
the message passing asynchronous systems is a challeng-
ing task in distributed computing [1, 2, 3, 7]. Fault-tolerant
distributed implementations of atomic objects use replica-
tion and allow processes to share information with pre-
cise consistency guarantees despite the presence of asyn-
chrony and failures. Following the development of a sin-
gle writer, multiple reader (SWMR) atomic implementa-
tion in [2], where read operations perform two communi-

cation round trips with the second communication round in
essence performing a write, a folklore belief developed that
“atomic reads must write.” However, the work by Dutta et
al. [4] established that if the number of readers is appro-
priately constrained with respect to the number of replicas,
then both read and write operations can be implemented us-
ing a single communication round. Such implementations
are called fast. Seeking to relax the constraint on the num-
ber of readers, Georgiou et al. [5] introduced the notion of
semifast implementations, where some read operations are
allowed to be slow, i.e., involve two communication round
trips. They provided an algorithm for an arbitrary num-
ber of readers, where the readers are grouped into virtual
nodes, with each reader assigned to a unique virtual node.

To compare the communication efficiency of semifast
implementations [5], where some reads are allowed to be
slow, to the efficiency of fast implementations [4], where
all reads are fast, it is interesting to quantify the number of
slow reads that can occur in executions of semifast imple-
mentations. The goal of this work is to evaluate the algo-
rithm in [5] in order to establish analytical and empirical
bounds on the number of slow read operations per write
operation under sensible environmental assumptions.

Background. The seminal work by Attiya et al. [2]
introduced an algorithm that implements atomic SWMR
read/write registers in the asynchronous message-passing
model. The register is replicated at all processors and
value-timestamp pairs are used to impose a partial order
on read and write operations. To perform a write operation,
the writer increments its local timestamp and sends a mes-
sage with the value-timestamp pair to all processors. When
a majority of processors reply, the write completes. The
processor performing a read operation broadcasts a read
request and awaits replies. When a majority replies with
their value-timestamp pairs, the reader detects the highest
timestamp and broadcasts the pair consisting of this times-
tamp and its associated value. The read completes when
the reader receives responses from a majority. Although
the value of the read is established after the first communi-
cation round, skipping the second round may lead to viola-
tions of atomicity when reads are concurrent with a write.

Dutta et al. [4] presented the first implementation of
atomic SWMR registers where all read and write opera-
tions are fast, i.e., involving a single communication round.
Their setting consists of a single writer, R readers, and S

servers (the replica hosts), where any subset of readers, the
writer, and up to f servers may crash. To perform a write
operation, the writer sends messages to all the servers and
waits for S − f servers to reply. When those replies are
received the write operation completes. The read protocol
operates similarly to a write, by sending a read request to
all the servers and waiting for S − f server replies. Once
those replies are received, the reader returns, depending on
its logic, either the value associated with the highest times-
tamp detected or the value associated with the immediately
preceding timestamp. The authors also show that fast im-
plementations are possible only if the number of readers R
is less than S

f −2. Moreover they show that fast implemen-
tations are not possible in the MWMR setting, even in the
case of two writers, two readers, and a single server failure.

To relax the constraint on the number of readers in [4],
Georgiou et al. [5] explored an implementation for arbi-
trary number of readers at the expense of allowing some
operations to be slow. Their investigation led to a semi-
fast implementation of an atomic SWMR read/write regis-
ter that allowed arbitrary number of readers and provided
fast write operations, where a single complete slow (two
communication round) read may be required per write op-
eration. The algorithm guaranteed that every read operation
that returned the same value and succeeded or preceded a
slow read was fast. It did not provide any guarantees how-
ever on the “fastness” of read operations that are concurrent
with the slow read.

Contributions. Our goal is to analyze the performance
of semifast implementations of atomic SWMR read/write
registers with unbounded number of readers and quantify
the number of slow read operations per write operation.
Specifically, we deal with the performance of the algorithm
in [5], focusing on how the number of slow reads depends
on the number of readers R. We assume that R can be
arbitrarily large and it is independent of S, the number of
replica servers, and V , the number of virtual nodes used by
the algorithm. Our contributions are as follows:

1. We analyze the behavior of the algorithm in settings
with low and high contention. Informally, contention
refers to the number of replica owners that receive
messages from a write operation, before any read op-
eration observes the value written by that write (larger
number means lower contention).

