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Abstract—With the rapid emergence of the internet
world, a lot of information networks become available
every day. In many cases, these information networks
contain objects connected by multiple links and de-
scribed by different attributes. In this paper the prob-
lem of clustering homogeneous information networks
in groups with similar attributes and connections is
studied. Clustering such networks is a challenging task
due to different importance of links and attributes.
In addition, it is not straightforward how to balance
the links and attributes information. In this article
we describe these challenges and propose a fuzzy clus-
tering model as well as a fuzzy clustering algorithm,
HASCOP. Extensive experimentation on real world
datasets has shown that HASCOP can be successfully
applied in such networks, demonstrating its efficacy
and superiority against the state-of-the-art attributed
graph clustering methods.
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I. Introduction
The proliferation of rich attribute information available

for objects in real-world networks gives rise to attributed
graphs. In an attributed graph, every vertex is charac-
terized by a number of attributes describing its prop-
erties. The edges correspond to structural connections.
Attributed graph as an expressive data structure is used
in many application domains such as social networks,
biology and telecommunications, representing both the
graph topological structure and the vertex properties [1],
[2], [6], [7].

Graph clustering is an interesting and challenging re-
search problem which has received much attention re-
cently [5]. However, in many real applications, both the
graph topological structure and the vertex properties are
important in clustering. For example, in a bibliography
network, such as DBLP, a vertex may represent an au-
thor, vertex properties describe attributes of the author
(such as the area of interest, number of publications, etc),
while the topological structure represents relationships
among authors (such as co-authorships, etc). Clustering
the authors by considering both their personal profiles and
the relationships among them is useful for example for
researchers in identifying the most influential authors per
area, recommending new collaborations, etc.

The problem we study in this paper is to efficiently clus-
ter large-scale homogeneous information networks where

vertices are connected by multiple types of links and
characterized by different kinds of attributes, each of which
has a different level of semantic importance. For example,
in a social network, vertices may represent user profiles.
In this context, user profile attributes may be name and
location while different types of links represent relations
(such as friendship, sharing a video etc), having different
importance. Clustering this social network graph to find
out the political trends, the attribute political views of
a person is clearly more important than its name or
gender. Similarly, a request to join a political group is more
important than sharing a funny video. Furthermore, as two
social network members may be connected by more than
one link type, a social network is an attributed multi-graph.

Recently, there has been a great deal of research in
the area of clustering attributed graphs [2], [6], [7]. These
works focus on partitioning an attributed graph into dense
clusters of vertices characterized by attribute homogeneity.
However, none of these works has addressed the problem
of detecting clusters of vertices in an attributed multi-
graph, where links can be of different type and importance.
Specifically, this article makes the following contributions:

• We propose HASCOP, a generic parameter-free at-
tributed multi-graph clustering algorithm. HASCOP
(Homogeneity Attributes and Similar COnnectivity
Patterns) groups the vertices with similar connec-
tivity and attributes into clusters that have high
attribute homogeneity.

• We evaluate our method on a diverse collection
of real data sets (bibliography items and software
packages available on Google code repository). Ex-
perimental results show that HASCOP successfully
groups vertices into meaningful clusters and reveals
the outlier vertices. A performance evaluation of
HASCOP against the state-of-the-art competitors is
conducted, which attests its efficacy and superiority.

The rest of this article is organized as follows: Section
II describes the related work. In Section III, the problem
addressed in this paper is formally defined. Section IV
presents the proposed clustering model and Section V
describes the details of our clustering algorithm. Section
VI provides the experimental evaluation of HASCOP and
its comparison against the state-of-the-art competitors.
Finally, Section VII concludes the present article.
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II. Related work

Graph clustering has been widely explored in the litera-
ture. A wide range of algorithms that have been proposed
focus mainly on the connectivity structure of the graph
[5]. The clustering results usually contain communities
(strongly connected components) within clusters. However,
graph clustering methods ignore vertex attributes and can-
not be directly applied to attributed graphs. This section
presents the related work and comparison. An overview of
attributed graph clustering methods is depicted in Table I.
Attributed graph clustering algorithms can be categorized
into two types: Distance-based and Model-based.

