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Abstract
In the model of restricted parallel links, n users must be routed on m par-

allel links under the restriction that the link for each user be chosen from
a certain set of allowed links for the user. In a (pure) Nash equilibrium, no
user may improve its own Individual Cost (latency) by unilaterally switch-
ing to another link from its set of allowed links. The Price of Anarchy is a
widely adopted measure of the worst-case loss (relative to optimum) in system
performance (maximum latency) incurred in a Nash equilibrium.

In this work, we present a comprehensive collection of bounds on Price of
Anarchy for the model of restricted parallel links. Specifically, we prove:

• For the case of identical users and identical links, the Price of Anarchy

is Ω
(

lg m
lg lg m

)
.

• For the case of identical users, the Price of Anarchy is O
(

lg n
lg lg n

)
.

• For the case of identical links, the Price of Anarchy is O
(

lg m
lg lg m

)
, which

is asymptotically tight.

• For the most general case of arbitrary users and related links, the Price
of Anarchy is at least m− 1 and less than m.

The shown bounds reveal the dependence of the Price of Anarchy on n and
m for all possible assumptions on users and links.

∗The results in this work were included in preliminary form in the paper (by the same group of
authors) ”Computing Nash Equilibria for Scheduling on Restricted Parallel Links,” Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pp. 613–622, June 2004. This work
has been partially supported by the IST Program of the European Union under contract numbers
IST-1999-14186 (ALCOM-FT), IST-2001-33116 (FLAGS), 001907 (DELIS) and 015964 (AEOLUS).
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1. Introduction

1.1. Framework

In the model of restricted parallel links, n non-cooperative users must route their
unsplittable traffics (or weights) on m parallel links from a source node to a sink
node. Each link has a capacity and the latency through a link is the ratio of the
total traffic assigned to the link over its capacity. Since the latencies incurred on
different links due to the same traffic are ordered by their capacities, we say that
links are related.

A distinguishing feature of the model of restricted parallel links is the restriction
that the link for each user must be chosen from a certain set of allowed links for the
user. This restriction corresponds to an important special case of the job scheduling
problem on unrelated machines, where only a subset of the users are allowed to use
a machines but otherwise machines are related. On the other hand, the model is
a generalization of the well studied KP model for selfish routing [11] that permits
considering a set of allowed links for each user.

In a (pure) Nash equilibrium [13,14], each user is minimizing its Individual Cost,
which is the latency on the link it chooses. So, a Nash equilibrium represents a
stable state of the system in which no user has an incentive to unilaterally switch
links. There is also a global objective function called Social Cost [11], which is the
makespan (maximum latency); however, users do not adhere to it. The Price of
Anarchy (or Coordination Ratio) [11,15] is the worst-case ratio of the Social Cost
of a Nash equilibrium over the Social Cost of an optimal assignment. The Price
of Anarchy is a measure of the worst-case system performance loss (relative to
optimum) in a Nash equilibrium; it has been studied very intensively in the last few
years.

1.2. Contribution

We present a comprehensive collection of bounds on Price of Anarchy for the model
of restricted parallel links; we only consider pure Nash equilibria. Some of the
bounds apply to the special case of identical users (resp., identical links) where all
weights (resp., capacities) equal 1.

• For the simplest case of identical users and identical links, we present a coun-
terexample to prove that the Price of Anarchy is Ω

( lg m
lg lg m

)
(Theorem 3.1).

• We then consider the case of identical users for which we prove that the Price
of Anarchy is O

( lg n
lg lg n

)
(Theorem 4.2). The proof establishes that a number

of users significantly larger than the Price of Anarchy is necessary; we then
employ a careful analysis to establish the claimed upper bound on the Price
of Anarchy.

• For the case of identical links, we prove that the Price of Anarchy is O
( lg m

lg lg m

)
(Theorem 5.3). The proof uses the same techniques as those for the case of
identical users.
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• We finally consider the most general case of arbitrary users and related links,
for which we prove that the Price of Anarchy is at least m− 1 (Theorem 6.5)
and less than m (Theorem 6.6). For the lower bound, we present a coun-
terexample. For the upper bound, we establish that a number of links larger
than the Price of Anarchy is necessary; we then employ a careful analysis to
establish the claimed upper bound on the Price of Anarchy.

