
Cake-Cutting is Not a Piece of Cake

Malik Magdon-Ismail, Costas Busch, and Mukkai S. Krishnamoorthy

Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180

{magdon, buschc, moorthy}@cs.rpi.edu

Abstract. Fair cake-cutting is the division of a cake or resource among
N users so that each user is content. Users may value a given piece of
cake differently, and information about how a user values different parts
of the cake can only be obtained by requesting users to “cut” pieces of
the cake into specified ratios. One of the most interesting open questions
is to determine the minimum number of cuts required to divide the cake
fairly. It is known that O(N log N) cuts suffices, however, it is not known
whether one can do better.
We show that sorting can be reduced to cake-cutting: any algorithm that
performs fair cake-division can sort. For a general class of cake-cutting
algorithms, which we call linearly-labeled, we obtain an Ω(N log N) lower
bound on their computational complexity. All the known cake-cutting
algorithms fit into this general class, which leads us to conjecture that
every cake-cutting algorithm is linearly-labeled. If in addition, the number
of comparisons per cut is bounded (comparison-bounded algorithms), then
we obtain an Ω(N log N) lower bound on the number of cuts. All known
algorithms are comparison-bounded.
We also study variations of envy-free cake-division, where each user feels
that they have more cake than every other user. We construct utility
functions for which any algorithm (including continuous algorithms) re-
quires Ω(N2) cuts to produce such divisions. These are the the first
known general lower bounds for envy-free algorithms. Finally, we study
another general class of algorithms called phased algorithms, for which
we show that even if one is to simply guarantee each user a piece of cake
with positive value, then Ω(N log N) cuts are needed in the worst case.
Many of the existing cake-cutting algorithms are phased.

1 Introduction

Property sharing problems, such as chore division, inheritance allocation, and
room selection, have been extensively studied in economics and game-theory [1,
5, 7, 9, 11]. Property sharing problems arise often in everyday computing when
different users compete for the same resources. Typical examples of such prob-
lems are: job scheduling; sharing the CPU time of a multiprocessor machine;
sharing the bandwidth of a network connection; etc. The resource to be shared
can be viewed as a cake, and the problem of sharing such a resource is called

cake-cutting or cake-division. In this work, we study fair cake-division; we are
interested in quantifying how hard a computational problem this is.

In the original formulation of the cake-division problem, introduced in the
1940’s by Steinhaus [15], N users wish to share a cake in such a way that each
user gets a portion of the cake that she is content with (a number of definitions of
content can be considered, and we will discuss these more formally later). Users
may value a given piece of the cake differently. For example, some users may
prefer the part of the cake with the chocolate topping, and others may prefer
the part without the topping. Suppose there are five users, and lets consider the
situation from the first user’s point of view. The result of a cake-division is that
every user gets a portion of the cake, in particular user 1 gets a portion. User 1
will certainly not be content if the portion that she gets is worth (in her opinion)
less than one fifth the value (in her opinion) of the entire cake. So in order to
make user 1 content, we must give her a portion that she considers to be worth
at least one fifth the value of the cake, and similarly for the other users. If we
succeed in finding such a division for which all the users are content, we say that
it is a fair cake-division.

More formally, we represent the cake as an interval I = [0, 1]. A piece of the
cake corresponds to some sub-interval of this interval, and a portion of cake can
be viewed as a collection of pieces. The user only knows how to value pieces as
specified by her utility function, and has no knowledge about the utility func-
tions of the other users. The cake-division process (an assignment of portions to
users) is to be effected by a superuser S who initially has no knowledge about the
utility functions of the users. We point out that this may appear to diverge from
the accepted mentality in the field, where protocols are viewed as self-enforcing
– players are advised as to how they should cut, and are guaranteed that if they
cut according to the advice, then the result will be equitable to them. The way
such algorithms usually proceed is that the players make cuts, and somehow
based on these cuts, portions are assigned to the players. Some computing body
needs to do this assignment, and perform the necessary calculations so that the
resulting assignment is guaranteed to be equitable to all the players (provided
that they followed the advice). It is exactly this computing body that we en-
vision as the superuser, because we would ultimately like to quantify all the
computation that takes place in the cake division process. In order to construct
an appropriate division, the superuser may request users to cut pieces into ra-
tios that the superuser may specify. Based on the information learned from a
number of such cuts, the superuser must now make an appropriate assignment
of portions, such that each user is content. A simple example will illustrate the
process. Suppose that two users wish to share the cake. The superuser can ask
one of the users to cut the entire cake into two equal parts. The superuser now
asks the other user to evaluate the two resulting parts. The second user is then
assigned the part that she had higher value for, and the first user gets the re-
maining part. This well known division scheme, sometimes termed “I cut, you
choose”, clearly leaves both users believing they have at least half the cake, and
it is thus a successful fair division algorithm. From this example we see that one