(a) For scenarios with low contention we show that
with high probability at most βSV log R slow
reads occur for each write operation, where β is
a constant. Given that R can be arbitrarily large
relative to S and V , this bound can be expressed
as O(log R), when S and V are considered con-
stant with respect to R.

(b) For scenarios with high contention we show that
after Ω(log R) reads, the system can reach, with
high probability, a state where up to R slow read
operations may take place.

2. We compare our probabilistic analysis with simulation
results. Our empirical results confirm that our analy-
sis reasonably characterizes the behavior of the algo-
rithm.

Paper Organization. In Section 2 we present our model
assumptions and definitions. Section 3 presents a brief
description of the implementation presented in [5]. We
present our probabilistic analysis in Section 4 and we com-
pare our analysis with simulation results in Section 5. We
conclude in Section 6.

2 Definitions and Notation

Our system model (as in [5]) is formulated in terms of three
distinct sets of processors: a distinguished writer proces-
sor w, a set of R readers with unique ids from the set
R = {r1, . . . , rR}, and a set of S object replica servers
with unique ids from the set S = {s1, . . . , sS}. Any subset
of readers, the writer, and up to f servers may crash. Pro-
cessor p is faulty in an execution if p crashes; otherwise p
is correct.

A virtual node is an abstract entity that consists of a
group of reader processors. Each virtual node has a unique
id from the set V = {ν1, . . . , νV }, where V < S

f − 2. A
reader ri that is a member of a virtual node νj maintains its
virtual id ν(ri) = νj . Processors that share the same virtual
identifier are called siblings. Note that R is not bounded in
terms of S or V .

We consider interleaving execution semantics, where
an execution consists of an alternating sequence of states
and actions, where each action represents an atomic transi-
tion at a particular processor [6]. A read or write request ac-
tion is called invocation and a response action correspond-
ing to a previous invocation is called a response. An op-
eration is incomplete in an execution if its invocation does
not have a matching response; otherwise the operation is
complete. We assume that the requests of a client are well-
formed meaning that the client does not invoke an operation
before receiving a response from a previously invoked op-
eration. For an execution we say that an operation (read
or write) π1 precedes another operation π2, or π2 succeeds
π1, if the response step for π1 precedes the invocation step
of π2; this is denoted by π1 → π2. Two operations are
concurrent if neither precedes the other.

A processor performs a communication round in the
following way: (a) it sends messages to a subset of proces-
sors, (b) every processor that receives such a message and
does not crash replies without delay and (c) when a pro-
cessor receives enough replies it completes or starts a new
communication round. If a processor invokes an operation
that completes at the end of a single communication round,
the operation is fast. If the operation requires a second
communication round, the operation is slow. A semifast
implementation of an atomic read/write register provides
fast writes and reads, with the exception that under cer-
tain conditions reads are allowed to be slow. The following

definition of semifast implementations uses the reading-
function R(ρ) ([9]) that for a read operation ρ specifies the
unique write operation that wrote the value returned by ρ.

Definition 2.1 ([5]) An implementation I of an atomic ob-
ject is semifast if the following are satisfied:
P1. Every write operation is fast.
P2. Any complete read operation performs one or two com-
munication rounds.
P3. For any execution of I , if ρ1 is a two-round read op-
eration, then any read operation ρ2 with R(ρ1) = R(ρ2),
such that ρ1 → ρ2 or ρ2 → ρ1, must be fast.
P4. There exists an execution of I that contains at least one
write operation ω and at least one read operation ρ1 with
R(ρ1) = ω, such that ρ1 is concurrent with ω and all read
operations ρ with R(ρ) = ω (including ρ1) are fast.

P3 states that if any slow read operation returns a
value written by a certain write, then any other read op-
eration returning the same value and not concurrent with
the slow read operation must be fast. P4 requires the exis-
tence of an execution where all operations are fast and at
least one read operation is concurrent with some write op-
eration. This rules out trivial solutions that are fast in the
absence of read and write concurrency.