The shown bounds shed light on the dependence of the Price of Anarchy on
n and m for all possible assumptions on users and links. Moreover, our bounds
imply a separation with respect to Price of Anarchy between the general case of
arbitrary users and related links and each of the two special cases of identical users
and identical links, respectively.

1.3. Related Work

Independently of our work, Awerbuch et al. [2] also have studied the model of
restricted parallel links. Awerbuch et al. [2] focused on the case of arbitrary users

and identical links, for which they proved that the Price of Anarchy is O
( lg m

lg lg m

)
for pure Nash equilibria (cf. Theorem 5.3) and Θ

( lg m
lg lg lg m

)
for all (mixed) Nash

equilibria.
Tight bounds on the Price of Anarchy for the KP model [11] were proven in [4,10]

for the case of identical links (Θ
( lg m

lg lg m

)
for all Nash equilibria), and in [4] for

the case or related links (Θ
(
min

{ lg m
lg lg m

, lg c1
cm

})
for pure Nash equilibria and

Θ
( lg m

lg lg lg m

)
for all Nash equilibria). For other bounds on Price of Anarchy for

the KP model and its variants, see [6,7,8,9,12].
Suri et al. [17] studied a variant of the model of restricted parallel links where the

Social Cost is the total latency, as opposed to maximum latency. (A corresponding
variant of the KP model has been studied already in [9].) For this variant, Suri et
al. [17] prove some constant bounds on Price of Anarchy. Two recent papers [1,3]
already generalize the results of Suri et al. [17] to some more general classes of
(network) congestion games [16].

Elsässer et al. [5] studied a further restriction of the model of restricted parallel
links, called interaction graphs, where all sets of allowed links for the users have
size 2. The results of Elsässer et al. [5] for their model include bounds on Price of

Anarchy. In particular, Elsässer et al. [5, Theorem 3] prove that Ω
( lg m

lg lg m

)
is still

a lower bound on Price of Anarchy for the case of identical users and identical links
in the more restricted model of interaction graphs.

1.4. Organization

Section 2 summarizes the model of restricted parallel links. Section 3 considers the
case of identical users and identical links. The case of identical users and related
links is considered in Section 4. The symmetric case of arbitrary users and identical
links is considered in Section 5. Section 6 considers the case of arbitrary users and
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related links. We conclude in Section 7.

2. Restricted Parallel Links

Throughout, denote for each positive integer m, [m] = {1, . . . ,m}; take that [0] = ∅.
For any integer k ≥ 1, the Gamma Function Γ is defined by Γ(k + 1) = k!. Both Γ
and its inverse Γ−1 are monotone increasing. It is well known that for any integer
k ≥ 1, Γ−1(k) = Θ

(
lg k

lg lg k

)
.

We consider a network consisting of a set of m parallel links 1, . . . ,m from a
source node to a sink node. Each of n users 1, . . . , n wishes to route a particular
amount of traffic along a (non-fixed) link from source to sink. Assume throughout
that m ≥ 2 and n ≥ 2.

Denote wi the weight of user i ∈ [n]. Assume, without loss of generality, that
w1 ≥ . . . ≥ wn, and denote W =

∑
i∈[n] wi. The weight vector w is the tuple of all

weights. In the case of identical users, all weights equal 1; weights vary arbitrarily
in the case of arbitrary users.

Denote cj > 0 the capacity of link j ∈ [m]. The capacity vector c is the tuple
of all capacities. Denote C =

∑
j∈[m] cj . The latency for weight w through link

j ∈ [m] is w
cj

. In the case of identical links, all capacities equal 1; capacities vary
arbitrarily in the case of related links. An instance is a pair 〈w, c〉.

Associated with each user i ∈ [n] is a strategy set Li ⊆ [m], as the set of allowed
links for user i; thus, user i can only be assigned to a link from Li. So, a strategy
for user i is some link from its set of allowed links Li. Denote L = ×i∈[n]Li; clearly,
L ⊆ [m]n. An assignment L = 〈l1, . . . , ln〉 ∈ L is a tuple of strategies, one for each
user.

