
Performance Evaluation of Mobile-Agent
Middleware

Performance Analysis and Distributed Computing
Dagstuhl Seminar No. 02341, August 19-23, 2002

Schloss Dagstuhl, Wadern, Germany

Marios Dikaiakos

Department of Computer Science
University of Cyprus

Nicosia, Cyprus

http://www.cs.ucy.ac.cy/mdd/

2 M. Dikaiakos, U. of CyprusPADS 2002

Acknowledgments

Collaborators:
prof. G. Samaras (U. of Cyprus)
M. Kyriakou (U. of Cyprus)
C. Spyrou (U. Cyprus)

Funding: Research Foundation of Cyprus (PENEK 23/2000)

3 M. Dikaiakos, U. of CyprusPADS 2002

The context…

Explosion of systems and services available on Internet/Web.
Remarkable increase in size and pervasiveness of computer networks.
Demand for personalized, instant, context-aware, ubiquitous services.
Support of these trends by an evolving communication infrastructure.
What about the necessary computational infrastructure ?

Scalability
Reconfigurability and Extensibility
Adaptability
Physical Mobility
Fault-tolerance

4 M. Dikaiakos, U. of CyprusPADS 2002

Mobile Agents
Programs that can migrate from host to host in a wide-area network at times
and to places of their own choice. The state of the running program is saved,
transported to the new host and restored, allowing the program to continue
where it left off.
Distinctive characteristics:

Autonomous migration of code and state.
Location is a first-class element, exposed at the programming level.

Java-based Mobile Agents:
Java objects running in Java-based execution environments, taking advantage of
Java’s distributed computing features to achieve code mobility.

JAVA-based Mobile Agent Middleware:
Environments supporting MA execution, management of local-resource access,
and programming via higher level API’s.

5 M. Dikaiakos, U. of CyprusPADS 2002

Why Mobile Agents?
Autonomy

Support for disconnected operations and weak connectivity.
A new design style for distributed applications.

Enhanced Flexibility
Extend the client-server model of distributed computing.
Enabling client-systems to customize their access to remote resources.
Extend clients dynamically by code coming from remote sites.

Performance
Reduce bandwidth consumption in network management systems.
Efficient distributed database access over the Web.
Distributed information retrieval and filtering.

Open Issues
Security; Interoperability with existing middleware and protocols; Lack of wide
acceptance and many real applications; Lack of rigorous evaluations and
comparisons.

6 M. Dikaiakos, U. of CyprusPADS 2002

Motivation and Summary
Goals:

Investigation.
Comparison.
Discovery.
Prediction.

Summary:
A framework to evaluate MA middleware performance quantitatively.
An implementation of this framework as a hierarchy of benchmarks.
Reference implementations on commercial MA platforms.
Experiments.

7 M. Dikaiakos, U. of CyprusPADS 2002

Performance Analysis of Software Systems

Typical approaches: Experimentation, simulation, modelling,…
For complex software systems some modelling is required:

A hierarchical structure of interacting modules (subsystems and
objects).
Each module is assigned:

• A performance model.
• A description of the underlying architecture and workload.

Model development usually “top-down.”
Experimentation and/or simulation at various levels to specify
values of modelling parameters.

8 M. Dikaiakos, U. of CyprusPADS 2002

The Case of Mobile-Agent Middleware
Quantitative evaluation of mobile-agent-based distributed
systems is even harder:

Absence of global time, control and state information.
Heterogeneity/complexity of platforms: difficult to describe
performance properties via small sets of metrics.
Variety of distributed computing (software) models.
Diversity of operations found in distributed applications: hard to
construct simple and portable benchmarks.
Agility of system configuration: hard to provide concise
representation of system resources.
Issues affecting performance of JAVA.

9 M. Dikaiakos, U. of CyprusPADS 2002

Our Proposal: A Hierarchical Approach

…inspired by the structure of MA-applications, which is
determined by:

The MA middleware upon which an application is implemented:
differences in functionality, API, performance, underlying
implementation details.