3 Semifast Algorithm SF

1: at the writer w
2: procedure initialization:
3: ts← 1, rCounter ← 0
4: procedure write(v)
5: rCounter ← rCounter + 1
6: send(WRITE, ts, rCounter, 0) to all servers
7: wait until rcv(WACK, ts, ∗, rCounter, ∗) from S−f servers
8: ts← ts + 1
9: return(OK)

Figure 1. Writer Pseudocode

We now describe the semifast implementation SF [5]
that supports one writer and arbitrarily many readers. For
self containment of our paper we present the pseudocode
of the algorithm in Figures 1, 2, and 3. We avoid, however,
a complete restatement of the details and proof of correct-
ness of the algorithm which can be found in [5]. The al-
gorithm uses timestamps to impose a partial order on the
read and write operations. For simplicity we refer to op-
erations returning and writing timestamps. At the end of
the algorithm description we briefly explain how values are
associated with timestamps.

Writer Protocol: The writer sends messages to all servers
and awaits S − f replies (recall that f servers may be
faulty). Upon collecting the replies the writer increments
its timestamp and completes the operation.

Server Protocol: Servers store object replicas, the vari-
able postit, and the set seen. The postit variable contains

1: at each reader ri

2: procedure initialization:
3: vid(ri)← (i mod (S

t
− 2) + 1), ts← 0,

4: rCounter← 0, maxTS ← 0, maxPS ← 0
5: procedure read()
6: rCounter ← rCounter + 1
7: ts← maxTS
8: send(READ, ts, rCounter, vid(ri)) to all servers
9: wait until rcv(RACK, ∗, ∗, rCounter, ∗) from S − f servers

10: rcvMsg ← {m|ri received m = (RACK, ∗, ∗, rCounter, ∗)}
11: maxTS ←

Max{ts′|(RACK, ts′, ∗, rCounter, ∗) ∈ rcvMsg}
12: maxTSmsg ← {m|m.ts = maxTS and m ∈ rcvMsg}
13: maxPS ←

Max{postit|(RACK, ∗, ∗, rCounter, postit) ∈ rcvMsg}
14: maxPSmsg ← {m|m.postit = maxPS and m ∈ rcvMsg}
15: if there is α ∈ [1, V + 1] and there is MS ⊆ maxTSmsg s.t.

(|MS| ≥ S − αf) and (| ∩m∈MS m.seen| ≥ α) then
16: if | ∩m∈MS m.seen| = α then
17: send(INFORM, maxTS, rCounter, vid(ri)) to 3f +1 srvs
18: wait until rcv(IACK, ∗, ∗, rCounter, ∗) from 2f +1 servers
19: end if
20: return(maxTS)
21: elseif maxPS = maxTS then
22: if |maxPSmsg| < f + 1 then
23: send(INFORM, maxTS, rCounter, vid(ri)) to 3f +1 srvs
24: wait until rcv(IACK, ∗, ∗, rCounter, ∗) from 2f +1 servers
25: end if
26: return(maxTS)
27: else
28: retutn(maxTS − 1)
29: end if

Figure 2. Reader Pseudocode

1: at each server si

2: procedure initialization:
3: ts← 0, seen← ∅, counter[0...R]← 0, postit← 0
4: procedure serve()
5: upon receive(msgType, ts′, rCounter′, vid) from

q ∈ {w, r1, . . . , rR} and rCounter′ ≥ counter[pid(q)] do
6: if ts′ > ts then
7: ts← ts′; seen← {vid}; /* update local info as needed * /
8: else
9: seen← seen ∪ {vid} /* if no new info record process * /

10: end if
11: counter[pid(q)]← rCounter′

/* pid(q) returns 0 if q = w and i if q = ri * /
12: if msgType =READ
13: send(RACK, ts, seen, rCounter′, postit) to q
14: else if msgType =WRITE
15: send(WACK, ts, seen, rCounter′, postit) to q
16: else if msgType =INFORM
17: if postit < ts′ then
18: postit← ts′
19: end if
20: send(IACK, ∗, ∗, rCounter′, postit) to q
21: end if

Figure 3. Server Pseudocode

the maximum timestamp a server learns, from the second
communication round of a read operation. The set seen
is used to record the virtual ids of processors that inquire
the server’s latest timestamp. Each message received by
a server from a process p ∈ {w} ∪ R includes a mes-
sage type, a timestamp and a virtual id vid. If the mes-
sage received contains a timestamp ts, higher than the local

timestamp, then the server sets its timestamp to ts, and sets
seen = {vid}. Otherwise, the server just adds vid in seen
set. Every server replies to any message with its timestamp,
its seen set, and its postit variable.

