
On the Efficiency of Atomic Multi-Reader,
Multi-Writer Distributed Memory

Burkhard Englert1, Chryssis Georgiou2, Peter M. Musial3 ?, Nicolas Nicolaou4,
and Alexander A. Shvartsman4 ??

1 Comp. Engineering and Comp. Science, California State University Long Beach
2 Department of Computer Science, University of Cyprus

3 Department of Computer Science, University of Puerto Rico
4 Computer Science and Engineering, University of Connecticut

Abstract. This paper considers quorum-replicated, multi-writer, multi-
reader (MWMR) implementations of survivable atomic registers in a dis-
tributed message-passing system with processors prone to failures. Pre-
vious implementations in such settings invariably required two rounds of
communication between readers/writers and replica owners. Hence the
question arises whether it is possible to have single round read and/or
write operations in this setting.
We thus devise an algorithm, called Sfw, that exploits a new technique
called server side ordering (SSO), which –unlike previous approaches–
places partial responsibility for the ordering of write operations on the
replica owners (the servers). With SSO, fast write operations are intro-
duced for the very first time in the MWMR setting. We prove that
our algorithm preserves atomicity in all permissible executions. While
algorithm SFW shows that in principle fast writes are possible, we also
show that under certain conditions the MWMR model imposes inher-
ent limitations on any quorum-based fast write implementation of a safe
read/write register and potentially even restricts the number of writer
participants in the system. In this case our algorithm achieves near op-
timal efficiency.

1 Introduction

Data survivability is essential in distributed systems. Replication is broadly used
to sustain critical data in networked settings prone to failures, and a variety of
distributed storage systems have been designed to replicate and maintain data
residing at distinct network locations or servers. Together with replication come
the problems of maintaining consistency among the replicas and of efficiency of
access to data, all in the presence of failures.

A long string of research has been addressing the consistency challenge by de-
vising efficient, wait-free, atomic (linearizable [22]) read/write sharable objects in
? Part of this work was performed while the author was affiliated with: Comp. Sci.

Dept., Naval Postgraduate School, USA.
?? Work supported in part by the NSF awards 0702670, 0121277, and 0311368.

message-passing systems (e.g., [1–3, 6, 8, 15, 16, 21, 24, 27]). An atomic read/write
object, or register [23], provides the semantics of a sequentially accessed single
object. The underlying implementations replicate the object at several failure-
prone servers and allow concurrent reading and writing by failure-prone clients.
The efficiency of read or write operations is measured in terms of the number of
communication rounds between clients and servers.

Prior Work. In the SWMR model, Attiya et al. [3] achieve consistency by ex-
ploiting the intersecting sets of majorities in combination with 〈timestamp, value〉
pairs, comprised of a logical clock and the associated replica value. A write oper-
ation increments the writer’s local timestamp and delivers the new timestamp-
value pair to a majority of servers, taking one round. A read operation ob-
tains timestamp-value pairs from some majority, then propagates the pair cor-
responding to the highest timestamp to some majority of servers, thus taking
two rounds.Avoiding the second communication round may lead to violations of
atomicity when reads are concurrent with a write.

The majority-based approach in [3] is readily generalized to quorum-based
approaches (e.g., [27, 9, 24, 10, 19]). In this context, a quorum system [17, 30, 12,
29, 28] is a collection of subsets of server identifiers with pairwise non-empty
intersections. The work of [10] shows that the read operations must write to as
many replica servers as the maximum number of failures allowed. A dynamic
atomic memory implementation using reconfigurable quorums is given in [24]
(with several practical refinements in [18, 13, 14, 5]), where the sets of servers
can arbitrarily change over time as processes join and leave the system. When
the set of servers is not being reconfigured, the read and write protocols involve
two communication rounds. Retargeting this work to ad-hoc mobile networks,
Dolev et al. [7] formulated the GeoQuorums approach. There (and in [5]), some
reads involve a single communication round when it is confirmed that the cor-
responding write operation has completed.

Starting from [3] a common folklore belief developed that “atomic reads must
write”. Dutta et al. [8] present the first fast atomic SWMR implementation where
all operations take a single communication round. They show that fast behavior
is achievable only when the number of reader processes R is inferior to S

t − 2,
where S is the number of servers, t of whom may crash. They also showed that
fast implementations in the MWMR model are impossible in the presence of a
single server failure. Georgiou et al. [16] introduced the notion of virtual nodes
that enables an unbounded number of readers. They define the notion of semifast
implementations were only a single read operation per write needs to be “slow”
(take two rounds). Their algorithm requires that the number of virtual nodes V
is inferior to S

t −2; this does not prevent multiple readers as long as at least one
virtual node exists. They also show that semifast MWMR implementations are
impossible.

Other works, e.g., [1, 20, 21, 15], pursue bounds on the efficiency of distributed
storage in a variety of organizational and failure models. For example, [20, 1],
explore conditions under which two round operations are required by safe and
regular SWMR registers.