cut suffices to perform fair division for two users. An interesting question to ask
is: what is the minimum number of cuts required to perform a fair division when
there are N users.

The cake-division problem has been extensively studied in the literature [4,
6, 8, 12–14,16, 17]. From a computational point of view, we want to minimize the
number of cuts needed, since this leads to a smaller number of computational
steps performed by the algorithm. Most of the algorithms proposed in the litera-
ture require O(N2) cuts for N users (see for example Algorithm A, Section 2.3),
while the best known cake-cutting algorithm, which is based on a divide-and-
conquer procedure, uses O(N log N) cuts (see for example Algorithm B, Section
2.3). More examples can be found in [4, 14]. It is not known whether one can
do better than O(N log N). In fact, it is conjectured that there is no algorithm
that uses o(N log N) cuts in the worst case. The problem of determining what
the minimum number of cuts required to guarantee a fair cake-division seems to
be a very hard one. We quote from Robertson and Webb [14, Chapter 2.7]:

“The problem of determining in general the fewest number of cuts re-
quired for fair division seems to be a very hard one. . . . We have lost bets
before, but if we were asked to gaze into the crystal ball, we would place
our money against finding a substantial improvement on the N log N
bound.”

Of course, a well known continuous protocol that uses N − 1 cuts is the moving
knife algorithm (see Section 2.3). Certainly N−1 cuts cannot be beaten, however,
such continuous algorithms are excluded from our present discussion. Our results
apply only to discrete protocols except when explicitly stated otherwise.

Our main result is that sorting can be reduced to cake-cutting: any fair
cake-cutting algorithm can be converted to an equivalent one that can sort an
arbitrary sequence of distinct positive integers. Further, this new algorithm uses
no more cuts (for any set of N users) than the original one did. Therefore, cake-
cutting should be at least as hard as sorting. The heart of this reduction lies
in a mechanism for labeling the pieces of the cake. Continuing, we define the
class of linearly-labeled cake-cutting algorithms as those for which the extra cost
of labeling is linear in the number of cuts. Essentially, the converted algorithm
is as efficient as the original one. For the class of linearly-labeled algorithms, we
obtain an Ω(N log N) lower bound on their computational complexity. To our
knowledge, all the known fair cake-cutting algorithms fit into this general class,
which leads us to conjecture that every fair cake-cutting algorithm is linearly-

labeled, a conjecture that we have not yet settled. From the practical point of
view, the computational power of the superuser can be a limitation, and so we
introduce the class of algorithms that allow the super user a budget, in terms
of computation, for every cut that is made. Thus, the computation that the
superuser performs can only grow linearly with the number of cuts performed.
Such algorithms we term comparison-bounded. All the known algorithms are
comparison-bounded. If in addition to being linearly-labeled, the algorithm is also
comparison-bounded, then we obtain an Ω(N log N) lower bound on the number
of cuts required in the worst case. Thus the conjecture of Robertson and Webb

is true within the class of linearly-labeled & comparison-bounded algorithms. To
our knowledge, this class includes all the known algorithms, which makes it
a very interesting and natural class of cake-cutting algorithms. These are the
first “hardness” results for a general class of cake-cutting algorithms that are
applicable to a general number of users.