Read Protocol: A reader invokes a read operation by send-
ing messages to all servers, then awaiting S − f responses.
Upon receipt of needed responses it determines the max-
imum timestamp maxTS and the maximum postit value
maxPS from the received messages, and it computes the
set maxTSmsg of the messages that contain the discov-
ered maxTS. Then the following key read predicate is
used to decide on the return value:

RP: if ∃α ∈ [1, V + 1] and ∃MS ⊆ maxTSmsg
s.t. (|MS| ≥ S − αf) ∧ (| ∩m∈MS m.seen| ≥ α)

If the predicate is true or if maxPS = maxTS the reader
returns maxTS, and may perform one or two communi-
cation rounds(we further discuss below when a read will
have to perform two communication rounds). Otherwise it
returns maxTS − 1, in one communication round.

This predicate is derived from the observation that for
any two read operations ρ1 and ρ2 that witness the same
maxTS and compute maxTSmsg1 and maxTSmsg2

respectively, the sizes of the sets, |maxTSmsg1| and
|maxTSmsg2| differ by at most f . Assume the following
example that will help to visualize the idea behind the pred-
icate. Let ϕ be an execution fragment that contains a com-
plete write operation ω that propagates a value associated
with maxTS to S − f servers. Let ρ1 discover maxTS in
S−2f server replies, missing f of the servers that replied to
ω. Since ω → ρ1 then ρ1 has to return the value associated
with maxTS to preserve atomicity. Assume now an exe-
cution fragment ϕ′ that contains an incomplete write ω that
propagates the new value with maxTS to S − 2f servers.
Let extend ϕ′ by a read ρ1 from ri. If ρ1 discovers maxTS
in S−2f servers – by receiving replies from all the servers
that received messages from ω – then it cannot distinguish
ϕ from ϕ′ and thus has to return maxTS in ϕ′ as well. Let
ρ2 be a read operation from rj s.t. ρ1 → ρ2. The read ρ2

may discover maxTS in S − 3f replies by missing f of
the servers that replied to ω. Let ri belong in the virtual
node vi and rj belong in the virtual node vj . There are two
cases to consider for vi and vj : (a) either vi
= vj (b) or
vi = vj (ri and rj are siblings). Notice that every server
adds the virtual node of a reader to its seen set before re-
plying for a read operation. Thus all the S − 2f servers
that contained maxTS replied with a seen = {0, vi} to ri

because they added the virtual node of the writer (0) and
the virtual node of ri before replying for ρ1. With similar
reasoning all the S − 3f servers that replied for ρ2 send a
seen = {0, vj, vi} to rj . So if vi
= vj then the predicate
will hold with α = 2 for ri and with α = 3 for rj . Thus
rj will also return maxTS preserving atomicity. If, how-
ever, vi = vj then the predicate will hold for ri but will not
hold for rj and thus rj will return an older value violating
atomicity.

Hence to avoid such situation a read operation ρ is
slow when it returns maxTS and either of the following
cases hold:

SL1. if ρ observes | ∩m∈MS m.seen| = α, or

SL2. if | ∩m∈MS m.seen| < α and maxPS = maxTS
and less than f + 1 messages contained maxPS.

During the second communication round the reader sends
inform messages to 3f + 1 servers and waits for 2f + 1
servers to reply. Once those replies are received, it returns
maxTS and completes.

A slight modification needs to be applied to the al-
gorithm to associate returned timestamps with values. To
do this, the writer attaches two values to the timestamp
in each write operation: (1) the current value to be writ-
ten, and (2) the value written by the immediately preceding
write operation (for the first write this is ⊥).The reader re-
ceives the timestamp with its two attached values. If, as be-
fore, it decides to return maxTS, then it returns the current
value attached to maxTS. If the reader decides to return
maxTS − 1, then it returns the second value (correspond-
ing to the preceding write).