Fix now an assignment L. The load ∆j(L) on link j is the sum of weights of
users assigned to link j; thus, ∆j(L) =

∑
k:lk=j wk. The latency Λj(L) on link j is

given by Λj(L) = ∆j(L)
cj

. The Individual Cost ICi(L) of user i ∈ [n] in assignment
L is the latency of the link it chooses; that is, ICi(L) = Λli(L).

Associated with an instance 〈w, c〉 and an assignment L is the Social Cost [11,
Section 2], denoted SC (w, c,L), which is the maximum, over all links, latency due to
the load through the link; so, SC (w, c,L) = maxj∈[m] Λj(L). Associated with an in-
stance 〈w, c〉 is the Optimum [11, Section 2], denoted OPT (w, c), which is the least
possible, over all assignments, of the maximum, over all links, latency due to the load
through the link; so, OPT (w, c) = minL∈L SC (w, c,L) = minL∈L maxj∈[m] Λj(L).

Say that a user i ∈ [n] is satisfied in assignment L if for all links j ∈ Li,

ICi(L) ≤ ∆j(L) + wi
cj

; so, a satisfied user cannot decrease its Individual Cost by
switching to a different allowed link. Say that L is a Nash equilibrium [14] if all
users are satisfied in L.

The Price of Anarchy [11,15] (also known as Coordination Ratio [11, Section 2]),

denoted PoA, is the worst-case ratio SC (w, c,L)
OPT (w, c) over all instances 〈w, c〉 and Nash
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equilibria L; thus,

PoA = max
〈w,c〉,L

SC (w, c,L)
OPT (w, c)

.

3. Identical Users and Identical Links

We prove:
Theorem 3.1 Consider the case of identical users and identical links. Then,

PoA = Ω
(

lg m

lg lg m

)
.

Proof: Consider an instance 〈w, c〉 with n users and m links. We construct the
strategy sets of the users as follows. Fix some sufficiently large integer p (to be
determined later).

• Partition the set of links into p + 1 disjoint subsets M0,M1, . . . ,Mp with:

– |M0| = 1.

– For each integer l, where 1 ≤ l ≤ p, |Ml| = (p− 1) ·
∏

j∈[l−1](p− j).

Note that since |M0| ≤ |M1| < . . . < |Mp| the partition implies that m <
(p+1) · |Mp| = (p+1)(p−1)(p−1)! < (p+1)! = Γ(p+2). So, p > Γ−1(m)−2.

• Partition the set of users into p disjoint subsets U0,U1, . . . ,Up−1 with:

– For each integer k, where 0 ≤ k ≤ p− 1, |Uk| = (p− k) · |Mk|.
– The strategy set of each user in Uk is Mk ∪Mk+1.

We now construct a Nash equilibrium L and an optimal assignment Q such that
SC (w, c,L) = p and SC (w, c,Q) = 1.

• Construct an assignment L as follows.

– All p users from the set U0 are assigned to the single link in M0.

– For each integer k, where 1 ≤ k ≤ p−1, p−k users from Uk are assigned
to each link in Mk. (Note that no user is assigned to any link in Mp.)

By the construction of L, the latency on each link in the set Ml, where
0 ≤ l ≤ p, is p − l. Thus, for each integer l, where 0 ≤ l ≤ p − 1, no user
assigned to a link in the set Ml can decrease its Individual Cost by switching
either to a different link from the set Ml or to a link from the set Ml+1. So,
all users are satisfied in L and L is a Nash equilibrium with

SC (w, c,L) = max
j∈[m]

Λj(L)

= max
0≤l≤p

(p− l)

= p .
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• Note that |M0| + |M1| = p and |U0| = p. Note also that for each integer k,
1 ≤ k ≤ p− 1,

|Uk| = (p− k) · |Mk|
= (p− k) (p− 1) ·

∏
j∈[k−1]

(p− j)

= (p− 1) ·
∏

j∈[k]

(p− j)

= |Mk+1| .