We also provide lower bounds for some types of envy-free cake-division. A
cake-division is envy-free if each user believes she has at least as large a portion
(in her opinion) as every other user, i.e., no user is envious of another user. The
two person fair division scheme presented earlier is also an envy-free division
scheme. Other envy-free algorithms for more users can be found in [3, 4, 8, 11,
14]. It is known that for any set of utility functions there are envy-free solutions
[14]. However, there are only a few envy-free algorithms known in the literature
for N users [14]. Remarkably, all these algorithms are unbounded, in the sense
that there exist utility functions for which the number of cuts is finite, but
arbitrarily large. Again, no lower bounds on the number cuts required for envy-
free division exist. We give the first such lower bounds for two variations of the
envy-free problem, and our bounds are applicable to both discrete and continuous
algorithms. A division is strong envy-free, if each user believes she has more cake
than the other users, i.e., each user believes the other users will be envious of
her. We show that Ω(N2) cuts are required in the worst case to guarantee a
strong envy-free division when it exists. A division is super envy-free, if every
user believes that every other user has at most a fair share of the cake (see
for example [2, 14]. We show that Ω(N2) cuts are required in the worst case
to guarantee super envy-free division when it exists. These lower bounds give a
first explanation of why the problem of envy-free cake-division is harder than
fair cake-division for general N .

The last class of cake-cutting algorithms that we consider are called phased
algorithms. In phased algorithms, the execution of the algorithm is partitioned
into phases. At each phase all the “active” users make a cut. At the end of a phase
users may be assigned portions, in which case they become “inactive” for the
remainder of the algorithm. Many known cake-cutting algorithms are phased. We
show that there are utility functions for which any phased cake-cutting algorithm
requires Ω(N log N) cuts to guarantee every user a portion they believe to be of
positive value (a much weaker condition than fair). For such algorithms, assigning
positive portions alone is hard, so requiring the portions to also be fair or envy-
free can only make the problem harder. In particular, Algorithm B (see Section
2.3), a well known divide and conquer algorithm is phased, and obtains a fair
division using O(N log N) cuts. Therefore this algorithm is optimal among the
class of phased algorithms even if we compare to algorithms that merely assign
positive value portions. The issue of determining the maximum value that can
be guaranteed to every user with K cuts has been studied in the literature [14,
Chapter 9]. We have that for phased algorithms, this maximum value is zero for
K = o(N log N).

The outline of the remainder of the paper is as follows. In the next section, we
present the formal definitions of the cake-division model that we use, and what

constitutes a cake-cutting algorithm, followed by some example algorithms. Next,
we present the lower bounds. In Section 3 we introduce phased algorithms and
give lower bounds for the number of cuts needed. Section 4 discusses labeled
algorithms and the connection to sorting. In Section 5 we give the lower bounds
for envy-free division, and finally, we make some concluding remarks in Section
6. Due to space constraints, we refer to the accompanying technical report [10]
for most of the proofs.

2 Preliminaries

2.1 Cake-Division

We denote the cake as the interval I = [0, 1]. A piece of the cake is any interval
P = [l, r], 0 ≤ l ≤ r ≤ 1, where l is the left end point and r the right end point
of P . The width of P is r − l, and we take the width of the empty set ∅ to be
zero. P1 = [l1, r1] and P2 = [l2, r2] are separated if the width of P1 ∩ P2 is 0,
otherwise we say that P1 and P2 overlap. P1 contains P2 if P2 ⊆ P1. If P1 and
P2 are separated, then we say that P1 is left of P2 if l1 < l2. The concatenation
of the M > 1 pieces {[l, s1], [s1, s2], [s2, s3], . . . , [sM−1, r]} is the piece [l, r].