Distance-based Algorithms use a similarity or dis-
tance measure that combines both structural and attribute
information of the vertices. Based on this measure, tradi-
tional graph clustering algorithms are applied.

In this context, SA-Cluster [8] uses random walk dis-
tance in order to measure vertex closeness on an augmented
attributed graph. An augmented graph is the initial graph
enriched with new vertices that represent the attribute
values. An edge from a graph vertex to an attribute vertex
is added if the vertex is characterized by the attribute
value represented by the attribute vertex. The weight of
the new edge depends on the importance of the attribute
the attribute vertex represents. By enriching the graph,
the vertices which share the same attributes are closer and
there is a path of at least two hops, through the attribute
vertex, between them. Based on this distance measure,
SA-Cluster takes a K-Medoids clustering approach to par-
tition the graph. At each iteration the attribute weights
are recalculated and the random walk distances on the
augmented attributed graph are recalculated. To efficiently
compute the random walk distances, authors proposed two
extended versions: an incremental distance computation in
Inc-Cluster [9] and an approximate distance computation
in SA-Cluster-Opt [2].

Model-based Algorithms use probabilistic models to
cluster attributed graphs. Generally a cluster is modelled
by its connection and attribute distributions (e.g. exponen-
tial, Gaussian). These approaches calculate the parameters
of the distributions, and a vertex is categorized in a cluster
if its properties follow the cluster’s distributions. BAGC
[7] uses the Bayesian inference while GenClus [6] uses the
expectation-maximization (EM) algorithm to partition the
graph. Bayesian inference is an inference method in which
Bayes’ rule is used to update the probability estimate
for a hypothesis as additional evidence is learned. EM
is a general method of finding the maximum-likelihood
estimate of the parameters of an underlying distribution
from a given data set when the data is incomplete or has
missing values. GenClus also adjusts link types weights
based on the clustering configuration and can naturally be
applied to attributed graphs with incomplete attributes.

Discussion. Clustering attributed graphs by applying
the above approaches presents several non-trivial chal-
lenges. A key characteristic of all these approaches is that
the number of clusters should be specified a priori. In

addition, the use of augmented graphs (SA-Cluster) can
firstly lead to an explosion of graph size, increasing signifi-
cantly the requirements in memory and time; and secondly
vertices which share very close, but not exactly the same,
attributes are not getting closer. Furthermore, SA-Cluster
and BAGC deal with only one type of links. On the other
hand, although GenClus deals with different types of links,
it considers all the attributes equally important and it is
quite slow and hard to scale up because it is based on EM.

The work most similar to ours is PICS [1]. Similarly to
HASCOP, PICS identifies clusters in an attributed graph
with similar connectivity and attribute homogeneity. It
considers two vertices to have similar connectivity if the
sets of vertices they connect to highly overlap. Specifically,
PICS compresses (conceptually, summarizes) the interre-
lated adjacency and attribute matrices simultaneously by
splitting the clusters that require the most bits to be
encoded. Similarly to HASCOP, PICS does not require
any user-specified input such as the number of clusters. As
opposed to our work, PICS splits clusters iteratively until
the total encoding cost cannot be reduced any further.
However, PICS does not consider neither the fact that
attributes have different importance nor the different types
of links that may exist in such networks.

Despite the success of the above methods, all of them
lack one or more of the properties listed in Table I. It
is noticeable that HASCOP is the only approach that
deals with attributed multi-graphs and simultaneously
automatically identifies the different importance of both
link types and attributes.

III. Problem Definition
In this section we introduce our notations, definitions

and concepts. To make it easier to the reader, Table II
presents the mathematical symbols that are used in the
present article as well as a short description.

An attributed multi-graph is consisted of |V | vertices
described by p attributes αi, 1 ≤ i ≤ p, and connected by
|E| directed edges. E contains all the edges which are of
t different types. For simplicity, we limit the conversation
only to unweighted connections. Such a network can be

TABLE II. Paper Notations

Symbol Description
V The set of vertices
E The set of edges
p The number of attributes/properties of each vertex

A|V |×p The attributes matrix
αi The ith attribute. 1 ≤ i ≤ p

domain(αi) The domain of αi

Li
|V |×|V | The link matrix for links of type ti
t Total number of link types
k The number of clusters