So, it is possible to assign each user in U0 to a distinct link in M0 ∪M1, and
to assign each user in Uk, where 1 ≤ k ≤ p − 1, to a distinct link in Mk+1.
Call Q the resulting assignment. Then, SC (w, c,Q) = 1 and Q is optimal.
So, OPT (w, c) = 1.

It follows that

PoA ≥ SC (w, c,L)
OPT (w, c)

= p

> Γ−1(m)− 2

= Ω
(

lg m

lg lg m

)
,

as needed.
Theorem 3.1 implies that Ω

( lg m
lg lg m

)
is a lower bound on the Price of Anarchy

for the more general cases of arbitrary users or related links (or of both).

4. Identical Users

We prove:
Theorem 4.2 Consider the case of identical users. Then,

PoA = O

(
lg n

lg lg n

)
.

Proof: Consider any arbitrary instance 〈w, c〉 with an associated Nash equilib-
rium L such that

p · OPT (w, c) ≤ SC (w, c,L) < (p + 1) · OPT (w, c)

for some integer p ∈ N, and an optimal assignment Q. To prove an upper bound on
the Price of Anarchy, it suffices to prove an upper bound on p+1. To do so, we will
prove a lower bound (as a function of p) on the number of users that are necessary
for such a Nash equilibrium L. We will then use this lower bound to prove an upper
bound of O

(
lg n

lg lg n

)
on p + 1. We continue with the details of the formal proof.
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Consider now a link j ∈ [m] with cj < 1
OPT (w, c) . Note that in the optimal as-

signment Q, no user is assigned to link j (since otherwise 1
cj
≤ Λj(Q) ≤ OPT (w, c),

or cj ≥ 1
OPT (w, c) ). If, in addition, Λj(L) < SC (w, c,L), then link j can be elim-

inated (together with all users assigned to it in L) with no change to SC (w, c,L)
and no increase to OPT (w, c). So, assume, without loss of generality, that for each
link j ∈ [m], either cj ≥ 1

OPT (w, c) or Λj(L) = SC (w, c,L).

Define M0 as the set of links j ∈ [m] with latency

Λj(L) ≥ p · OPT (w, c) .

Clearly, M0 6= ∅. By definition of latency, this implies that∑
j∈M0

∆j(L) ≥ p · OPT (w, c) ·
∑

j∈M0

cj .

We prove an inductive claim:
Lemma 4.1 For each l ∈ [p− 1], there is a set of links Ml with
Ml ∩ (M0 ∪ . . . ∪Ml−1) = ∅ such that:

(1)
∑

j∈Ml
cj ≥ (p− 1) ·

∏
j∈[l−1](p− j) ·

∑
j∈M0

cj.

(2) For each link j ∈Ml, Λj(L) ≥ (p− l) · OPT (w, c).

(3)
∑

j∈Ml
∆j(L) ≥ (p− 1) ·

∏
j∈[l](p− j) · OPT (w, c) ·

∑
j∈M0

cj.

(4) There are at least (p−1)·
∏

j∈[l](p−j)·OPT (w, c)·
∑

j∈M0
cj users assigned by L

to links in M0∪. . .∪Ml whose strategy sets include links outside M0∪. . .∪Ml.

Proof: By (strong) induction on l. For the basis case, let l = 1. Recall that∑
j∈M0

∆j(L) ≥ p ·OPT (w, c) ·
∑

j∈M0
cj . In the optimal assignment Q, Λj(Q) ≤

OPT (w, c) for each link j ∈ [m]. By definition of latency, this implies that∑
j∈M0

∆j(Q) ≤ OPT (w, c) ·
∑

j∈M0
cj . It follows that there are at least

p · OPT (w, c) ·
∑

j∈M0

cj − OPT (w, c) ·
∑

j∈M0

cj = (p− 1) · OPT (w, c) ·
∑

j∈M0

cj

excess users assigned by L to links in M0 whose strategy sets include links outside
M0.

Define M1 as the set of all links outside M0 that are included in the
strategy sets of such excess users; so M1 ∩M0 = ∅.

Clearly, in Q, all these excess users are assigned to links in M1, so that∑
j∈M1

∆j(Q) ≥ (p− 1) · OPT (w, c) ·
∑

j∈M0

cj .