A portion is a non-empty set of separated pieces W = {P1, P2, . . . , Pk}, k ≥ 1.
Note that a portion may consist of pieces which are not adjacent (i.e. a portion
might be a collection of “crumbs” from different parts of the cake). Two portions
W1 and W2 are separated if every piece in W1 is separated from every piece in
W2. An N -partition of the cake is a collection of separated portions W1, . . . ,WN

whose union is the entire cake I.
Suppose that the N users u1, . . . , uN wish to share the cake. Each user ui

has a utility function Fi(x), which determines how user ui values the piece [0, x],
where 0 ≤ x ≤ 1. Each user ui knows only its own utility function Fi(x), and
has no information regarding the utility functions of other users. The functions
Fi(x) are monotonically non-decreasing with Fi(0) = 0 and Fi(1) = 1, for every
user ui. We require that the value of a portion is the sum of the values of the
individual pieces in that portion?. Thus, the value of piece [l, r] to user ui is
Fi([l, r]) = Fi(r) − Fi(l), and for any portion W = {P1, P2, . . . Pk}, Fi(W) =
∑k

i=1 Fi(Pi).
The goal of cake-division is to partition the entire cake I into N separated

portions, assigning each user to a portion. Formally, a cake-division is an N -
partition W1, . . . ,WN of cake I, with an assignment of portion Wi to user ui, for
all 1 ≤ i ≤ N . Two cake-divisions W1, . . . ,WN and W ′

1, . . . ,W
′
N are equivalent

if
⋃

Pi∈Wj
Pi =

⋃
Pi∈W′

j
Pi for all j, i.e., every user gets the same part of cake in

both divisions (but perhaps divided into different pieces).
The cake-division is fair or proportional if Fi(Wi) ≥ 1/N , for all 1 ≤ i ≤ N ,

i.e., each user ui gets what she considers to be at least 1/N of the cake according
to her own utility function Fi. We obtain the following interesting variations of

? This is a commonly made technical assumption. Practically, there could be situations
where a pound of crumbs is not equivalent to a pound of cake.

fair cake-division, if, in addition to fair, we impose further restrictions or fairness
constraints on the relationship between the assigned portions:

Envy-free: Fi(Wi) ≥ Fi(Wj) for all i, j; strong envy-free if Fi(Wi) > Fi(Wj)
for all i 6= j.

Super envy-free: Fi(Wj) ≤ 1/n for all i 6= j; strong super envy-free if
Fi(Wi) < 1/n for all i 6= j.

These definitions are standard and found in [14].

2.2 Cake-Cutting Algorithms

We now move on to defining a cake-cutting protocol/algorithm. Imagine the
existence of some administrator or superuser S who is responsible for the cake-
division. The superuser S has limited computing power, namely she can perform
basic operations such as comparisons, additions and multiplications. We assume
that each such basic operation requires one time step.

Superuser S can ask the users to cut pieces of the cake in order to get
information regarding their utility functions. A cut is composed of the following
steps: superuser S specifies to user ui a piece [l, r] and a ratio R with 0 ≤ R ≤ 1;
the user then returns the point C in [l, r] such that Fi([l, C])/Fi([l, r]) = R.
Thus, a cut can be represented by the four-tuple 〈ui; [l, r]; R; C〉. We call C the
position of the cut. It is possible that a cut could yield multiple cut positions,
i.e. when some region of the cake evaluates to zero; in such a case we require
that the cut position returned is the left-most. In cake-cutting algorithms, the
endpoints of the piece to be cut must be either 0, 1, or cut positions that have
been produced by earlier cuts. So for example, the first cut has to be of the
form 〈ui1 ; [0, 1]; R1; C1〉. The second cut could then be made on [0, 1], [0, C1] or
[C1, 1]. From now every piece will be of this form. We assume that a user can
construct a cut in constant time??. A cake-cutting algorithm (implemented by
the superuser S) is a sequence of cuts that S constructs in order to output the
desired cake-division.

Definition 1 (Cake-Cutting Algorithm).

Input: The N utility functions, F1(x), . . . , FN (x) for the users u1, . . . , uN .
Output: A cake-division satisfying the necessary fairness constraint.
Computation: The algorithm is a sequence of steps, t = 1 . . .K. At every step t,

the superuser requests a user uit
to perform a cut on a piece [lt, rt] with ratio

Rt: 〈uit
; [lt, rt]; Rt; Ct〉. In determining what cut to make, the superuser may

use her limited computing power and the information contained in all previ-
ous cuts. A single cut conveys to the super user an amount of information
that the superuser would otherwise need to obtain using some comparisons.