Discussion. Looking at the conditions causing a read oper-
ation to be slow and the recording mechanism on the server
side, we observe that |∩m∈MS m.seen| ≤ |{v1, . . . , vV }∪
{w}| and thus | ∩m∈MS m.seen| ≤ V + 1. We are inter-
ested in obtaining upper bounds for the worst case analysis
of the algorithm and in Section 4 we compute the number
of reads required, so that every server s receives at least
one message from some reader of every virtual node, and
maintains V ≤ |s.seen| ≤ V + 1, with high probability.
This will help us specify (with high probability), the max-
imum number of slow read operations that may occur after
a slow read that observed α < V and before any subse-
quent read observes | ∩m∈MS m.seen| ≥ V > α and thus
is fast. When the slow read observes α ∈ [V, V + 1], the
maximum number of slow reads may reach R, the number
of readers participants in the system. These cases are ex-
plored in more detail in Section 4.3. Lastly, if all virtual
nodes are recorded at the server side, then condition SL2
does not hold. Thus slow reads cannot be introduced be-
cause of SL2 and hence we omit examining that condition
individually.

4 Probabilistic Bounds for the Number of
Slow Reads in SF

For our analysis we assume that for any read operation ρ we
have Pr[ρ invoked by some r ∈ vi] = 1

V . That is, the read
invocations may happen uniformly from the readers of any
virtual node. We also assume that readers are uniformly
distributed within groups. We say that event e happens with
high probability (whp) if Pr[e] = 1−R−c, for R the num-
ber of readers and c > 1 a constant, and we say that event
e happens with negligible probability if Pr[e] = R−c.

We start by examining how the cardinality of set seen
of a specific server is affected by the read operations and
then we investigate the read bounds under executions with
low and high contention. For the rest of the section let
ms(π) denote the message sent from process p, that in-
voked operation π, to server s. Furthermore let ts s(π) de-
note the timestamp that server s includes in the reply to pro-
cess p for operation π and tsω the timestamp propagated by
the write operation ω. Finally let σ.tss and σ.seens be the
local timestamp and the seen set of server s in state σ of an
execution E .

4.1 The set seen and fast read operations

We seek the number of read operations required, for a sin-
gle server to record all virtual nodes in its seen set.

Definition 4.1 Consider an execution of algorithm SF, and
let M be the ordered set of read messages received by
server s in the execution. A message ms(π1) ∈ M is or-
dered before a message ms(π2) ∈ M if server s receives
ms(π1) before ms(π2). Let messages ms(ρ), ms(ρ′) be
the first and last messages in M respectively. We say that
M is a set of consecutive read messages if M includes all
messages received by s after ms(ρ) and before ms(ρ′) are
received by s and tss(ρ) = tss(ρ′).

In other words, set M is consecutive when server s
does not increase its timestamp and thus does not reset its
seen set between messages ms(ρ) and ms(ρ′). Now we
can compute the number of consecutive reads required to
contact server s so that every virtual node v i is included in
the seen set of s.

Lemma 4.1 In any execution of SF, there exists constant
β s.t. if server s receives βV log R consecutive read mes-
sages, then V = {v1, . . . , vV } ⊆ σ.seens whp, where σ is
the state of the system when server s receives the last of the
βV log R messages.

Proof. Recall that we assume that
Pr[ρ invoked by some r ∈ vi] = 1

V . Let k be the
number of reads. From Chernoff Bounds [8] we have

Pr
[
of reads from readers of group v i ≤ (1 − δ)

k

V

]

≤ e
−δ2·k
2·V (1)

where 0 < δ < 1. We compute k, s.t. the probability in
Equation (1) is negligible.

e
−δ2·k
2·V = R−γ ⇒ −δ2 · k

2 · V = −γ · log R ⇒

⇒ k =
2 · γ · V · log R

δ2
(2)

Let δ = 0.5. From Equation (2) we have k = 8·γ ·V ·log R.
We set β = 8 · γ and we have that k = β · V · log R.

If βV log R consecutive reads contact a server s, at least
β·log R

2 reads will be performed by readers in group v i whp,
for any group vi and thus vi ∈ σ.seens, since the seen set
of s has not been reset. �

Notice that the larger the constant β in the above
lemma, the smaller the probability of having a server that
did not receive a read message from a reader from every
virtual node.

Lemma 4.2 If in a state σ of some execution of SF, there
exists set S′ ⊆ S s.t |S′| ≥ 4f and ∀s ∈ S ′ σ.tss =
tsω and σ.seens = {w} ∪ V , where tsω the timestamp of
write operation ω, then any read operation ρ with R(ρ)=ω
invoked after σ is fast.