We now prove the four claimed properties for the set M1.
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• Clearly, ∑
j∈M1

cj =
∑

j∈M1

∆j(Q)
Λj(Q)

≥
∑

j∈M1
∆j(Q)

OPT (w, c)

≥
(p− 1) · OPT (w, c) ·

∑
j∈M0

cj

OPT (w, c)

= (p− 1) ·
∑

j∈M0

cj ,

which proves (1).

• To prove (2), consider any link j ∈ M1. Since j 6∈ M0, it follows that
Λj(L) < p · OPT (w, c). Since SC (w, c,L) ≥ p · OPT (w, c), this implies that
Λj(L) < SC (w, c,L). Therefore, cj ≥ 1

OPT (w, c) .

Consider any link j′ ∈ M0 to which L assigns some excess user. Since L is a
Nash equilibrium,

Λj′(L) ≤ Λj(L) +
1
cj

≤ Λj(L) + OPT (w, c) .

However, by definition of the set M0,

Λj′(L) ≥ p · OPT (w, c) .

It follows that

Λj(L) ≥ (p− 1) · OPT (w, c) ,

and the proof of (2) is now complete.

• To prove (3), we use (2) and (1) to derive that∑
j∈M1

∆j(L) =
∑

j∈M1

Λj(L) · cj

≥ (p− 1) · OPT (w, c) ·
∑

j∈M1

cj

≥ (p− 1) · OPT (w, c) · (p− 1) ·
∑

j∈M0

cj

= (p− 1)2 · OPT (w, c) ·
∑

j∈M0

cj ,

as needed for proving (3).
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• Recall first that in the optimal assignment Q, Λj(Q) ≤ OPT (w, c) for each
link j ∈ [m]. By definition of latency, this implies that

∑
j∈M1

∆j(Q) ≤
OPT (w, c) ·

∑
j∈M1

cj .

Clearly, the number of users assigned by L to links in M0∪M1 whose strategy
sets include links outside M0 ∪M1 is at least∑

r∈{0}∪[1]

∑
j∈Mr

(∆j(L)−∆j(Q))

=
∑

j∈M0

∆j(L)−
∑

j∈M0

∆j(Q) +
∑

j∈M1

∆j(L)−
∑

j∈M1

∆j(Q)

≥ p · OPT (w, c) ·
∑

j∈M0

cj − OPT (w, c) ·
∑

j∈M0

cj

+(p− 1) · OPT (w, c) ·
∑

j∈M1

cj − OPT (w, c) ·
∑

j∈M1

cj

= (p− 1) · OPT (w, c) ·
∑

j∈M0

cj + (p− 2) · OPT (w, c) ·
∑

j∈M1

cj

≥ (p− 1) · OPT (w, c) ·
∑

j∈M0

cj + (p− 2) · OPT (w, c) · (p− 1) ·
∑

j∈M0

cj

= ((p− 1) + (p− 2)(p− 1)) · OPT (w, c) ·
∑

j∈M0

cj

= (p− 1)2 · OPT (w, c) ·
∑

j∈M0

cj

as needed for proving (4).

The proof of the basis case is now complete.
Assume inductively that for some integer l ≥ 2, the claim holds for all integers

not exceeding (l − 1). We will prove the claim for l.
By induction hypothesis (condition (4)), there are at least (p− 1) ·

∏
j∈[l−1](p−

j) · OPT (w, c) ·
∑

j∈M0
cj excess users assigned by L to links in M0 ∪ . . . ∪Ml−1

whose strategy sets include links outside M0 ∪ . . . ∪Ml−1.

DefineMl as the set of all links outsideM0∪. . .∪Ml−1 that are included
in the strategy sets of such excess users; so, Ml∩(M0∪ . . .∪Ml−1) = ∅.

Clearly, in Q, all these excess users are assigned to links in Ml, so that∑
j∈Ml

∆j(Q) ≥ (p− 1) ·
∏

j∈[l−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj .

We now prove the four claimed properties for the set Ml.
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• Clearly, ∑
j∈Ml

cj =
∑

j∈Ml

∆j(Q)
Λj(Q)

≥
∑

j∈Ml
∆j(Q)

OPT (w, c)

≥
(p− 1) ·

∏
j∈[l−1](p− j) · OPT (w, c) ·

∑
j∈M0

cj

OPT (w, c)

= (p− 1) ·
∏

j∈[l−1]

(p− j) ·
∑

j∈M0

cj ,

which proves (1).

• To prove (2), consider any link j ∈ Ml. Since j 6∈ M0, it follows that
Λj(L) < p · OPT (w, c). Since SC (w, c,L) ≥ p · OPT (w, c), this implies that
Λj(L) < SC (w, c,L). Therefore, cj ≥ 1

OPT (w, c) .

Recall that in the optimal assignment Q, Λj(Q) ≤ OPT (w, c) for each link j ∈
[m]. By definition of latency, this implies that

∑
j∈Ml−1

∆j(Q) ≤ OPT (w, c)·∑
j∈Ml−1

cj . By induction hypothesis (condition (3)),
∑

j∈Ml−1
∆j(L) ≥ (p−

1) ·
∏

j∈[l−1](p−j) ·OPT (w, c) ·
∑

j∈M0
cj . It follows that there is some excess

user assigned to some link j′ ∈Ml−1. Since L is a Nash equilibrium,

Λj′(L) ≤ Λj(L) +
1
cj

≤ Λj(L) + OPT (w, c) .

By induction hypothesis (condition (2)),

Λj′(L) ≥ (p− (l − 1)) · OPT (w, c)
= (p− l) · OPT (w, c) + OPT (w, c) .

It follows that

Λj(L) ≥ (p− l) · OPT (w, c) ,

and the proof of (2) is now complete.

• To prove (3), we use (2) and (1) to derive that∑
j∈Ml

∆j(L) =
∑

j∈Ml

Λj(L) · cj

≥ (p− l) · OPT (w, c) ·
∑

j∈Ml

cj

≥ (p− l) · OPT (w, c) · (p− 1) ·
∏

j∈[l−1]

(p− j) ·
∑

j∈M0

cj

= (p− 1) ·
∏
j∈[l]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj ,
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as needed for proving (3).

• Recall first that in the optimal assignment Q, Λj(Q) ≤ OPT (w, c) for each
link j ∈ [m]. By definition of latency, this implies that

∑
j∈Ml

∆j(Q) ≤
OPT (w, c) ·

∑
j∈Ml

cj .

Clearly, the number of users assigned by L to links in M0 ∪ . . . ∪Ml whose
strategy sets include links outside M0 ∪ . . .Ml is at least∑

r∈{0}∪[l]

∑
j∈Mr

(∆j(L)−∆j(Q))

=
∑

r∈[l−1]

∑
j∈Mr

(∆j(L)−∆j(Q)) +
∑

j∈Ml

∆j(L)−
∑

j∈Ml

∆j(Q)

≥ (p− 1) ·
∏

j∈[l−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

+(p− l) · OPT (w, c) ·
∑

j∈Ml

cj − OPT (w, c) ·
∑

j∈Ml−1

cj

≥ (p− 1) ·
∏

j∈[l−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

+(p− l − 1) · OPT (w, c) ·
∑

j∈Ml

cj

≥ (p− 1) ·
∏

j∈[l−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

+(p− l − 1) · OPT (w, c) · (p− 1) ·
∏

j∈[l−1]

(p− j) ·
∑

j∈M0

cj

= (1 + (p− l − 1)) · (p− 1) ·
∏

j∈[l−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

= (p− 1) ·
∏
j∈[l]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj ,

as needed for proving (4).

The proof of the inductive claim is now complete.
We now prove an upper bound on p + 1. Fix any link j ∈ M0. Clearly,

Λj(L) ≤ SC (w, c,L) < (p + 1) · OPT (w, c). Recall that by definition of M0,
Λj(L) ≥ p · OPT (w, c) > 0. This implies that Λj(L) ≥ 1

cj
. It follows that 1

cj
<

(p + 1) · OPT (w, c). This implies that

OPT (w, c) ·
∑

j∈M0

cj >
1

p + 1
.