The higher-level abstractions representing the design choices made
at the development of a particular application.

10 M. Dikaiakos, U. of CyprusPADS 2002

Our Proposal: A Hierarchical Approach

“Bottom-up” instead of “top-down:”
Isolate performance properties of MA middleware as measurements
of platform-independent metrics.
Investigate the performance of “popular” program structures
commonly used in MA applications.
Enrich the functionality of “popular” program structures and
investigate the interplay of the MA technology with other systems
(databases, information retrieval, networking infrastructures, etc.).

Our abstractions:
Basic Elements
Application Frameworks

11 M. Dikaiakos, U. of CyprusPADS 2002

Basic Elements
Set of basic abstractions representing the fundamental

functionalities commonly found in MA platforms.

Agents: State, Implementation (code), Interface, Identifier, etc.

Places (environment where agents execute): Virtual Machine,
Network Connection, Resources, Services available

Behaviors (within and between places): Creation, Dispatch,
Transfer, Communication via messages and agents, Multicasting,
Synchronization.

12 M. Dikaiakos, U. of CyprusPADS 2002

Application Frameworks

Software frameworks (OO)
Ways of structuring generic solutions to a common problem by
providing the structure of a program but no application-specific
details.

Application Frameworks (MA)
Define scenarios common to various problems of MA application
design, and are defined in terms of places participating in a
scenario, agents placed at or moving between these places, and
interactions of agents and places.
Distributed-computing models
MA Design Patterns

13 M. Dikaiakos, U. of CyprusPADS 2002

Application Frameworks (ctd’)

Client-Server model and extensions:
Client-Server
Client-Agent-Server
Client-Intercept-Server

Roaming (multi-hop) MA
Master-Slave
Agent Design Patterns:

Forwarding
Meeting

14 M. Dikaiakos, U. of CyprusPADS 2002

A Hierarchical Framework

15 M. Dikaiakos, U. of CyprusPADS 2002

Implementation through Benchmarks
Micro-benchmarks: short loops designed to isolate and measure
performance properties of basic elements.

Micro-kernels: short, synthetic codes designed to measure
performance properties of application frameworks.

Micro-applications: instantiations of micro-kernels with particular
functionalities and representative workloads.

Parameters: platform, workload, resources
Metrics: total time, average time, peak rate, sustained rate
Platforms: Concordia, Aglets, Voyager, Win95, WinNT

16 M. Dikaiakos, U. of CyprusPADS 2002

Micro-benchmarks
Key software components:

Mobile Agents to materialize components of C/S, C/A/S, etc.
Messenger Agents for flexible communication.
Messaging for efficient communication and synchronization.

Metrics:
Total and average runtime.
Peak and sustained rates.

Parameterized by:
Number of iterations.
Configuration of places.
Configuration of channels.

17 M. Dikaiakos, U. of CyprusPADS 2002

Micro-benchmark Suite
Agent Creation and Launching:
CL measures the overhead of local agent-creation.
CR measures the overhead of remote agent-creation.
AD measures the overhead of agent transportation.

Messaging:
MSG-1W point-to-point, non-blocking messaging.
MSG-2W point-to-point, non-blocking with asynchronous ack.
SYNCH point-to-point, blocking (ping-pong).
MSG-MA point-to-point, blocking with messenger agent.

18 M. Dikaiakos, U. of CyprusPADS 2002

Messaging between MA’s

19 M. Dikaiakos, U. of CyprusPADS 2002

CL: CreationLocal experiments

Caching
Memory management

20 M. Dikaiakos, U. of CyprusPADS 2002

AD: AgentDispatch experiments

Aglets transportation based on ATP.
Carries all reachable objects.

Concordia agent transportation based
on RMI. Carries and caches objects
on a need-to-use basis.

Voyager agent transportation uses
agent-serialization. Agent and all its
non-transient parts copied to new
location.