Proof. From the predicate RP of algorithm SF and the fact
that V < S

f − 2 (thus V ≤ S
f − 3), it follows that if a

reader observes |MS| ≥ S−V f ≥ (V +3)f −V f ≥ 3f ,
then α ≤ V . Assuming that ρ observes |MS| ≥ 3f and
all the servers with messages in MS replied with a seen =
{w} ∪ V then the predicate of SF for ρ holds for:

∣∣∣∣∣
⋂

m∈MS

m.seen

∣∣∣∣∣ = |{w, v1, . . . , vV }| = V + 1 > α.

If a read operation ρ with R(ρ)=ω is invoked after σ , then
we have two cases for the maximum timestamp maxTS
observed by ρ: (a) maxTS = tsω and (b) maxTS ≥
tsω + 1. For case (a), since up to f servers may fail,
ρ observed an |MS| ≥ 3f with

∣∣⋂
m∈MS m.seen

∣∣ =
|{w, v1, . . . , vV }| = V + 1. Thus the predicate holds for
α ≤ V and ρ is fast. For case (b) since R(ρ)=ω from algo-
rithm SF, ρ is fast (see Section 3). �

Note that if less than 4f servers contain seen =
{w} ∪ V , then a read operation ρ may observe |MS| = 3f
or |MS| = 2f . If ρ observes |MS| = 2f messages
with seen = {w} ∪ V , the predicate of SF for ρ holds for
|⋂m∈MS m.seen| = V + 1 = α and ρ is slow.

From Lemma 4.2 it follows that the predicate RP of
algorithm SF naturally yields two separate cases for investi-
gation: (a) 4f servers or more contain the maximum times-
tamp, and (b) less than 4f servers contain the maximum
timestamp. In both cases we can use Lemma 4.1 to bound
the number of read operations needed until seen = {w}∪V
for all the servers with the maximum timestamp. To ob-
tain the worst case scenario we assume that there are O(R)
reads concurrent with the first slow read operation.

We now define formally the execution conditions that
capture the idea behind the aforementioned cases. For an
operation π let inv(π) and res(π) be its invocation and
response events. We say that two operations π, π ′ are suc-
cessive if π and π′ are invoked by the same process p and
p does not invoke any operation π ′′ between res(π) and
inv(π′). Let rcvs(π) be the receipt event of a message
sent for the operation π. Notice that by SF, at least S − f ,
rcvs(π) events appear between an inv(π) and res(π) in

any execution. Since a message may be delayed, then a
rcvs(π) event may succeed res(π). First we define the set
of events that occur between two successive operations in-
voked by a process p.

Definition 4.2 (Idle Set) For any execution E and for any
pair of successive operations π, π′ invoked by a process p,
we define idle(π, π′) to be the set of all events that appear
in E and succeed res(π) and precede inv(π ′).

Given the above definition we now define the con-
tention conditions that affect our analysis. These conditions
characterize cases (a) and (b).

Definition 4.3 (Contention) Let ρ, ρ′ be any pair of suc-
cessive read operations invoked by a reader r. We say that
an execution fragment ϕ has low contention if every set
idle(ρ, ρ′) that contains an inv(ω) event for some write
operation ω, it also contains at least 4f , rcvs(ω) events.
Otherwise we say that ϕ has high contention.

4.2 Slow reads under low contention

We consider the case of low contention where a set of at
least 4f servers received messages from a write operation
ω, before the first slow read operation ρ, with R(ρ)=ω. For
an implementation to be semifast, any read operation ρ ′ that
precedes or succeeds ρ, with R(ρ′)= R(ρ)=ω, is fast. We
now bound the number of slow read operations.

Theorem 4.3 In an execution E of SF, if before the invoca-
tion of the first slow read operation ρ, with R(ρ)=ω, for a
write operation ω, there exists state σ and a set of servers
S′ ⊆ S, s.t. |S ′| ≥ 4f and ∀s ∈ S ′, σ.tss = tsω and
w ∈ σ.seens, then there exists constant β, s.t. whp at most
β · S · V · log R slow reads can occur that return the value
and timestamp of ω.