Recently quorum-based approaches were further explored in the context of
efficient atomic registers [21, 15]. Guerraoui and Vukolić [21] defined the notion
of Refined Quorum Systems (RQS), where quorums are classified in three cat-
egories, according to their intersection size with other quorums. The authors
characterize these properties and develop an efficient Byzantine-resilient SWMR
atomic object implementation and a solution to the consensus problem. In syn-
chronous failure-free runs their implementation is fast. Georgiou et al. [15] speci-
fied the properties that a general quorum system must possess in order to achieve
single round operations in the presence of crashes and asynchrony. They showed
that fast and semifast quorum-based SWMR implementations are possible iff a
common intersection exists among all quorums, hence a single point of failure ex-
ists in such solutions (i.e., any server in the common intersection), making such
implementations not robust. To trade efficiency for improved fault-tolerance,
weak-semifast implementations are introduced in [15] that require at least one
single slow read per write operation, and where all writes are fast. In addition,
they present a client-side prediction tool called Quorum Views that enables fast
read operations in general quorum-based implementations even under read/write
concurrency. Simulation results demonstrated the effectiveness of this approach,
showing that a small fraction of read operations need to be slow under realis-
tic scenarios. A question that naturally follows is whether it is possible to have
weak-semifast atomic MWMR register implementations.

Contributions. Intrigued by the above developments this work aims to answer
the following question: Under what conditions may one obtain efficient atomic
read/write register implementations in the MWMR model? To this end, we in-
corporate a new technique that enables single communication round, i.e., fast,
write and read operations in that model. Our contributions are as follows.

1. To enable fast write operations we introduce a new technique called Server
Side Ordering (SSO) that assigns to the server processes the responsibil-
ity of maintaining and incrementing logical timestamps, that are used by
both readers and writers and helps to ensure atomicity. Previous algorithms,
placed this responsibility on the writer’s side. (In the presence of asynchrony
and failures, SSO alone does not suffice to guarantee atomicity: using SSO
by itself may result in the generation of non unique timestamps for each
write operation.)

2. We developed a quorum-based implementation for atomic MWMR registers,
called Sfw, that (a) employs the SSO technique by having the servers assign
logical timestamps to writes. and (b) ensures uniqueness of timestamps by
combining them with each writer’s local write ordering. This hybrid approach
guarantees uniqueness of tags among the read and write participants for
every written value and allows the writers and readers to reason about the
state of the system. To the best of our knowledge, this is the first MWMR
atomic register implementation that provides the possibility of fast reads
and writes.

3. Lastly, we develop a framework for reasoning about impossibility and lower
bounds for MWMR implementations. In an n-wise quorum system any n

quorums have a common non-empty intersection. We call two operations
consecutive if they are complete, not concurrent, and originate at two dis-
tinct processes. Two operations are quorum shifting if they are consecutive
and the two originating processes receive replies from two distinct quorums
during these operations. We prove lower bounds on the number of consecu-
tive, quorum shifting fast write operations that an execution of a safe register
implementation may contain. We show that a safe register implementation
is impossible in an n-wise quorum system, where not all quorums have a
common intersection, if any execution contains more than n−1 consecutive,
quorum shifting single round write operations. This ultimately implies that
in an implementation with only fast writes there cannot be more than n− 1
writers. Algorithm Sfw is nearly optimal since it approaches this bound as
it yields executions with up to n/2 consecutive fast write operations, while
maintaining atomicity.

Document Structure. In Section 2 we present our model and definitions. The
algorithm, Sfw, is presented in Section 3. The inherent limitations of MWMR
model and the conditions under which it is possible to obtain fast write oper-
ations, are presented in Section 4. Because of space limitations, omitted proofs
can be found in the full version of the manuscript [4].

2 Model and Definitions

We consider the asynchronous message-passing model. There are three distinct
finite sets of processors: a set of readers R, a set of writers W, and a set of S
servers. The identifiers of all processors are unique and comparable. Communica-
tion among the processors is accomplished via reliable communication channels.
Servers are arranged into intersecting sets, or quorums, that together form a
quorum system Q. For a set of quorums A ⊆ Q we denote the intersection of the
quorums in A by IA =

⋂
Q∈AQ. We define specializations of quorum systems

based on the number of quorums that together have a non-empty intersection.

Definition 1. A quorum system Q is called an n-wise quorum system if for
any A ⊆ Q, s.t. |A| = n we have IA 6= ∅ holds. We call n the intersection
degree of Q.

In a common quorum system any two quorums intersect, and so any quorum
system is a 2-wise (pairwise) quorum system. At the other extreme, a |Q|-wise
quorum system has a common intersection among all quorums. From the defi-
nition it follows that an n-wise quorum system is also a k-wise quorum system,
for 2 ≤ k ≤ n. We will organize the servers into n-wise quorum systems known
to all the participants as needed.

