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Abstract. We consider a special case of weighted congestion games with player-specific latency
functions where each player uses for each particular resource a fixed (non-decreasing) delay function
together with a player-specific constant. For each particular resource, the resource-specific delay
function and the player-specific constant (for that resource) are composed by means of a group
operation (such as addition or multiplication) into a player-specific latency function. We assume
that the underlying group is a totally ordered abelian group.
In this way, we obtain the class of (weighted) congestion games with player-specific constants; we
observe that this class is contained in the new intuitive class of dominance (weighted) congestion
games. We focus on pure Nash equilibria for congestion games with player-specific constants; for
these equilibria, we study questions of existence, computational complexity and convergence via
improvement or best-reply steps of players. Our findings are as follows:
– Games on parallel links:

• Every unweighted congestion game has an ordinal potential; hence, it has the Finite Im-
provement Property and a pure Nash equilibrium.

• There is a weighted congestion game with 3 players on 3 parallel links that does not have
the Finite Best-Reply Property (and hence neither the Finite Improvement Property).

• There is a particular best-reply cycle for general weighted congestion games with player-
specific latency functions and 3 players whose outlaw implies the existence of a pure Nash
equilibrium. This cycle is indeed outlawed for dominance (weighted) congestion games with
3 players – and hence for (weighted) congestion games with player-specific constants and
3 players. Hence, (weighted) congestion games with player-specific constants and 3 players
have a pure Nash equilibrium.

– Network congestion games:
For unweighted symmetric network congestion games with player-specific additive constants, it
is PLS-complete to find a pure Nash equilibrium.

– Arbitrary (non-network) congestion games:
Every weighted congestion game with linear delay functions and player-specific additive con-
stants (and hence with affine player-specific latency functions) has an ordinal potential; hence,
it has the Finite Improvement Property and a pure Nash equilibrium.
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1 Introduction

Motivation and Framework. Originally introduced by Rosenthal [15], congestion games model re-
source sharing among (weighted) players. Here, the strategy of each player is a set of resources. The cost
for a player on resource e is given by a latency function for e, which depends on the total weight of all
players choosing e. In congestion games with player-specific latency functions, which were later introduced
by Milchtaich [13], each player specifies her own latency function for each resource. These choices reflect
different preferences, beliefs or estimates by the players; for example, such differences occur in multiclass
networks or in networks with uncertain parameters.

In this work, we introduce a special case of (weighted) congestion games with player-specific latency
functions [13], which we call (weighted) congestion games with player-specific constants. Here, each player-
specific latency function is made up of a resource-specific delay function and a player-specific constant
(for the particular resource); the two are composed by means of a group operation. We will be assuming
that the underlying group is a totally ordered abelian group (see, for example, [9, Chapter 1]). Note that
this new model of congestion games restricts Milchtaich’s one [13] since player-specific latency functions
are no longer completely arbitrary; simultaneously, it generalizes Rosenthal’s model [15] since it allows
composing player-specific constants into each (resource-specific) latency function. For example, (weighted)
congestion games with player-specific additive constants (resp., multiplicative constants) correspond to the
case where the group operation is addition (resp., multiplication).

We will sometimes focus on network congestion games, where the resources and strategies correspond
to edges and paths in a (directed) network, respectively; network congestion games offer an appropriate
model for some aspects of routing problems. In such games, each player has a source and a destination node
and her strategy set is the set set of all paths connecting them. In a symmetric network congestion game,
all players use the same pair of source and destination; else, the network congestion game is asymmetric.
The simplest symmetric network congestion game is the parallel links network with only two nodes.

The Individual Cost for a player is the sum of her costs on the resources in her strategy. In a (pure)
Nash equilibrium, no player can decrease her Individual Cost by unilaterally deviating to a different
strategy. We shall study questions of existence of, computational complexity of, and convergence to pure
Nash equilibria for (weighted) congestion games with player-specific constants.

For convergence, we shall consider sequences of improvement and best-reply steps of players; in such
steps, a player improves (that is, decreases) and best-improves her Individual Cost, respectively. A game
has the Finite Improvement Property [14] (resp., the Finite Best-Reply Property [13]) if all improvement
paths (resp., best-reply paths) are finite. Both properties imply the existence of a pure Nash equilibrium
[14]; clearly, the first property implies the second. Also, the existence of an ordinal potential implies the
Finite Improvement Property [14] (and hence the Finite Best-Reply Property and the existence of a pure
Nash equilibrium as well).