Proof. For each s ∈ S ′, we examine two cases:

Case 1: After s receives a write message from ω, s receives
a set M of consecutive read messages, s.t. |M | = βV log R
and tss(ρlast) = tsω, where ms(ρlast) is the last message
in M . From Lemma 4.1 any read ρ ′ with message ms(ρ′)
received after ms(ρlast), will observe seen = {w} ∪V for
s if tss(ρ′) = tsω.
Case 2: After s receives a write message from ω, s receives
message ms(π) with ms(π).ts > tsω, before it receives
βV log R read messages. It follows that a write operation
ω′, s.t. tsω′ > tsω has been invoked. Any read ρ ′ that
receives tsω′ , will either return tsω′ − 1 or tsω′ . From
the construction of SF, if ρ′ returns tsω′ − 1, ρ′ will be
fast. Thus if a read ρ′ contacts server s after ms(π) and
R(ρ′) = ω, then ρ′ is fast and tsω = tsω′ − 1 .

From the above cases, we have a total of β · |S ′| · V ·
log R ≤ β · S · V · log R read messages for the servers in
S′. Let Π be the set of the read operations that correspond
to these read messages. Clearly |Π| ≤ β · S · V · log R and
any read operation in Π can be slow.

For any read ρ′ invoked after ρ, s.t. ρ′ /∈ Π we have
the following cases:

Case (i): Read ρ′ receives at least 3f replies with
maxTS = tsω and will observe from Case 1
∩m∈MSm.seen = {w} ∪ V . As discussed in Lemma 4.2
α ≤ V and thus by the predicate of SF, ρ ′ will be fast and
R(ρ′) = ω.
Case (ii): Read ρ′ receives maxTS > tsω. From algo-
rithm SF and the discussion in case 2, if R(ρ′) = ω, then
ρ′ is fast. �

Theorem 4.3 proves that under low contention, a write
can be followed by at most O(log R) slow reads whp (recall
that we are interested in asymptotics with respect to R).

4.3 Slow reads under high contention

Here we deal with the high contention case, where a set
of less than 4f servers receive messages from a write op-
eration ω, before the first slow read operation operation
ρ is invoked, with R(ρ)=ω. We examine the case where
V = S

f −3, which is the maximum number of virtual nodes
allowed by algorithm SF. As we discussed in Section 4.1, in
this case if a reader receives replies from only 2f updated
servers and for these 2f servers seen = {w} ∪ V , we have

a slow read, since S − (V + 1)f = S −
(

S
f − 2

)
f = 2f .

In contrast with the low contention case, we show that in
the high contention case, the system relatively fast reaches
a state where all reads that receive replies from less than 3f
servers will be slow.

In the semifast implementation SF, after a slow read
completes, any subsequent reads (for the same write) will
be fast. Thus any reader can perform at most one slow read
that returns the value and timestamp of ω. This gives a
bound of at most R slow reads per write operation. We next
prove that under high contention, β ·4f ·V · log R reads can
lead the system to a state where all reads concurrent with
the first slow read can be slow if they receive replies from
less than 3f updated servers.

Theorem 4.4 If in an execution E of SF, σ is the last state
in E , before the invocation of the first slow read operation
ρ, and ∃S ′ ⊆ S, with |S ′| < 4f and ∀s ∈ S ′, σ.tss = tsω

and w ∈ σ.seens, and ∀s′ ∈ S \ S′, σ.tss′ < tsω, then
there exists a set M of reads messages, s.t. |M | ≤ β ·
4f · V · log R and any read operation ρ′ invoked after all
messages in M are received by servers in S, will be slow if
maxTS = tsω and |MS| < 3f .

Proof. For any server s ∈ S ′ if β ·V ·log R consecutive read
messages are received by s after σ, where β is taken from
Lemma 4.1, then whp the seen set of s becomes {w} ∪ V
after the last message is received.

If we consider such reads for all servers in S ′, we have
a total of β ·|S ′|·V ·log R < β ·4f ·V ·log R read messages.
After these read messages, the system reaches a state σ ′

where ∀s ∈ S ′. σ′.tss = tsω and σ′.seens = {w}∪V . As

discussed in Section 4.1, any read operation that contacts
less than 3f servers with the maximum timestamp, will be
slow. This is possible, since up to f servers may fail. �

From Theorem 4.4, observe that under high con-
tention an execution relatively fast can reach a state (after
Ω(log R) reads) that could lead to O(R) slow reads.

5 Simulation Results

This section reports performance results obtained by simu-
lating algorithm SF using the NS-2 network simulator and
a testbed similar to that presented in [5]. We compare the
results of our probabilistic analysis with the simulation re-
sults, confirming that our analysis correlates with the simu-
lated scenarios for the number of servers used in the simu-
lation. The simulation designed and performed for this pa-
per focuses on counting the average number of slow reads
per write operation in settings of interest, whereas the sim-
ulation in [5] dealt with the overall percentage of slow reads
throughout the entire execution in different settings.