Algorithms presented in this work are specified in terms of I/O automata [26,
25], where an algorithm A is a composition of automata Ai, each assigned to some
process i. Each Ai is defined in terms of a set of states states(Ai) that includes
the initial state σ0, a signature sig(Ai) that specifies input, output, and internal

actions (external signature consists of only input and output actions), and tran-
sitions, that for each action ν gives the triple 〈σ, ν, σ′〉 defining the transition
of Ai from state σ to state σ′. Such a triple is also called a step. An execution
fragment φ of Ai is a finite or an infinite sequence σ0, ν1, σ1, ν2, . . . , νr, σr, . . .
of alternating states and actions, such that every σk, νk+1, σk+1 is a step of Ai.
If an execution fragment begins with an initial state of Ai then it is called an
execution. We say that an execution fragment φ′ of Ai, extends a finite execution
fragment φ of Ai if the first state of φ′ is the last state of φ. The concatenation of
φ and φ′ is the result of the extension of φ by φ′ where the duplicate occurrence
of the last state of φ is eliminated, yielding an execution fragment of Ai.

A process i crashes in an execution φ if it contains a step 〈σk, faili, σk+1〉
as the last step of Ai. A process i is faulty in an execution φ if i crashes in φ;
otherwise i is correct. A quorum Q ∈ Q is non-faulty if ∀i ∈ Q, i is correct;
otherwise Q is faulty. We assume that at least one quorum in Q is non-faulty in
any execution.

Atomicity. We aim to implement atomic read/write memory, where each object
is replicated at servers. Each object has a unique name, x from some set X, and
object values v come from some set Vx; initially each x is set to a distinguished
value v0 (∈ Vx). Reader p requests a read operation ρ on an object x using
action readx,p. Similarly a write operation is requested using action write(∗)x,p
at writer p. The steps corresponding to such actions are called invocation steps.
An operation terminates with the corresponding read-ack(∗)x,p or write-ackx,p
action; these steps are called response steps. An operation π is incomplete in an
execution when the invocation step of π does not have the associated response
step; otherwise we say that π is complete. We assume that requests made by read
and write processes are well-formed: a process does not request a new operation
until it receives the response for a previously invoked operation.

In an execution, we say that an operation (read or write) π1 precedes another
operation π2, or π2 succeeds π1, if the response step for π1 precedes in real
time the invocation step of π2; this is denoted by π1 → π2. Two operations are
concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined
in terms of the atomicity and termination properties. Assuming the failure model
discussed earlier, the termination property requires that any operation invoked
by a correct process eventually completes. Atomicity is defined as follows [25].
For any execution of a memory service, if all the read and the write operations
that are invoked complete, then the read and write operations can be partially
ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and
responses, that is, there do not exist operations π1 and π2, such that π1

completes before π2 starts, yet π2 ≺ π1.
P2. All write operations are totally ordered and every read operation is ordered

with respect to all the writes.

P3. Every read operation ordered after any writes returns the value of the last
write preceding it in the partial order, and any read operation ordered before
all writes returns the initial value of the object.

For the rest of the paper we assume a single register memory system. By compos-
ing multiple single register implementations, one may obtain a complete atomic
memory [25]. Thus, we omit further mention of object names.

Efficiency and Fastness. We measure the efficiency of an atomic register imple-
mentation in terms of communication round-trips (or simply rounds). A round
is defined as follows [8, 16, 15]:

Definition 2. Process p performs a communication round during operation π if
all of the following hold:

1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies

without delay.
3. when process p receives enough replies it terminates the round (either

completing π or starting new round).

Operation π is fast [8] if it completes after its first communication round;
an implementation is fast if in each execution all operations are fast. Semifast
implementations as defined in [16] allow some read operations to perform two
communication rounds. Briefly, an implementation is semifast if the following
properties are satisfied: (a) writes are fast, (b) reads complete in one or two
rounds, (c) only a single complete read operation is slow (two round) per write
operation, and (d) there exists an execution that contains at least one write and
one read operation and all operations are fast. Finally, weak-semifast implemen-
tations [15] satisfy properties (a), (b), and (d), but eliminate the property (c),
allowing multiple slow read operations per write. As shown in [8, 16] no MWMR
implementation of atomic memory can be fast or semifast. So we focus our at-
tention on implementations where both reads and writes maybe slow. We use
quorum systems and tags to maintain, and impose an ordering on, the values
written to the register replicas. We say that a quorum Q ∈ Q, replies to a process
p for an operation π during a round, if ∀s ∈ Q, s receives messages during the
round and replies to these messages, and p receives all of the replies.

Given that any subset of readers or writers may crash, the termination of an
operation cannot depend on the progress of any other operation. Furthermore we
guarantee termination only if servers’ replies within a round of some operation
do not depend on receipt of any message sent by other processes. Thus we can
construct executions where only the messages from the invoking processes to the
servers, and from the servers to the invoking processes are delivered. Lastly, to
guarantee termination under the assumed failure model, no operation can wait
for more than a singe quorum to reply within the processing of a single round.

3 SSO-based Algorithm

In this section we present algorithm Sfw that utilizes a technique, called SSO, to
introduce fast read and write operations. In traditional MWMR atomic register
implementations, the writer is solely responsible for incrementing the tag that
imposes the ordering on the values of the register. With the new technique, and
our hybrid approach, this task is now also assigned to the servers, hence the
name Server Side Ordering (SSO).