21 M. Dikaiakos, U. of CyprusPADS 2002

CL, CR and AD: Peak and Sustained Rates

22 M. Dikaiakos, U. of CyprusPADS 2002

Messaging Timings

23 M. Dikaiakos, U. of CyprusPADS 2002

Messaging Performance

24 M. Dikaiakos, U. of CyprusPADS 2002

Micro-kernels
C/S Captures the performance of an agent acting as server in a

C/S setting.
C/A/S Captures the capacity of a place to host intermediary agents and

the performance thereof, acting in a C/A/S setting.
ROAM Captures the overhead of an agent roaming across different

places.
M/S Captures the overhead of an agent acting as master in a M/S

setting.
FORW-MSG Captures the performance of an agent acting as a router

of msg. requests towards a farm of server-agents.
FORW-MA Captures the performance of an agent acting as a router

of messenger agents towards a farm of server-agents.

25 M. Dikaiakos, U. of CyprusPADS 2002

ROAM

Additional Parameters:
Number of places.
Number of hops.

Metrics:
Total elapsed time.
Hops per second.

Sustained Rates (4000 hops):
Voyager: 14.7 hops/sec
Aglets: 44.64 hops/sec
Concordia: 0.7 hops/sec (peak:
23.92 hps)

MA

MA

MA

MA

26 M. Dikaiakos, U. of CyprusPADS 2002

ROAM timings (4 places)

27 M. Dikaiakos, U. of CyprusPADS 2002

FORW-MSG
Additional Parameters:

Number of clients.
Total number of requests.

Metrics:
Total time to receive and forward
requests.
Rate of request-handling.

Measurements (3 clients, 3 servers):
Concordia: 12.48 requests/sec.
Voyager: 12.91 requests/sec.
Aglets: 37.33 requests/sec.

28 M. Dikaiakos, U. of CyprusPADS 2002

FORW-MSG (3/3, 12/3)

29 M. Dikaiakos, U. of CyprusPADS 2002

FORW-MA
Additional Parameters:

Number of clients.
Total number of agents re-routed.

Metrics:
Total time to receive and forward
agents.
Rate of request-handling.

Measurements (1 client, 1 server):
Concordia: 19.84 requests/sec.
Aglets: 9.54 requests/sec.
Voyager: 5.76 requests/sec.

Forwarding
agent

30 M. Dikaiakos, U. of CyprusPADS 2002

Conclusions
A framework for studying performance of MA middleware that:

Captures basic performance properties.
Isolates performance problems arising from lower-level
implementation decisions.
Describes the performance capacity of MA systems.
Compares different middleware platforms quantitatively.
Helps design and programming decisions based on performance.

Transporting and caching agent-state is a crucial factor that
determines performance of mobility, messaging, etc. Caching
mechanisms are hidden.
O/S and JVM affect MA performance and robustness.
Configuration of experiments is a real headache.

31 M. Dikaiakos, U. of CyprusPADS 2002

Current and Future Work

Providing a definition of benchmarks compliant to the MASSIF
standard.

Further experiments with micro-applications under “realistic”
workloads (e.g., TCP-W).

Doing experiments at a wider-scale.

32 M. Dikaiakos, U. of CyprusPADS 2002

References
Tracker: A Universal Location Management System for Mobile Agents. G. Samaras,
C. Spyrou, E. Pitoura, M. Dikaiakos. European Wireless 2002 Conference, Italy,
February 2002.
Performance Evaluation of Mobile-agent Middleware: A Hierarchical Approach.
M. Dikaiakos, M. Kyriakou, G. Samaras. 5th IEEE International Conference on
Mobile Agents, December 2001.
Performance Evaluation of Mobile Agents: Issues and Approaches.
M. Dikaiakos, G. Samaras. In Performance Engineering. State of the Art and Current
Trends. LNCS, Springer, May 2001.
Mobile Agent Platforms for Web Databases: A Qualitative and Quantitative
Assessment. G. Samaras, M. Dikaiakos, C. Spyrou and A. Liverdos. Joint
Symposium of the First International Symposium on Agent Systems and
Applications (ASA`99) and the Third International Symposium on Mobile Agents
(MA`99), ASA/MA`99, November 1999.