Θ|V |×k The fuzzy clustering configuration
ci The ith cluster
Sj The set of vertices that belong to cj . Sj ⊆ S(cj) ⊆ V
S(vi) The set of vertices vi connects to and vi itself
S(cj) The set of vertices in Sj and the vertices they link to.
Cattr

k×p The centroids of the clusters based on attributes
Clinks

k×|V | The link properties of the clusters



3

TABLE I. Comparison of Related Work

Directed Weighted Multi-graph Attribute Link-type Similar Parameter
weights weights Connectivity free

SA-Cluster [8] X X X
BAGC [7] X

GenClus [6] X X X
PICS [1] X X X
HASCOP X X X X X X

represented by t+ 1 matrices: A|V |×p and Li|V |×|V |, where
1 ≤ i ≤ t. Matrix A represents the attributes where
the ith row, Ai, is the attributes vector of vertex vi.
Ai,j = x means vertex vi at attribute αj has the value
x. The importance of attribute αi is represented by the
ith element, wαi , of the p× 1 vector ~wα. Matrix Li is the
adjacency matrix for the links of type li. An edge (u, v, li)
belongs to E if there is a connection from vertex u to vertex
v of link type li. Link type li also has a weight, ωli , which is
the ith element of the t×1 vector ~ωl, based on its semantic
meaning. The elements of the weight vectors, ~ωl and ~wα,
must be learned according to the importance of each link
type and attribute.

Our goal is to assign each vertex vi a vector θk×1, where
k is the number of clusters and θj is the probability of vi
belonging to cluster cj . Vertices in the same cluster should
exhibit both similar connectivity pattern and attribute
coherence. In the following paragraphs we give an overview
of the similar connectivity and attribute coherence.

Two vertices vi, vj have similar connectivity pattern
if S(vi) and S(vj) highly overlap, where S(vi) is the set
containing vi itself and the vertices that vi connects to.
If S(vi) and S(vj) highly overlap then vi and vj link to
common vertices. It is noted that vertices having similar
connectivity, may not be directly connected with each
other. Thus, the density metric of the final clustering may
not be close to one because clusters are not necessary
densely connected components. The intuition is that ver-
tices related to common vertices should form a cluster
even though they are not inter-connected. For instance,
in the case of a social network, if some people have a
lot of common friends (and common attributes) but they
do not know each other, they should form a group, and
such groups are covered as well. Furthermore, it is desired
that the similarity connectivity pattern of two vertices
that link to common vertices to be higher if they are also
connected to each other. For example, a group of people
having common friends should belong to the same clusters
with higher probability if they are also friends with each
other. To address this issue, we perform an augmentation
of the original graph connecting each vertex to itself with
t typed links. Hence, vi belongs to S(vi).

Two vertices vi, vj have attribute coherence if Ai and
Aj are close in Rp. The intuition is that vertices described
by close attributes should have high attribute coherence.

Formally, given the matrices A|V |×p and Li|V |×|V |, the
goals are:
• Identify the importance of each link type and cal-

culate their weights ωli , where ωli ∈ [0, 1] and
t∑
i=1

ωli = 1, based on the clustering configuration and

the structural properties of the graph.
• Give each attribute a weight wαi

based on its impor-
tance, where wαi ∈ [0, 1] and

p∑
i=1

wαi = 1.
• Find a fuzzy clustering configuration Θ|V |×k, where k

is the number of clusters, Θi,j is the probability of vi
belonging to cluster cj and

k∑
i=0

Θx,i = 1 ∀x ∈ [1, |V |].

IV. HASCOP Clustering Model
A. Overview

HASCOP fuzzy clustering model for attributed multi-
graphs makes use of a similarity function s that combines
both their link and attribute properties according to the
weight vectors ~ωl and ~wα. Hence, we want to maximize the
following objective function:

O(Θ, ~ωl, ~wα) =
|V |∑
i=1

k∑
j=1

Θi,j · s(vi, cj , ~ωl, ~wa) (1)

where s(vi, cj , ~ωl, ~wa) is the similarity of vertex vi and
cluster cj .