?? From the computational point of view, this may be a strong assumption, for example
dividing a piece by an irrational ratio is a non-trivial computational task, however
it is a standard assumption made in the literature, and so we continue with the
tradition.

These comparisons need to also be taken into account in the computational
complexity of the algorithm.

We say that this algorithm uses K cuts. K can depend on N and the utility
functions Fi. A correct cake-division must take into account the utility functions
of all the users, however, the superuser does not know these utility functions. The
superuser implicitly infers the necessary information about each user’s utility
function from the cuts made. The history of all the cuts represents the entire
knowledge that S has regarding the utility functions of the users. By a suitable
choice of cuts, S then outputs a correct cake-division. An algorithm is named
according to the fairness constraint the cake-division must satisfy. For example,
if the output is fair (envy-free) then the algorithm is called a fair (envy-free)
cake-cutting algorithm.

A cut as we have defined it is equivalent to a constant number of comparisons.
A number of additional requirements can be placed on the model for cake-cutting
given above. For example, when a cut is made, a common assumption in the
literature is that every user evaluates the resulting two pieces for the superuser.
Computationally, this assumes that utility function evaluation is a negligible cost
operation. For the most part, our lower bounds do not require such additional
assumptions. In our discussion we will make clear what further assumptions we
make when necessary.

2.3 Particular Algorithms

We briefly present some well known cake-cutting algorithms. More details can
be found in [14]. Algorithms A and B are both fair cake-cutting algorithms.

In algorithm A, all the users cut at 1/N of the whole cake. The user who cut
the smallest piece is given that piece, and the remaining users recursively divide
the remainder of the cake fairly. The value of the remainder of the cake to each
of the remaining users is at least 1 − 1/N , and so the resulting division is fair.
This algorithm requires 1

2
N(N + 1) − 1 cuts.

In algorithm B, for simplicity assume that there are 2M users (although the
algorithm is general). All the users cut the cake at 1/2. The users who made
the smallest N/2 cuts recursively divide the left “half” of the cake up to and
including the median cut, and the users who cut to the right of the median cut
recursively divide the right “half” of the cake. Since all the left users value the
left part of the cake at ≥ 1/2 and all the right users value the right part of the
cake at ≥ 1/2, the algorithm produces a fair division. This algorithm requires
Nd log2 N e − 2d log

2
N e + 1 cuts.

A perfectly legitimate cake-cutting algorithm that does not fit within this
framework is the moving knife fair division algorithm. The superuser moves a
knife continuously from the left end of the cake to the right. The first user
(without loss of generality u1) who is happy with the piece to the left of the
current position of the knife yells “cut” and is subsequently given that piece.
User u1 is happy with that piece, and the remaining users were happy to give up
that piece. Thus the remaining users must be happy with a fair division of the

remaining of the cake. The process is then repeated with the remaining cake and
the remaining N − 1 users. This algorithm makes N − 1 cuts which cannot be
improved upon, since at least N − 1 cuts need to be made to generate N pieces.
However, this algorithm does not fit within the framework we have described, and
is an example of a continuous algorithm: there is no way to simulate the moving
knife with any sequence of discrete cuts. Further, each cut in this algorithm is
not equivalent to a constant number of comparisons, for example the first cut
conveys the information in Ω(N) comparisons. Hence, such an algorithm is not
of much interest from the computational point of view. The types of algorithms
that our framework admits are usually termed finite or discrete algorithms. More
details, including algorithms for envy-free can be found in [14].

3 A Lower Bound for Phased Algorithms

We consider a general class of cake-cutting algorithms, that we call “phased”.
We find a lower bound on the number of cuts required by phased algorithms that
guarantee every user a positive valued portion. Phased cake-cutting algorithms
have the following properties.