At a first glance, SSO appears to be an intuitive and straightforward ap-
proach: servers are responsible to increment the timestamp associated with their
local replica whenever they receive a write request. Yet, this technique proved to
be extremely challenging. Traditionally, two phase write operations were query-
ing the register replicas for the latest timestamp, then they were incrementing
that timestamp and finally they were assigning the new timestamp to the value
to be written. Such methodology established that each individual writer was
responsible to decide a single and unique timestamp to be assigned to a writ-
ten value. In contrary, the new technique promises to redeem the writer for the
query phase by moving the association of the written value to a timestamp (and
thus its ordering) to the replica owners (servers). This however introduces new
complexity to the problem since multiple and different timestamps may now
be assigned to the same write request (and thus the same written value). Since
timestamps are used to order the write operations, then multiple timestamps
for a single write imply the appearance of the same operation in different points
in the execution timeline. Hence the great challenge is to provide clients with
enough information so that they decide a unique ordering for each written value
to avoid violation of atomicity. For this purpose we combine the server generated
timestamps with writer generated operation counters.

Algorithm Sfw involves two predicates. One for the write protocol and one
for the read protocol. Both protocols evaluate the distribution of a tag within
the quorum that replies to a write/read operation respectively.

The algorithm, depicted in Figures 1,2 and 3, uses 〈tag, value〉 pairs to impose
ordering on the values written to the register. In contrast with the traditional
approach where the tag is a two field tuple, this algorithm requires the tag to
be a triple. In particular the tag is of the form 〈ts, wid, wc〉 ∈ N × W × N,
where the fields ts and wid are used as in common tags and represent the times-
tamp and writer identifier respectively. Field wc represents the write operation
counter and facilitates the ability to distinguish between write operations. Ini-
tially the tag is set to 〈0,min(W), 0〉 in every process. In contrast to ts, wc is
incremented by the writer before invokes a write operation and it denotes the
sequence number of that write. Recall that by our key technique, the tags (and
particularly the timestamps in the tags) are incremented by the server processes.
Thus if a tag was a tuple of the form 〈ts, wid〉, then two server processes si and
sj may associate two different tags 〈tsi, w〉 and 〈tsj , w〉 to a single write opera-
tion. Any operation however that witness such tags cannot distinguish whether
the tags refer to a single or different write operations from w. By introducing

1: at each writer w
2: procedure initialization:
3: tag ← 〈0, wid, 0〉, wc← 0, wid← writer id, rCounter ← 0
4: procedure write(v)
5: wc← wc+ 1
6: send (W, tag, wc, rCounter) to all servers
7: wait until receive (WACK, inprogress, confirmed, rCounter) from some quorum Q ∈ Q
8: rcvM ← {〈s,m〉 : m = (WACK, inprogress, confirmed, rCounter)∧ s sent m ∧ s ∈ Q}
9: T = {〈ts, wid, wc〉 : 〈ts, wid, wc〉 ∈ m.inprogress ∧ 〈s,m〉 ∈ rcvM} /* find unique tags */
10: if ∃τ,MS,A : τ ∈ T ∧ MS = {s : 〈s,m〉 ∈ rcvM ∧ τ ∈ m.inprogress} ∧

A ⊆ Q s.t. 0 ≤ |A| ≤ n
2 − 1 ∧ IA∪{Q} ⊆MS then

11: tag = τ
12: if |A| =≥ max(0, n

2 − 2) then

13: rCounter ← rCounter + 1
14: send (RP, tag, tag.wc, rCounter) to all servers
15: wait until receive (RPACK,inprogress, confirmed, rCounter) from some quorum Q ∈ Q
16: end if
17: else
18: tag = max〈ts,wid,wc〉(T); rCounter ← rCounter + 1

19: send (RP, tag, tag.wc, rCounter) to all servers
20: wait until receive (RPACK,inprogress, confirmed, rCounter) from some quorum Q ∈ Q
21: end if
22: return(OK)
23:

Fig. 1. Pseudocode for Writer protocol.

1: at each server s
2: procedure initialization:
3: tag ← 〈0, 0, 0〉, inprogress← {}, confirmed← 〈0, 0, 0〉, counter[0...|R|+ |W|]← 0
4: procedure serve()
5: upon rcv(msgT, tag′, wc′, rCounter′) from q ∈ W ∪R and rCounter′ ≥ counter[pid(q)] do
6: if tag < tag′ then
7: 〈tag.ts, tag.wid, tag.wc〉 = 〈tag′.ts, tag′.wid, tag′.wc〉
8: end if
9: if msgT = W then
10: 〈tag.ts, tag.wid, tag.wc〉 = 〈tag.ts+ 1, tag′.wid, wc′〉 /* tag′.wid = pid(q) */
11: inprogress = (inprogress−{τ : τ ∈ inprogress∧τ.wid = pid(q)})∪〈tag.ts, pid(q), tag.wc〉
12: end if
13: if confirmed < tag′ then
14: confirmed← tag′

15: end if
16: counter[pid(q)]← rCounter′

17: send (ack, inprogress, confirmed, counter[pid(q)])
18:

Fig. 2. Pseudocode for Server protocol.

the new term the tags will become 〈tsi, w, wc〉 and 〈tsj , w, wc〉, and thus any
operation establishes that the same write operation was assigned two different
timestamps. The triples can be compared alphanumerically. In particular we say
that tag1 > tag2 if tag1.ts > tag2.ts, or tag1.ts = tag2.ts ∧ tag1.wid > tag2.wid,
or tag1.ts = tag2.ts ∧ tag1.wid = tag2.wid ∧ tag1.wc > tag2.wc.