HASCOP maximizes the above function as follows. Ini-
tially each vertex is categorized in a cluster by itself.
Iteratively clusters are being updated (some are elimi-
nated) and link-type and attribute weights are adjusted.
An iteration starts with categorizing the vertices into the
updated clusters of the previous iteration, according to
their similarity and the updated weights. A link type or an
attribute is considered more important and is given higher
weight in the next iteration if vertices in current clusters
connect to same vertices by this link type or share the same
value for the specific attribute respectively. The ith rows of
two interrelated matrices, Clinksk×|V | and Cattrk×p, represent the
link and attribute properties of cluster ci respectively.

B. Similar Connectivity
As stated earlier, vertices can be connected via t differ-

ent types of links. The elements of matrix Lk, k ∈ [1, t],
represent the edges of link type lk. The complete set of
edges E can be represented as an aggregated adjacency
matrix, L|V |×|V |, which is defined as the weighted sum
of matrices Lk, based on the different importance of the
various link types.

Given the matrices L and Clinks we must define a simi-
larity function link sim(vi, cj) which returns the similar
connectivity pattern of vi and cj . Function link sim takes
a value in the range (0, 1] and is given by:

link sim(vi, cj) = 1

1 +

√
|V |∑
x=1

(
Li,x − Clinksj,x

)2 (2)
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Fig. 1. Similarity Connectivity

If Li is the same with Clinksj , meaning that vi connects
to the same vertices as cj , then link sim(Li, Clinksj ) = 1
because their distance is zero. On the opposite side, if there
is not a vertex vx that both vi and cj connect to then their
distance will be high and their similar connectivity will be
very close to zero. The value one is added to the distance to
ensure that the result is in the range (0, 1] as the distance
can be less than one. For example, for the graph shown in
Figure 1, link sim(v1, c1) = 1.0 since L1 and Clinks1 are
exactly the same. On the other hand, link sim(v5, c1) = 1

3
and v5 should not be placed into c1. Equation 2 is preferred
over any other traditional measures as it takes into account
the outgoing links of a vertex and not its adjacent vertices.

C. Attributes Coherence
We calculate the attribute similarity of vi and cj , based

on the attributes importance, by transforming to similar-
ity their weighted Euclidean distance using the following
monotonically decreasing transformation:

attr sim(vi, cj , ~wα) = 1

1 +
√

p∑
l=1

wαl
·
(
Ai,l − Cattrj,l

)2

(3)
We add one to the denominator for two reasons. The first
reason is to ensure that attr sim is always in the range
(0, 1], and the second reason is to ensure that result is
close to one if the attribute vector of vi is very close to the
attribute centroid of cj .

D. Similarity Function and Membership Calculation
Based on Equations 2, 3 we now define the function

s(cj , vi, ~wa) of the objective function as follows:

s(cj , vi, ~wa) = link sim(vi, cj) · attr sim(vi, cj , ~wα) (4)

The reason for selecting to multiply the two similarities is
simple; a vertex has high similarity with a cluster if both
their similar connectivity and attribute coherence are high.

Finally, we calculate memberships using the following
equation:

Θi,j = s(cj , vi, ~wa)∑
∀k
s(ck, vi, ~wa) (5)

Equation 5 assigns a vertex in a cluster with high
probability if their similarity is high and the objective
function is maximized.

E. Links and Attributes Weights Adjustment
Given the matrices Θ, Clinks and Cattr we must adjust

the weights, wai
and ωli , for each attribute, αi, and link

type, li. In order to automatically adjust the weights we
use a voting mechanism similar to the one described in [8].
Since HASCOP is iteratively clustering the network, before
proceeding to the next iteration the link type and attribute
weights are adjusted according to their score. On each
iteration a score is assigned to each link type and attribute
based on the global updated clustering configuration Θ and
their importance. A link type or an attribute is considered
more important if vertices in the same cluster are inter-
connected by this link type or share the same value for
the specific attribute respectively.

Let ωrli be the weight of link type li at iteration r. Before
proceeding to the next iteration ωr+1

li
must be calculated.