Assume, without loss of generality, that p ≥ 3 (otherwise k + 1 ∈ O(1)). Then,
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by Lemma 4.1 (condition (3)),

n ≥
∑

j∈Mp−1

∆j(L) +
∑

j∈Mp−2

∆j(L)

≥ (p− 1) ·
∏

j∈[p−1]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

+(p− 1) ·
∏

j∈[p−2]

(p− j) · OPT (w, c) ·
∑

j∈M0

cj

> 2 · (p− 1) · (p− 1)! · 1

p + 1

≥ (p− 1)!

= Γ(p) .

Hence

p + 1 < Γ−1(n) + 1

= O

(
lg n

lg lg n

)
,

as needed.
We remark that Theorems 3.1 and 4.2 leave a gap between our bounds on Price

of Anarchy for the case of identical users. Closing this gap remains an interesting
open problem.

5. Identical Links

With a similar proof as in Theorem 4.2, we can prove an upper bound that matches
asymptotically the lower bound shown in Theorem 3.1.
Theorem 5.3 Consider the case of identical links. Then,

PoA = O

(
lg m

lg lg m

)
.

Theorems 4.2 and 5.3 together imply:
Theorem 5.4 Consider the case of identical users and identical links. Then,

PoA = O

(
lg min{m,n}

lg lg min{m,n}

)
.

We remark that in the interesting cases where n ≥ m, Theorems 3.1 and 5.4
provide asymptotically tight bounds on Price of Anarchy for the case of identical
users and identical links.

6. The General Case

We first prove the lower bound:
Theorem 6.5 Consider the case of arbitrary users and related links. Then, PoA ≥
m− 1.
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Proof: Consider an instance 〈w, c〉 as follows:

• For each link j ∈ [m], the capacity cj is

cj =
(m− 1)!
(j − 1)!

.

• There are n = m− 1 users; the weight of user i ∈ [m− 1] is wi = ci.

Moreover, assume that for each user i ∈ [m−1], the strategy set Li is Li = {i, i+1}.

• Construct an assignment L as follows:

Each user i ∈ [m− 1] is assigned to link i + 1.

We will argue that all users are satisfied in L.

– Note that the Individual Cost of each user i ∈ [m− 1] \ {1} is

ICi(L) = Λi+1(L)

=
wi

ci+1

=
ci

ci+1

= i .

On the other hand,

∆i + wi

ci
=

wi−1 + wi

ci

=
ci−1 + ci

ci

=
ci−1

ci
+ 1

= (i− 1) + 1
= i .

It follows that user i ∈ [m− 1] \ {1} is satisfied in L.

– Consider now user 1. Since c1 = c2 and there are no users assigned to
link 1, user 1 cannot decrease its Individual Cost by switching from link
2 to link 1. So, user 1 is also satisfied in L.

It follows that L is a Nash equilibrium. Clearly,

SC (w, c,L) = max
j∈[m]

Λj(L)

= max
j∈[m]\{1}

(j − 1)

= m− 1 .
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• Construct now an assignment Q as follows:

Each user i ∈ [m− 1] is assigned to link i.

Clearly, for each link j ∈ [m − 1], Λj(L) = wj
cj

= 1 and Λm(L) = 0. So,
SC (w, c,Q) = 1. Thus, OPT (w, c) ≤ 1.

It follows that

PoA ≥ SC (w, c,L)
OPT (w, c)

≥ m− 1
1

= m− 1 ,

as needed.
We now prove the upper bound:

Theorem 6.6 Consider the case of arbitrary users and related links. Then, PoA <
m.
Proof: Consider any arbitrary instance 〈w, c〉 with an associated Nash equilib-
rium L such that

p · OPT (w, c) ≤ SC (w, c,L) < (p + 1) · OPT (w, c)

for some integer p ∈ N, and an optimal assignment Q. To prove an upper bound on
the Price of Anarchy, it suffices to prove an upper bound on p+1. To do so, we will
prove a lower bound (as a function of p) on the number of links that are necessary
for such a Nash equilibrium L. We will then use this lower bound to prove an upper
bound of m on p + 1. We continue with the details of the formal proof.