Server. The server maintains the register replica and acts depending on the
message it receives. The local state of a server process s, is defined by three local
variables: (1) the tags variable which is the local tag stored in the server, (2)
the confirmeds variable which stores the largest tag known by s that has been

1: at each reader r
2: procedure initialization:
3: tag ← 〈0, 0, 0〉, rCounter ← 0
4: procedure read()
5: rCounter ← rCounter + 1
6: send (R, tag, tag.wc, rCounter) to all servers
7: wait until receive (RACK, inprogress, confirmed, rCounter) from some quorum Q ∈ Q
8: rcvM ← {〈s,m〉 : m = (RACK, inprogress, confirmed, rCounter) ∧ s sent m ∧ s ∈ Q}
9: maxC = maxm∈rcvM (m.confirmed) /* find the maximum confirmed tag */
10: inP = {〈ts, wid, wc〉 : 〈ts, wid, wc〉 ∈

⋃
〈s,m〉∈rcvM m.inprogress}

11: if ∃τ,MS,B : (τ ∈ inP ∧ τ > maxC)∧ MS = {s : 〈s,m〉 ∈ rcvM ∧ τ ∈ m.inprogress} ∧
B ⊆ Q s.t. 0 ≤ |B| ≤ n

2 − 2 ∧ IB∪{Q} ⊆MS then

12: tag ← τ
13: if |B| =≥ max(0, n

2 − 2) then

14: rCounter ← rCounter + 1
15: send (RP, tag, tag.wc, rCounter) to all servers
16: wait until receive (RPACK,inprogress, confirmed, rCounter) from some quorum Q ∈ Q
17: end if
18: else
19: tag ← maxC; MC ← {s : (〈s,m〉 ∈ rcvM) ∧ (m.confirmed = maxC)}
20: if @C : C ⊆ Q ∧ |C| ≤ m− 2 ∧ IC∪Q ⊆MC then
21: rCounter ← rCounter + 1
22: send (RP, tag, tag.wc, rCounter) to all servers
23: wait until receive (RPACK,inprogress, confirmed, rCounter) from some quorum Q ∈ Q
24: end if
25: end if
26: return(tag)

Fig. 3. Pseudocode for Reader protocol.

returned by some reader or writer process and, (3) the inprogresss set which
includes all the latest tags assigned by s to write requests. Each server s waits
to receive a read or write message from operation initiated at some process p.
Where this message contains: (a) the type of the message msgType, (b) the last
tag returned by p (msgtag), (c) the value to be written if p invokes a write
operation or the latest value returned by p if p invokes a read operation, (d) a
counter msgwc that specifies the sequence number of this operation if p invokes
a write or is equal to msgtag .wc if p invokes a read, and (e) a counter to help
the server distinguish between new and stale messages from p. Upon receipt of
any type of message, s updates its local and confirmed tags if they are smaller
than the tag enclosed in the received message. In particular if msgtag > tags
(resp. msgtag > confirmeds) then s assigns tags = msgtag (resp. confirmeds =
msgtag). In addition to the above updates, if s receives a write message from p,
then s generates a new tag newt = 〈tags.ts+ 1, p,msgwc〉, by incrementing the
timestamp included in its local timestamp by 1 and assigning the new timestamp
to the write operation from p. Note that the new tag generated is greater than
both tags and msgtag . The server then pairs the new tag to the value included
in the write message and changes its local tag to tags = newt. Then s adds newt
in the inprogress set ,and removes any tag maintained previously in that set for
any write operation from p. Once it completes its local update, s acknowledges
every message received by sending its inprogresss set and confirmeds variable to
the requesting process.

Writer. To uniquely identify all write operations, a writer w maintains a local
variable wc that is incremented each time w invokes a write operation. Essentially
that variable counts the number of write operations performed by w and every
such write can be identified by the tuple 〈w,wc〉, by any process in the system.
To perform a write operation ω = 〈w,wc〉, w sends messages to all of the servers
and waits for a quorum of these, Q, to reply. Once enough replies arrive (each
server’s inprogress set and confirmed variable), w collects all of the tags assigned
to ω by each server in Q. Then it applies a predicate on the collected tags. In few
words the predicate is used to checks if any of the collected tags appear in some
intersection of Q with at most n

2−1 (see proof sketch below why this is sufficient)
other quorums, where n the intersection degree of the deployed quorum system.
If there exists such a tag τ then the writer adopts τ as the tag of the value it
tried to write; otherwise the writer adopts the maximum among the collected
tags in the replied quorum. The writer proceeds in a second communication
round to propagate the tag assigned to the written values if: (a) the predicate
holds but the tag is only propagated in an intersection of Q with more than n

2 −2
other quorums, or (b) the predicate does not hold. In any other case the write
operation is fast and completes in a single communication round. More formally
the writer predicate is the following, where |A| is rounded down to the nearest
integer:

Writer predicate for a write ω (PW): ∃ τ,A,MS where: τ ∈ {〈., ω〉 :
〈., ω〉 ∈ inprogresss(ω) ∧ s ∈ Q}, A ⊆ Q, 0 ≤ |A| ≤ n

2 − 1, and MS =
{s : s ∈ Q ∧ τ ∈ inprogresss(ω)}, s.t. either |A| 6= 0 and IA ∩Q ⊆ MS or
|A| = 0 and Q = MS.