Based on Θ and the importance of link type li, a score ∆ωrli
is calculated, such that

t∑
i=1

∆ωrli = 1. The updated weight
for link type li is then given by the average of ωrli and

∆ωrli . Because
t∑
i=1

ωrli = 1 and
t∑
i=1

∆ωrli = 1 the constraint
t∑
i=1

ωr+1
li

= 1 is not violated. Obviously, if a link type li
is more important it will get higher weight in the next
iteration if it has ∆ωrli > ωrli . On the other hand, if is
not that important then ∆ωrli must be less than ωrli . We
define the function link score

(
Li,Θ

)
which returns the

score of link type li based on the clustering configuration.
The function link score is defined as:

link scorei
(
Li,Θ

)
=
|V |∑
a=1

|V |∑
b=1,b 6=a

k∑
j=1

(Θa,j + Θb,j) (6)

where Lia,b 6= 0,Θa,j 6= 0,Θb,j 6= 0
In other words, to calculate the link scorei, we add the

probabilities of each pair of vertices va and vb that belong
to a cluster cj , if there is a link of type li from va to vb. It
is noted that link scorei value is not a probability but a
measure of the importance of links of type li in the current
clustering. The higher the link scorei the more important
the link type li is. Similarly to links, the higher the score
of an attribute the more important it is. For an attribute
its score is given by the sum of the number of vertices in
the same cluster that are sharing the same value for that
attribute.

Having calculated all scores, ∆ for link types and at-
tributes are given by:

∆ωrli = link scorei
t∑
l=1

link scorel

, ∆wrαi
= attr scorei

p∑
l=1

attr scorel

(7)
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Algorithm 1 HASCOP
Input: Link matrices Li

|V |×|V |, Attribute matrix A|V |×p
Output: Fuzzy clustering configuration Θ|V |×k

Initialize weights
2: Calculate aggregated matrix L

Clinks ← L , Cattr ← A
4: while true do

for i = 1 → |V | do in parallel
6: for j = 1 → k do

Calculate Θi,j according to Equation (5)
8: end for

if Θi is empty then
10: Θi ⇐ Θr−1

i
end if

12: end for
Parallel update Clinks and Cattr

14: Parallel update all weights
if NOT ProcessDuplicatesClusters(Θ) then

16: return Θ;
end if

18: end while

V. HASCOP Algorithm
Following paragraphs describe the initialization and the

clustering process of HASCOP as well as the way the
clusters are handled and updated on each iteration.

Initially, if there is not previous knowledge on the im-
portance of each link type and attribute, their weights are
set equal and given by: ωli = 1

t , wai = 1
p . For initialization

of clusters we set Clinks = L and Cattr = A meaning that
each cluster is consisted by only one vertex.

After the calculation of Θ, it is not guaranteed that
clusters containing exactly the same vertices do not exist.
Thus, a process that eliminates the duplicate clusters
must be performed. Specifically, the clusters which contain
exactly the same vertices are all deleted except one.

At the end of each iteration, the clusters are updated
according to the new clustering configuration Θ. The
elements of Clinksj and Cattrj are given, similarly to fuzzy
k-means algorithm, as the weighted average of the charac-
teristics of vertices in cluster cj .

HASCOP takes as parameters only the matrices Li and
A, which represent the links and attributes of the network.
The pseudo-code for the clustering process is presented by
Algorithms 1. HASCOP converges when at the end of an
iteration the number of clusters does not change.

After initialization (lines 1-3), the first step is the cal-
culation of Θ according to Equation (5) as shown in lines
5-11. As soon as the temporary Θ is calculated, the clusters
and the link type and attribute weights are updated (lines
13-14). Finally, the last step, which determines if the
algorithm has converged at this iteration, is the processing
of same clusters. Due to the independence of values being
updated simultaneously, HASCOP has been implemented
and executed in parallel. Such a parallel implementation
confirms the scalability of the proposed algorithm.

A. Time Complexity
The time complexity of HASCOP can be expressed as

the sum of the costs for calculating Θ, processing duplicate
clusters, updating centroids and updating link-type and
attribute weights.