– The steps of the algorithm are divided into phases.
– In each phase, every active user cuts a piece, the endpoints of which are

defined using cuts made during previous phases only. In the first phase, each
user cuts the whole cake.

– Once a user is assigned a portion, that user becomes inactive for the remain-
der of the algorithm. (Assigned portions are not considered for the remainder
of the algorithm.)

Many cake-cutting algorithms fit into the class of phased algorithms. Typical
examples are Algorithms A and B. There also exist algorithms that are not
phased, for example Steinhaus’ original algorithm.

We say that two algorithms are equivalent if they use the same number of
cuts for any set of utility functions, and produce equivalent cake-divisions. A
piece is solid if it does not contain any cut positions – a non-solid piece is the
union of two or more separated solid pieces. Our first observation is that any
cut by a user on a non-solid piece P giving cut position C can be replaced with
a cut by the same user on a solid piece contained in P , yielding the same cut
position.

Lemma 1. Suppose that P is the concatenation of separated solid pieces
P1, . . . , Pk, for k ≥ 2, and that the cut 〈ui; P ; R; C〉 produces a cut position C.
Then, for suitably chosen R′ and some solid piece Pm, the cut 〈ui; Pm; R′; C′〉
produces the same cut position (C′ = C). Further, R′ and m depend only on R
and Fi(P1), . . . , Fi(Pk).

Lemma 1 allows us to restrict our attention to solid piece phased algorithms.
The following lemma then gives that an initially solid piece to be cut by some
users may be cut in the same spot by each of these users.

Lemma 2. For any phased algorithm, there are utility functions for which all
users who are to cut the same (initially solid) piece will cut at the same position.

We now give our lower bound for phased algorithms, which applies to any algo-
rithm that guarantees each user a portion of positive value.

Theorem 1 (Lower bound for phased algorithms). Any phased algorithm
that guarantees each of N users a portion of positive value for any set of utility
functions, requires Ω(N log N) cuts in the worst case.

The lower bound of Ω(N log N) cuts for phased algorithms, demonstrates that
even the problem of assigning positive portions to users is non-trivial. This lower
bound immediately applies to fair and envy-free algorithms, since these algo-
rithms assign positive portions to users.

4 A Lower Bound for Labeled Algorithms

We present a lower bound on the number of cuts required for a general class
of fair algorithms that we refer to as “linearly-labeled & comparison-bounded”.
The proofs are by reducing sorting to cake-cutting. First, we show that any cake-
cutting algorithm can be converted to a labeled algorithm which labels every piece
in the cake-division. Then, by appropriately choosing utility functions, we use
the labels of the pieces to sort a given sequence of integers.

First, we define labeled algorithms and then show how any cake-cutting al-
gorithm can be converted to a labeled one. A full binary tree is a binary tree in
which every node is either a leaf or the parent of two nodes. A labeling tree is a
full binary tree in which every left edge has label 0 and every right edge has label
1. Every leaf is labeled with the binary number obtained by concatenating the
labels of every edge on the path from the root to that leaf. An example labeling
tree is shown in Figure 1. Let v be the deepest common ancestor of two leaves v1

and v2. If v1 belongs to the left subtree of v and v2 belongs to the right subtree
of v, then v1 is left of v2.

Consider an N -partition W1, . . . ,WN of the cake. The partition is labeled if
the following hold:

– For some labeling tree, every (separated) piece Pi in the partition has a
distinct label bi that is a leaf on this tree, and every leaf on this tree labels
some piece.

– Pi is left of Pj in the cake if and only if leaf bi is left of leaf bj in the labeling
tree.

A cake-cutting algorithm is labeled if it always produces an N -partition that is
labeled. An example of a labeled partition is shown in Figure 1. In general, there
are many ways to label a partition, and the algorithm need only output one of
those ways. Next, we show that any cake-cutting algorithm can be converted to
an equivalent labeled algorithm.

Cake
label: 00 010 011 10 11

C2 C3 C1 C40 1

Labeling Tree

10 11

0

00

1

011

0 10 1

010

10

C1

C4
C2

C3

(a) (b)

Fig. 1. (a) A labeled partition. (b) Corresponding labeling tree.