Reader. The main difference between reader and writer protocols is that the
reader has to examine each tag assigned to all of the write operations contained
in inprogress sets of the servers that replied. (In contrast, writer examines only
the tags assigned only to its own write operation.)

The reader proceeds by sending messages to all the servers and waits for
some quorum of these to reply. Soon as enough replies arrive, it computes the
maximum confirmed tag maxConf , and populates the set inP with all tags from
inprgoress set reported by each of the replying servers. Then the reader chooses
the largest tag maxT found in inP and checks if: (a) maxConf ≥ maxT , or (b)
whether maxT satisfies a reader predicate (defined below). If neither condition
is valid, then maxT tag is removed from inP and maxT is assigned the next
largest tag in inP , then the two checks are repeated. If inP becomes empty,
then maxConf is returned along with its associated value. If (a) holds, then
some tag that has already been returned by some process is higher than any
remaining tag in inP . In this case reader returns maxConf and its assigned
value. If (b) holds, then reader returns the tag and the associated value that
satisfies its predicate. The reader is requires to ensure that the tag is propagated
in an intersection between the replied quorum and at most n

2 −2 other quorums,
where n the intersection degree of the quorum system. A read operation is slow
and performs a second communication round if: (1) the predicate holds but the

tag is propagated in an intersection between Q and exactly n
2 −2 other quorums,

or (2) the reader decides to return maxConf , but this was received from no
complete intersection or an intersection between Q and n − 1 other quorums.
The tag and the associated value that will be returned by the read operation are
propagated to some quorum of servers during the second communication round.
More formally the reader predicate is, where |B| is rounded down to the nearest
integer:

Reader predicate for a read ρ (PR): ∃ τ,B,MS, where: max(τ) ∈⋃
s∈Qi

inprogresss(ρ), B ⊆ Q, 0 ≤ |B| ≤ n
2 −2, and MS = {s : s ∈ Qi ∧ τ ∈

inprogresss(ρ)}, s.t. either |B| 6= 0 and IB ∩ Qi ⊆ MS or |B| = 0 and
Qi = MS.

Theorem 1. Algorithm Sfw implements a MWMR atomic read/write register.

Proof (Sketch). The key challenge is to show that every reader and writer process
decide on a single unique tag for each write operation, despite the fact that
servers may assign different tags to that same write operation. To this end, we
first show that in an n-wise quorum system, if some process p obtains replies
from the servers of some quorum, then p may witness only a single tag per write
operation to be distributed in a k-wise intersection, for k < n+1

2 .
Writer’s perspective: Based on the above observation, we show that only a

single (unique) tag may satisfy the write predicate (PW). Observe that if there
is a tag τ that satisfies PW, then it follows that τ is distributed in an intersection
of at most n

2 quorums (i.e. n2 -wise intersection, including the replying quorum);
otherwise, if no tag satisfies PW then the write operation is associated with the
unique maximum tag received by the writer.

Reader’s perspective: The goal is to show that if a read ρ returns a tag τ for
a write ω, then τ was also the tag assigned to ω by the writer that invoked ω.
Observe that a read operation returns a tag τ for a write ω in two cases: (a) τ
satisfied the reader predicate PR, or (b) τ was equal to the max confirmed tag.
In the first case the predicate ensures that τ was distributed in an intersection
of at most n

2 − 1 quorums (including the replying quorum). Thus the writer
should have observed the tag in at least an n

2 -wise intersection, and hence τ
would satisfy the writer’s predicate as well. Furthermore, τ should be the only
tag that satisfies the two predicates since it is distributed in an intersection that
consists of less than n+1

2 quorums. If the reader returns τ because of case (b)
then it follows that τ was confirmed by either a reader that was about to return
τ because it satisfied its predicate, or by the writer that decided to associate τ
with its write operation ω. Either way this was a unique tag and thus returning
the confirmed tag maintains its uniqueness.

Using the proof of uniqueness of a tag assigned to a write operation, we
proceed to show that the atomic properties are satisfied. In particular we show
the following: (1) the monotonicity of the tag in all participants, (2) that if a
write operation proceeds a read operation then the read returns a tag greatest
or equal to the one associated to the write operation, (3) If a write ω1 → ω2

then ω2 is associated with a higher tag than the tag associated to ω1, and (4)

If there are two read operation s.t. ρ1 → ρ2 then ρ2 decides and returns a value
associated with a higher or equal tag than the one returned by ρ1.