The time complexity for calculating Θi,j is the cost
for calculating the link and attribute distances between

TABLE III. Datasets

Dataset |V | |E| p t Directed
DBLP-1000 1000 17128 2 1 No

GoogleSP-23 1297 24153 5 2 No

vertex vi and cluster cj . The cost for calculating the
weighted Euclidean distance of two vectors vd×1 is O(d).
Therefore, the cost for calculating the attribute distance
is O(p). Link vectors are sparse and using appropriate
data structures the cost for calculating the link similarity
is O( |E||V | ), assuming the average size of S(vi) is |E||V | (non
zero elements in a link vector). Thus, the total cost for
calculating a similarity is O( |E||V | + p). Since the columns
of Θ are ki, where ki is the number of clusters at the end
of the first step at iteration i, the cost for calculating Θ,
lines 5-12, is O(|V | · ki · (p + |E|

|V | )). The time complexity
for deleting the same clusters is O(ki) and the cost for
updating clusters based on Θ is O(ki ·|V |·(t+p)). The time
complexities for updating link type and attribute weights
are ≈ O(t·|V |) and ≈ O(p·|V |) respectively. Thus, the total
cost for updating all weights (line 14) is ≈ O(|V | · (t+ p)).

Putting them all together, the total time complexity,
for r iterations, is ≈ O(r · k ·

[
|V | ·

(
t+p
k

)
+ |E|

]
). In other

words, the time complexity is approximately linear in
the size of the graph and the properties of the vertices.
Therefore, HASCOP algorithm is quite scalable.

VI. Experimental Study
In order to evaluate the proposed approach, HASCOP

has been implemented in java 1.6 and compared to the
the state-of-the-art competitors, SA-Cluster [2], [8], BAGC
[7], GenClus [6] and PICS [1]. For HASCOP and GenClus,
which perform fuzzy clustering, each vertex was considered
to belong to the cluster with the highest probability for
all experiments. Thus, the number of clusters returned by
GenClus may be less than the predefined k. Experiments
executed on a Dell Server equipped with two Intel Xeon
3.47GHz CPUs, 12 cores per CPU and 80GB RAM.

A. Datasets
Table III summarizes the properties of the datasets

information networks used in our experiments, showing the
number of vertices, edges, attributes, link types and if the
graph is directed.

1) DBLP Bibliography Dataset (DBLP-1000): DBLP-
1000 dataset is a subset of the complete DBLP dataset1

and contains 1000 vertices which represent the top authors
from the complete DBLP dataset. Each vertex represents
an author described by two attributes, the first attribute is
the number of publications and the second is the primary
topic of interest of the author. There are four topics which
are databases (DB), data mining (DM), information re-
trieval (IR) and artificial intelligence (AI). An edge (vi, vj)

1The full DBLP dataset is available online at http://kdl.cs.umass.
edu/data/dblp/dblp-info.html.
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TABLE IV. File attributes and their description

Attribute Description
FILE SIZE The size of the file in bytes
A TIME Last access time in seconds since Epoch
M TIME Last content modify time in seconds since Epoch

C TIME Time of most recent metadata change on Unix, or
the time of creation on Windows in seconds

FILE TYPE The type of the file e.g. text/x-java, application/
x-executable

represents that authors with ids i and j have co-authored
at least one publication.

2) Software Packages (GoogleSP-23): GoogleSP-23 is
a dataset constructed from 23 software packages that
were downloaded from the google code repository2. The
software packages were installed into virtual machines
on Nephelae cloud infrastructure3. The advantage of this
dataset is that the clusters are known (software packages).
Thus, all the algorithms can be compared to the ground
truth. Due to space limitation, the description of the
process of building the GoogleSP-23 dataset is omitted
since it is out the scope of this work.

In GoogleSP-23 dataset, a vertex represents a file de-
scribed by the attributes shown in Table IV. There are
two types of links in this dataset, one for the file name
similarities and one for the path similarities. A fictitious
algorithm that has identified all the software packages
(also displayed as “Optimal” in the following paragraphs to
make comparison easier) results in density value of 0, 0715.
Although this confirms that software packages are not
densely connected components [4], SA-Cluster, BAGC and
GenClus fail to identify any software packages. Thus, we
transofrmed this dataset such that a software package is
a densely connected component and should be identified
by these approaches. The second version of this dataset
contains an edge between filei and filej if both files
belong to the same software package. Files are described
by the same attributes.

B. Evaluation Measures
This subsection presents the evaluation metrics used in

all the experiments. As HASCOP returns a fuzzy cluster-
ing configuration, in conjunction to SA-Cluster, BAGC
and PICS which produce a hard clustering, the fuzzy
clustering configurations must be converted as described
earlier. By this conversion, the same metrics, which are the
entropy and the density, can be used for all the algorithms.
Low entropy is equivalent to high homogeneity between the
attributes of the vertices in the same cluster. High density
value means higher connectivity between vertices in the
same cluster.