We prove an inductive claim:
Lemma 6.2 For each integer i ∈ [p], there exists a distinct link li ∈ [m] with
latency Λli(L) ≥ (p− i + 1) · OPT (w, c).
Proof: By (strong) induction on i. For the basis case, let i = 1. Since SC (w, c,L) ≥
p·OPT (w, c), there is a link l1 ∈ [m] with latency Λl1(L) ≥ p·OPT (w, c), as needed.

Assume inductively that for some integer i ≥ 2 the claim holds for all integers
not exceeding (i− 1). We will prove the claim for i. By induction hypothesis, there
exist i− 1 distinct links l1, . . . , li−1 with

Λlj (L) ≥ (p− j + 1) · OPT (w, c) ,

for each integer j ∈ [i− 1]. Since j ≤ i− 1 and i ≤ p, it follows that j ≤ p− 1. So,
p− j + 1 ≥ 2. It follows that for each integer j ∈ [i− 1],

Λlj (L) > OPT (w, c) ,

Since OPT (w, c) = SC (w, c,Q) ≥ Λlj (Q) for each integer j ∈ [i−1], it follows that
for each integer j ∈ [i−1], Λlj (L) > Λlj (Q). So,

∑
j∈[i−1] Λlj (L) >

∑
j∈[i−1] Λlj (Q).

It follows that there is some user i0 assigned by L to some link in the set {l1, . . . , li−1}
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that is assigned by Q to some link li 6∈ {l1, . . . , li−1} (otherwise,
∑

j∈[i−1] Λlj (Q) ≥∑
j∈[i−1] Λlj (L)). Thus, li is an allowed link for user i0.
Since L is a Nash equilibrium, user i0 has no incentive to switch from its link lj ,

where j ∈ [i− 1], to link li. Since user i0 is assigned to link li in Q, the additional
latency on link li in L due to user i0 switching to link li is at most the latency on
link li in Q; since Q is optimal, this additional latency is at most OPT (w, c). It
follows that

Λlj (L) ≤ Λli(L) + OPT (w, c) .

By induction hypothesis,

Λlj (L) ≥ (p− j + 1) · OPT (w, c)
≥ (p− (i− 1) + 1) · OPT (w, c)
= (p− i + 1) · OPT (w, c) + OPT (w, c) .

It follows that

Λli(L) ≥ (p− i + 1) · OPT (w, c) .

The proof of the inductive claim is now complete.
Lemma 6.2 implies that for L, there are p distinct links with latency larger

than OPT (w, c). Since
∑

j∈[m] Λj(L) =
∑

j∈[m] Λj(Q) and Λj(Q) ≤ OPT (w, c)
for each j ∈ [m], it follows that there is some other link with latency smaller than
OPT (w, c). So, p ≤ m− 1 or p + 1 ≤ m, as needed.

7. Epilogue

We presented a comprehensive collection of lower and upper bounds on Price of
Anarchy for the model of restricted parallel links, where we considered only pure
Nash equilibria. The case of identical users is the only case for which we do not yet
know tight bounds. Most important, what are tight bounds on Price of Anarchy
(for the general case of arbitrary users and related links) when all (mixed) Nash
equilibria are considered? Deriving such tight bounds remains an important open
problem.
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J. Diaz, J. Karhumäki, A. Lepistö and D. Sannella eds., pp. 593–605, Vol. 3142, Lecture
Notes in Computer Science, Springer-Verlag, July 2004.

[7] M. Gairing, T. Lücking, M. Mavronicolas and B. Monien, ”The Price of Anarchy
for Polynomial Social Cost,” Proceedings of the 29th International Symposium on
Mathematical Foundations of Computer Science, J. Fiala, V. Koubek and J. Kra-
tochvil eds., pp. 574–585, Lecture Notes in Computer Science, Springer-Verlag, August
2004.

[8] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien and M. Rode, ”Nash Equilibria
in Discrete Routing Games with Convex Latency Functions,” Proceedings of the 30th
International Colloquium on Automata, Languages, and Programming, J. Diaz,
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