In this work our setting involves 20 servers and a vari-
able number of readers, ranging between 10 and 80. Al-
gorithm SF uses a number of virtual nodes V such that
V < S

f −2. Thus the number of crashes f cannot be greater
than 5. We introduce up to 5 server crashes that occur at ar-
bitrary times during the execution. We model nodes that are
connected with duplex links at 1 MB bandwidth, a latency
of 10 ms, and a DropTail queue. To model asynchrony the
processors send messages after a random delay between 0
and 0.3 seconds. The contention level is modeled by spec-
ifying positive time intervals rInt and wInt between any
two successive read and write operations respectively. The
intervals are the following:

(a) rInt = 2.3s and wInt = 4.3s

(b) rInt = 4.3s and wInt = 4.3s

(c) rInt = 6.3s and wInt = 4.3s

Figure 4 presents the results obtained by using the in-
tervals of the scenarios (a) and (b) in the simulation. The
plots illustrate the average slow reads per write as a func-
tion of the number of readers and number of server failures.
Examining the plots we can see that under low contention
(i.e., similar to our best case analysis) the number of slow
reads per write for every execution scenario is bounded
by O(log R): in no run the number of slow reads exceeds
log(80) = 6.3. In scenarios with high contention (i.e., sim-
ilar to the worst case analysis) the number of slow reads
exceeds log R but is always bounded under R. In the case
of scenario (c) every write operation is completed before
the invocation of a read operation. Thus the simulation ex-
hibited fast behavior and no read operation was slow (thus
no plot is given). This is a special case of low contention
that trivially conforms to our analysis.

 10
 20

 30
 40

 50
 60

 70
 80 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0

 1

 2

 3

 4

 5

 6

 7

#slowReads

"sim_fix_rint-2.3.data" using 3:4:14

#Readers

#faiures

#slowReads

 10
 20

 30
 40

 50
 60

 70
 80 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

#slowReads

"sim_fix_rint-4.3.data" using 3:4:14

#Readers

#faiures

#slowReads

Figure 4. Average number of slow reads per write under
low (top) and high (bottom) contention settings.

6 Conclusions

We analyzed high probability bounds on the number of
slow read operations for the semifast implementation of
atomic registers presented in [5]. We first examined a
scenario with low read/write operation contention and we
showed that O(log R) slow read operations may take place,
whp, between two consecutive write operations. Then we
studied a high contention scenario and we showed that af-
ter Ω(log R) reads, the system may reach whp a state where
up to R slow read operations may take place. Our analy-
sis is based on a single probabilistic assumption, namely
that reads are performed uniformly at random from pro-
cessors in all virtual groups. The probabilistic bounds are
supported and illustrated by simulation results.

Acknowledgments. This work is supported in part by the
the NSF Grants 0311368 and 0702670. The work of the
first author is supported in part by research funds from the
University of Cyprus. The work of the second author is
supported in part by the State Scholarships Foundation of
Greece.

References

[1] M. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic
atomic storage without consensus. In Proceedings of the
twenty-eight annual ACM symposium on Principles of dis-
tributed computing (PODC09), pages 17–25, 2009.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message passing systems. Journal of the ACM,
42(1):124–142, 1996.

[3] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. Reli-
able Distributed Storage. IEEE Computer, 2008.

[4] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How
fast can a distributed atomic read be? In Proceedings of the
23rd ACM symposium on Principles of Distributed Comput-
ing (PODC), pages 236–245, 2004.

[5] C. Georgiou, N. Nicolaou, and A. A. Shvartsman. Fault-
tolerant semifast implementations for atomic read/write reg-
isters. Journal of Parallel and Distributed Computing,
69(1):62–79, 2009. (Preliminary version in SPAA’06).

[6] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[7] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. In Proceed-
ings of 16th International Symposium on Distributed Com-
puting (DISC), pages 173–190, 2002.

[8] M. Mitzenmacher and E. Upfal. Probability and Computing.
Cambridge University Press, 2005.

[9] P. Vitanyi and B. Awerbuch. Atomic shared register access by
asynchronous hardware. In Proceedings of 27th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
233–243, 1986.