Furthermore, for the evaluation of the results for the
Google-SP23 dataset we use the Dice similarity score. Dice
score takes a value in the range of [0, 1], and the higher
the score the more the two sets are similar. We use it to
measure how many of the 23 software packages have high

2Available online at http://code.google.com
3Provided by LINC, University of Cyprus http://grid.ucy.ac.cy

dice score with at least one cluster. Moreover, we want to
see how well the software files are separated into clusters.
Thus, we want a metric that tell us how many of the files
in a cluster are from the same software package. For this
purpose we adopt the following score:

Score(A,B) = |A ∩B|
|A|

(8)

If all the files in cluster A are part of the software
package B then score(A,B) = 1.0, on the other hand, if no
file in A belongs to B then score(A,B) = 0.0. The above
score is used due to the fact that usually a software package
is consisted by more than one software components and
HASCOP in some of these cases identified the software
components instead of the complete software package.

C. Evaluation
1) Clustering the DBLP-1000 dataset: For the DBLP-

1000 dataset, HASCOP and PICS returned 13 and 8
clusters respectively. BAGC and SA-Cluster were also
executed for k=8 and k=13. GenClus resulted in 4 clusters
for both k, as each author was placed only in the cluster
with the highest probability.

Figure 2(a) shows the entropy for both attributes in this
dataset (area and number of publications). As expected,
the entropy for the number of publications is higher due to
the fact that authors rarely have exactly the same number
of publications. For the area attribute the entropy is lower,
as a lot of authors are interested in one area, but is not
zero for none of the algorithms. It is shown that HASCOP
clustering is described by one of the lowest average entropy
values, confirming that HASCOP succeeds in identifying
clusters with attribute homogeneity.

Clustering of the DBLP-1000 dataset can verify the
correctness of the weight update mechanism. Figure 2(b)
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shows the weight adjustment process for all the itera-
tions needed to cluster this dataset. As clustering goes
on, as expected, area of study gets significantly higher
weight than the number of publications after the first
two iterations. This happens because during the first two
iterations authors having much more publications than
others are not characterized as outliers, resulting in lower
score for area attribute. Furthermore, during the first two
iterations authors were not placed into groups based on
their area of study, but grouped into clusters with almost
same number of publications. Finaly, higher entropy of
publications attribute lead to its weight decrease. Figure
2(b) confirms that the weight update mechanism has
correctly identified the importance of each attribute as
without doubt area of interest is more important than the
number of publications.

Inspecting and interpreting the final clusters we see
that HASCOP has successfully revealed important char-
acteristics of the DBLP-1000 dataset. HASCOP identified
and categorized separately three authors, because they
have the highest number of publications. For the first
category there were two clusters with the authors with
the most publications. These authors were placed into two
clusters due to the different number of co-authorships.
Three clusters were containing the authors with the most
publications for each of the other categories, and another
cluster contained all the authors with the least publications
from all categories. The rest four clusters contained the
authors for each area, having the most co-authorships.
This results can be of great help to researchers analysing
the DBLP or similar datasets.

2) Clustering the GoogleSP-23 dataset: For the purpose
of identifying software packages the constructed dataset
was used. In this experiment PICS returned only 16 clus-
ters, and SA-Cluster, BAGC and GenClus were executed
only with k=51, which is the number of clusters returned
by HASCOP. GenClus resulted in 39 clusters after keeping
each file in the cluster it belongs with the highest proba-
bility. The number of clusters is higher than the number
of the software packages, as a software package is usually
consisted of more than one software component.

Figure 3 shows the entropy per attribute for the resulted
clustering configurations. “Optimal” refers to the fictitious
algorithm that has identified all the software packages
(ground truth). Entropy must be as close as possible to
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Fig. 4. Clustering the GoogleSP-23 dataset

the “Optimal”. It is shown that HASCOP is the closest
to the “Optimal” and in addition succeeds to have the
lowest entropy for all attributes. Lowest entropy for all the
attributes confirms that HASCOP successfully identifies
clusters characterized by high attribute homogeneity.