4 Write Optimality

We now investigate the conditions under which it is possible for an execution
of a MWMR register implementation to contain only fast write operations. In
particular we show that by exploiting an n-wise quorum system, it is possible
to have executions with only fast write operations iff a certain number of “con-
secutive” write operations are contained in the execution. In extend, we show
that this result imposes bounds on the number of writer participants in the sys-
tem. We conclude this section by exploring the relation of our findings to fast
implementations like [8]. We argue that our results generalize the characteristics
of such implementations. In that respect, direct application of our results on the
model of [8] yield the same bounds presented in that paper. For space limitations
proofs appear in the full version of the paper [4].

We consider all operations that alter the tag value at some set of servers to
be write operations. In an execution, an operation π invoked by process p is said
to contact a subset of servers G ⊆ S, denoted by contp(G, π), if for every server
s ∈ G: (a) s receives the messages sent by p within π, (b) s replies to p, and
(c) p receives the reply from s. If contp(G, π) occurs and additionally no other
server (i.e., s /∈ G) receives any message from p within π then we say that π
strictly contacts G, and is denoted by scntp(G, π). Next we give two important
definitions.
Definition 3. Two operations π1, π2 are consecutive in an execution if: (i)
they are invoked from processes p1 and p2, s.t. p1 6= p2, (ii) they are complete,
and (iii) π1 → π2 or π2 → π1 (they are not concurrent).

In lieu to the above definition, a safe register constitutes the weakest con-
sistency guarantee in the chain, and is defined [23] as property S1: Any read
operation that is not concurrent to any write operation returns the value written
by the last preceding write operation.
Definition 4. A set of operations Π in an execution is called quorum shifting
if ∀π1, π2 ∈ Π strictly contact quorums Q′, Q′′ ∈ Q respectively, then π1 and π2

are consecutive and Q′ 6= Q′′.
Given the two definitions above, we now show the ensuing lemma.

Lemma 1. A read operation that succeeds a set of fast write operations Π, may
retrieve the latest written value only from the servers that received messages from
all the write operations in Π.

Given an n-wise quorum system we show that if there are n − 1 consecu-
tive, quorum shifting fast write operations in an execution then safe register
implementations are possible.
Lemma 2. Any execution fragment φ of a safe register implementation that uses
an n-wise quorum system Q s.t. 2 ≤ n < |Q|, contains at most n−1 consecutive,
quorum shifting, fast write operations for any number of writers W ≥ 2.

We now show that safe register implementations are not possible if we extend
any execution that contains n − 1 consecutive writes, with one more consecu-
tive, quorum shifting write operation. It suffices to assume a very basic system
consisting of two writers w1 and w2, and one reader r. Thus our results hold for
at least two writers.
Theorem 2. No execution fragment φ of a safe register implementation that
exploits an n-wise quorum system Q s.t. 2 ≤ n < |Q|, can contain more than
n−1 consecutive, quorum shifting, fast write operations for any number of writers
W ≥ 2.

Remark 1. By close investigation of the predicates of Algorithm Sfw, one can
see that Sfw approaches the bound of Theorem 2, as it produces executions that
contain up to n/2 fast consecutive write operations, while maintaining atomic
consistency. Obtaining a tighter upper bound is subject of future work.

Note that Theorem 2 is not valid in the following two cases: (i) Only a
single writer exists in the system, (ii) There is a common intersection among
all the quorums in the quorum system. In the first case the sole writer imposes
the ordering on the tags introduced in the system and in the second case that
ordering is imposed by the common servers that need to be contacted by every
operation. It follows by the same theorem that it is impossible to have more than
n − 1 consecutive fast write operations then it is also prohibited to have more
than n − 1 concurrent fast write operations. Since no communication between
the writers is assumed and achieving agreement in an asynchronous distributed
system with a single failure (on the set of concurrent writes) is impossible, by
[11], then we can obtain the following corollary:

Corollary 1. No MWMR implementation of a safe register, that exploits an n-
wise quorum system Q s.t. 2 ≤ n < |Q| and contains only fast writes is possible,
if |W| > n− 1.

Moreover assuming that readers also may alter the value of the register, and
thus write, then the following theorem holds:

Theorem 3. No MWMR implementation of a safe register, that exploits an n-
wise quorum system Q s.t. 2 ≤ n < |Q| and contains only fast operations is
possible, if |W ∪R| > n− 1.

Recall that [8] proved the impossibility of implementations where both writes
and reads are fast in the MWMR model, while Theorem 3 complements that
result by presenting the exact participation conditions under which such imple-
mentations could have been possible. They also showed that in the case of a
single writer (i.e. |W| = 1), a bound |R| < |S|

f − 2 is imposed on the number
of readers, where f is the total number of allowed server failures. The authors
assumed that f ≤ |S|/2, and they adopted the technique of communicating with
|S| − f servers for each operation. This technique however depicts a quorum
system where every member has a size of |S| − f . The following lemma presents
the intersection degree of such a system.

Lemma 3. The intersection degree of a quorum system Q where ∀Qi ∈ Q,
|Qi| = |S| − f is equal to |S|f − 1.