Theorem 2. Every cake-cutting algorithm is equivalent to a labeled cake-cutting
algorithm.

We now show that a labeled cake-cutting algorithm can be used to sort N
positive distinct integers x1, . . . , xN . To relate sorting to cake-cutting, we first
define a “less than” relation for pieces. If P1 and P2 are separated, then P1 < P2

if P1 is on the left of P2. Clearly, this “<” relation imposes a total order on any
set of separated pieces. Our approach is to show that given N positive distinct
integers, we can construct utility functions such that any fair division will allow
us to sort the integers quickly. Define the utility functions Fi(x) = min(1, Nxix),
for user ui. In what follows, Fi will always refer to the utility functions defined
above. Let Vi = 1/Nxi . Only pieces that overlap [0, Vi] have positive value for
user ui.

Consider any N-partition W1, . . . ,WN , such that each Wi has a non-zero
value for the respective user ui. Let Ri ∈ Wi be the rightmost piece of Wi

that overlaps [0, Vi]. The ordering relation on pieces now induces an ordering on
portions: Wi < Wj if and only if Ri < Rj . Next, we show that the order of the
portions Wi is related with the order of the integers xi.

Lemma 3. Let W1, . . . ,WN be a fair cake-division for the utility functions
F1, . . . , FN . Then, xi < xj if and only if Wj < Wi.

The ordering relation on portions can be used to sort the N -partition
W1, . . . ,WN , i.e., find the sequence of indices i1, . . . , iN , such that Wi1 < Wi2 <
· · · < WiN

. An application of Lemma 3 then gives that xi1 > xi2 > · · · > xiN
,

thus sorting the partition is equivalent to sorting the integers. We now show that
if the partition is labeled, we can use the labels to sort the portions Wi quickly,
which in turn will allow us to sort the integers quickly.

Lemma 4. Any labeled N -partition W1, . . . ,WN , can be sorted in O(K) time,
where K is the total number of pieces in the partition.

By Lemma 3, sorting the partition W1, . . . ,WN is equivalent to (reverse) sorting
the integers x1, . . . , xN . From Lemma 4, we know that if the fair cake-division
is labeled, then we can sort the partition in O(K) time, where K is the number
of pieces in the partition. Thus, we obtain the following theorem, which reduces
sorting to cake-cutting:

Theorem 3 (Reduction of sorting to cake-cutting). Given a K-piece, la-
beled, fair cake-division for utility functions F1, . . . , FN , we can sort the numbers
x1, . . . , xN in O(K) time.

Theorem 2 showed that every cake-cutting algorithm can be converted to
an equivalent labeled cake-cutting algorithm. Of importance is the complexity
of this conversion. We say that a cake-cutting algorithm H that outputs a
cake-division with K pieces is linearly-labeled if it can be converted to a labeled
algorithm H ′ that outputs an equivalent cake division with O(K) pieces using at
most O(K) extra time, i.e., if it can be converted to an equally efficient algorithm
that outputs essentially the same division. To our knowledge, all the known
cake-cutting algorithms are linearly-labeled. In particular, Algorithms A and B
can be easily converted to labeled algorithms using at most O(K) additional
operations to output an equivalent cake-division. Since sorting is reducible to
labeled cake-cutting, labeled cake-cutting cannot be faster than sorting. We have
the following result.

Theorem 4 (Lower bound for labeled algorithms). For any linearly-
labeled fair cake-cutting algorithm H, there are utility functions for which
Ω(N log N) comparisons will be required.

From the practical point of view one might like to limit the amount of compu-
tation the superuser is allowed to use in order to determine what cuts are to be
made. Each step in the algorithm involves a cut, and computations necessary for
performing the cut. Among these computations might be comparisons, i.e., the
superuser might compare cut positions. At step t, let Kt denote the number of
comparisons performed. The algorithm is comparison-bounded if

∑T

t=1 Kt ≤ αT
for a constant α and all T . Essentially, the number of comparisons is linear
in the number of cuts. The labeled algorithms A are B are easily shown to
be comparison-bounded. We now give our lower bound on the number of cuts
required for linearly-labeled comparison-bounded algorithms.