In order to give meaning to the results, Figure 4(a)
shows how many clusters overlap with software packages.
The vertical axis shows the percentage of clusters with
overlap score, using Equation 8, with any software package
higher than the value shown in the horizontal axis. It is
noticeable that more than 80% of returned clusters by
HASCOP and PICS have score 1.0, which means all files
in these clusters are from the same software packages.
Equally, if we select a random cluster returned by HAS-
COP or PICS, that cluster contains files only from one
software package with probability higher than 0.9 or 0.8
respectively. Figure 4(a) shows that HASCOP and PICS
separated software files in different clusters with higher
precision that the other algorithms.

Figure 4(b) shows the percentage of software packages
that were successfully completely identified. That is, the
percentage of software packages that have higher dice score
than the value in x-axis with at least one cluster. As shown
from both figures, SA-Cluster, BAGC and GenClus fail
completely to identify the software packages, in conjunc-
tion to PICS which returned 16 clusters fully overlapping
with 13 software packages. On the other hand, almost all
clusters (∼90%) returned by HASCOP have full overlap
with a software package and almost all software packages
(21 out of 23) have been successfully identified. In other
words, a randomly selected cluster returned by HASCOP
fully represents a software package with probability higher
than 0.9. It is also noticed that SA-Cluster, BAGC and
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GenClus failed to identify the software packages, even
though in the second version of the dataset, a software
package is densely connected. In this experiment, the
importance and usability of similar connectivity patterns
and attribute homogeneity is also confirmed.

Furthermore, Figures 5(a) and 5(b) show the weight
adjustment process for both link types and attributes
respectively as clustering goes on. It is mentionable the fact
that path similarity is getting lower weight as clustering
converges, revealing that it would be totally wrong to
categorize files in software packages by just viewing their
path. On the other hand, the name similarity receives
more importance. This is due to the fact that usually
files in the same software package have similar names,
e.g. chat.css, chatEditor.js, chatButton.js etc.. For the
attributes, higher importance is given to the time of last
access, last modification and last change in conjunction
to file size and file type. This was expected as a software
package contains files of different sizes and file types, while
files belonging to same software packages have similar
access and modification timestamps. Figure 5 attests the
correctness and necessity of the weight update mechanism
in order to get meaningful results.

Summarizing the results: HASCOP succeeded in return-
ing meaningful clusters for the used datasets. Clusters
returned by HASCOP, containing vertices with similar
connectivity patterns and attribute homogeneity, can be
useful to many applications dealing with such information
networks. Furthermore, entropy was low for all experi-
ments revealing that HASCOP can successfully identify
clusters characterized by attribute homogeneity. Looking
at Figures 2(b) and 5, we conclude that the importance of
each link type and attribute can be successfully identified.
Based on the weight update mechanism and the presented
similarity function HASCOP can reveal important proper-
ties of the attributed multi-graphs under study.

VII. Conclusions and Future work
In this paper, a generic approach for clustering at-

tributed multi graphs is presented. The proposed method,
HASCOP, is consisted of two main steps, the assignment
of vertices into clusters and the adjustment of the link type
and attribute weights. Experiments on real world datasets
have shown its adaptiveness and superiority against the
state-of-the-art competitors. The weight adjustment pro-
cess can successfully identify the importance of each link
type and each attribute giving each of them the ap-
propriate weight. Furthermore, the importance of similar
connectivity patterns is also addressed and analysed in the
present article giving a boost to new research studies of
such complex information networks.

HASCOP can be successfully applied to a wide range
of homogeneous information networks such as the DBLP-
1000 and GoogleSP-23. Clustering such networks into clus-
ters with attribute homogeneity and similar connectivity
patterns returns meaningful clusters and reveals important
characteristics of the dataset under study. Furthermore, in
contrast to other algorithms, HASCOP has correctly iden-
tified the software packages installed on a cloud computing
infrastructure. As an extension of this successful method,
the next step is its integration into Minersoft search engine
[3] for software retrieval in clouds.

We furthermore pose our future directions to the exten-
sion of this powerful approach to weighted multi-graphs
where vertices can be of different types as well as the
deployment to a large scale hadoop cluster to process large
heterogeneous information networks.
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