Note that by Lemma 3 and Theorem 3, the system in [8] could only accom-
modate:

|W ∪R| ≤ (
|S|
f
− 1)− 1⇒ 1 + |R| ≤ |S|

f
− 2⇒ |R| ≤ |S|

f
− 3

and thus their bound follows. This leads us to the following remark.
Remark 2. Fast implementations, such as the one presented in [8], follow our
proved restrictions on the number of participants in the service.

References

1. Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk
paxos: Optimal resilience with Byzantine shared memory. Distributed Computing,
18(5):387–408, 2006. Preliminary version appeared in PODC 2004.

2. Marcos Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic
atomic storage without consensus. In Proceedings of the twenty-eight annual ACM
symposium on Principles of distributed computing (PODC09), pages 17–25, 2009.

3. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing
systems. Journal of the ACM, 42(1):124–142, 1996.

4. E. Burkhard, C. Georgiou, P. Musial, N. Nicolaou, and A. A. Shvartsman. On
the efficiency of atomic multi-reader, multi-writer distributed memory, 2009.
http://www.cse.uconn.edu/ ncn03001/pubs/TRs/EGMNS09TR.pdf.

5. Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M. Musial, and Alex A.
Shvartsman. Reconfigurable distributed storage for dynamic networks. J. Parallel
Distrib. Comput., 69(1):100–116, 2009.

6. Gregory Chockler, Idit Keidar, Rachid Guerraoui, and Marko Vukolic. Reliable
distributed storage. IEEE Computer, 2008.

7. S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. GeoQuorums: Im-
plementing atomic memory in mobile ad hoc networks. Distributed Computing,
18(2):125–155, 2005.

8. Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How
fast can a distributed atomic read be? In Proceedings of the 23rd ACM symposium
on Principles of Distributed Computing (PODC), pages 236–245, 2004.

9. Burkhard Englert and Alexander A. Shvartsman. Graceful quorum reconfiguration
in a robust emulation of shared memory. In Proceedings of International Conference
on Distributed Computing Systems (ICDCS), pages 454–463, 2000.

10. Rui Fan and Nancy Lynch. Efficient replication of large data objects. In Proceeding
of the 17th International Symposium on Distributed Computing (DISC), pages 75–
91, 2003.

11. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

12. Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed
system. Journal of the ACM, 32(4):841–860, 1985.

13. Chryssis Georgiou, Peter M. Musial, and Alex A. Shvartsman. Long-lived RAMBO:
Trading knowledge for communication. Theoretical Computer Science, 383(1):59–
85, 2007.

14. Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman. Developing
a consistent domain-oriented distributed object service. IEEE Transactions of
Parallel and Distributed Systems, to appear, 2009. Preliminary version appeared
in NCA 2005.

15. Chryssis Georgiou, Nicolas Nicolaou, and Alexander A. Shvartsman. On the ro-
bustness of (semi)fast quorum-based implementations of atomic shared memory.
In Proceedings of the 22nd International Symposium on Distributed Computing
(DISC), pages 289–304, 2008.

16. Chryssis Georgiou, Nicolas Nicolaou, and Alexander A. Shvartsman. Fault-tolerant
semifast implementations for atomic read/write registers. Journal of Parallel and
Distributed Computing, 69(1):62–79, 2009. Preliminary version appeared in SPAA
2006.

17. David K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th
ACM Symposium on Operating Systems Principles (SOSP), pages 150–162, 1979.

18. S. Gilbert, N. Lynch, and A.A. Shvartsman. RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In Proceedings of International Conference
on Dependable Systems and Networks (DSN), pages 259–268, 2003.

19. Vincent Gramoli, Emmanuelle Anceaume, and Antonino Virgillito. SQUARE:
scalable quorum-based atomic memory with local reconfiguration. In Proceedings
of the 2007 ACM symposium on Applied computing (SAC), pages 574–579, 2007.

20. Rachid Guerraoui and Marko Vukolić. How fast can a very robust read be? In
Proceedings of the 25th ACM symposium on Principles of Distributed Computing
(PODC), pages 248–257, 2006.

21. Rachid Guerraoui and Marko Vukolić. Refined quorum systems. In Proceedings of
the 26th ACM Symposium on Principles of Distributed Computing (PODC), pages
119–128, 2007.

22. Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

23. Leslie Lamport. On interprocess communication, parts I and II. Distributed Com-
puting, 1(2):77–101, 1986.

24. N. Lynch and A.A. Shvartsman. RAMBO: A reconfigurable atomic memory ser-
vice for dynamic networks. In Proceedings of 16th International Symposium on
Distributed Computing (DISC), pages 173–190, 2002.

25. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
26. Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI-

Quarterly, pages 219–246, 1989.
27. Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared mem-

ory using dynamic quorum-acknowledged broadcasts. In Proceedings of Symposium
on Fault-Tolerant Computing, pages 272–281, 1997.

28. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Com-
puting, 11:203–213, 1998.

29. D. Peleg and A. Wool. Crumbling walls: A class of high availability quorum sys-
tems. In Proceedings of 14th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 120–129, 1995.

30. Robert H. Thomas. A majority consensus approach to concurrency control for
multiple copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979.