Theorem 5 (Lower bound for comparison-bounded algorithms). For
any linearly-labeled comparison-bounded fair algorithm H, utility functions exist
for which Ω(N log N) cuts will be made.

5 Lower Bounds for Envy-Free Algorithms

We give lower bounds on the number of cuts required for strong and super envy-
free division, when such divisions exist. We show that there exist utility functions
that admit acceptable divisions for which Ω(N2) cuts are needed.

Theorem 6 (Lower bound for strong envy-free division). There exist
utility functions for which a strong envy-free division requires Ω(0.086N2) cuts.

Theorem 7 (Lower bound for super envy-free division). There exist util-
ity functions for which a super envy-free division requires Ω(0.25N2) cuts.

6 Concluding Remarks

The most general results are that any cake-cutting algorithm can be converted to
a solid piece algorithm, and then to a labeled algorithm. We then showed that any
labeled fair cake-cutting algorithm can be used to sort, therefore any fair cake-
cutting algorithm can be used to sort. This provided the connection between
sorting and cake-cutting. We also provided an independent strong result for
phased algorithms, namely that Ω(N log N) cuts are needed to guarantee each
user a positive valued portion, and we also obtained Ω(N2) bounds for two types
of envy-free division. Important open questions remain and we refer the reader
to the technical report [10] and the literature for more details.

References

1. J. Barbanel. Game-theoretic algorithms for fair and strongly fair cake division
with entitlements. Colloquium Math., 69:59–53, 1995.

2. J. Barbanel. Super envy-free cake division and independence of measures. J. Math.
Anal. Appl., 197:54–60, 1996.

3. Steven J. Brams and Allan D Taylor. An envy-free cake division protocol. Am.
Math. Monthly, 102:9–18, 1995.

4. Steven J. Brams and Allan D. Taylor. Fair Division: From Cake-Cutting to Dispute
Resolution. Cambridge University Press, New York, NY, 1996.

5. Stephen Demko and Theodore P. Hill. Equitable distribution of indivisible objects.
Mathematical Social Sciences, 16(2):145–58, October 1988.

6. L. E. Dubins and E. H. Spanier. How to cut a cake fairly. Am. Math. Monthly,
68:1–17, 1961.

7. Jacob Glazer and Ching-to Albert Ma. Efficient allocation of a ‘prize’ – King
Solomon’s dilemma. Games and Economic Behavior, 1(3):223–233, 1989.

8. C-J Haake, M. G. Raith, and F. E. Su. Bidding for envy-freeness: A procedural
approach to n-player fair-division problems. Social Choice and Welfare, To appear.

9. Jerzy Legut and Wilczýnski. Optimal partitioning of a measuarble space. Proceed-
ings of the American Mathematical Society, 104(1):262–264, September 1988.

10. Malik Magdon-Ismail, Costas Busch, and Mukkai Krishnamoorthy. Cake-cutting
is not a piece of cake. Technical Report 02-12, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA, 2002.

11. Elisa Peterson and F. E. Su. Four-person envy-free chore division. Mathematics
Magazine, April 2002.

12. K. Rebman. How to get (at least) a fair share of the cake. in Mathematical Plums
(Edited by R. Honsberger), The Mathematical Association of America, pages 22–37,
1979.

13. Jack Robertson and William Webb. Approximating fair division with a limited
number of cuts. J. Comp. Theory, 72(2):340–344, 1995.

14. Jack Robertson and William Webb. Cake-Cutting Algorithms: Be Fair If You Can.
A. K. Peters, Nattick, MA, 1998.

15. H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
16. F. E. Su. Rental harmony: Sperner’s lemma in fair division. American Mathemat-

ical Monthly, 106:930–942, 1999.
17. Gerhard J. Woeginger. An approximation scheme for cake division with a linear

number of cuts. In European Symposium on Algorithms (ESA), pages 896–901,
2002.