We observe that the class of (weighted) congestion games with player-specific constants is contained in
the more general, intuitive class of dominance (weighted) congestion games that we introduce (Proposition
1). In this more general class, it holds that for any pair of players, the preferences of some of the two
players with regard to any arbitrary pair of resources necessarily induces an identical preference for the
other player (Definition 2).
State-of-the-Art. It is known that every unweighted congestion game has a pure Nash equilibrium [15];

Rosenthal’s original proof uses an exact potential [14]. It is possible to compute a pure Nash equilibrium for
an unweighted symmetric network congestion game in polynomial time by reduction to the min-cost flow
problem [3]. However, the problem becomes PLS-complete for either (arbitrary) symmetric congestion
games [3] or asymmetric network congestion games where the edges of the network are either directed [3]
or undirected [1]. Weighted asymmetric network congestion games with affine latency functions are known
to have a pure Nash equilibrium [6]; in contrast, there are weighted symmetric network congestion games
with non-affine latency functions that have no pure Nash equilibrium (even if there are only 2 players) [6,
12]. Weighted (network) congestion games on parallel links have the Finite Improvement Property (and
hence a pure Nash equilibrium) if all latency functions are non-decreasing; in this setting, [5] implies that
a pure Nash equilibrium can be computed in polynomial time by using the classical LPT algorithm due
to Graham [10]. In the general case, it is strongly NP-complete to determine whether a given weighted
network congestion game has a pure Nash equilibrium [2].

For weighted congestion games with (non-decreasing) player-specific latency functions on parallel
links, there is a counterexample to the existence of a pure Nash equilibrium with only 3 players and 3
links [13]. This result is tight since such games with 2 players have the Finite Best-Reply Property [13].
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Unweighted congestion games with (non-decreasing) player-specific latency functions have a pure Nash
equilibrium but not necessarily the Finite Best-Reply Property [13].

The special case of (weighted) congestion games with player-specific linear latency functions (without
a constant term) was studied in [7, 8]. Such games have the Finite Improvement Property if players are
unweighted [7], while there is a game with 3 weighted players that does not have it [7]. For the case of 3
weighted players, every congestion game with player-specific linear latency functions (without a constant
term) has a pure Nash equilibrium but not necessarily an exact potential [8]. For the case of 2 links, there
is a polynomial time algorithm to compute a pure Nash equilibrium [8]. A larger class of (incomplete
information) unweighted congestion games with player-specific latency functions that have the Finite
Improvement Property has been identified in [4]; the special case of our model where the player-specific
constants are additive is contained in this larger class.
Contribution and Significance. We partition our results on congestion games with player-specific

constants according to the structure of the strategy sets in the congestion game:

– Games on parallel links:
• Every unweighted congestion game with player-specific constants has an ordinal potential (The-

orem 1). (Hence, every such game has the Finite Improvement Property and a pure Nash equi-
librium.) The proof employs a potential function involving the group operation; the proof that
this function is an ordinal potential explicitly uses the assumption that the underlying group is
a totally ordered abelian group. We remark that Theorem 1 does not need the assumption that
the (resource-specific) delay functions are non-decreasing.
Theorem 1 simultaneously broadens two corresponding state-of-the-art results for two very special
cases: (i) each delay function is the identity function and the group operation is multiplication
[7] and (ii) the group operation is addition [4]. We note that, in fact, the potential function we
used is a generalization of the potential function used in [4] (for addition) to an arbitrary group
operation. However, [4] applies to all unweighted congestion games.

• It is not possible to generalize Theorem 1 to weighted congestion games (with player-specific
constants): there is such a game with 3 players on 3 parallel links that does not have the Finite
Best-Reply Property – hence, neither the Finite Improvement Property (Theorem 2). To prove
this, we provide a simple counterexample for the case of player-specific additive constants.

• Note that Theorem 2 does not outlaw the possibility that every weighted congestion game with
player-specific constants has a pure Nash equilibrium. Although we do not know the answer for
the general case with an arbitrary number of players, we have settled the case with 3 players:
every weighted congestion game with player-specific constants and 3 players has a pure Nash
equilibrium (Corollary 3). The proof proceeds in two steps.
∗ First, we establish that there is a particular best-reply cycle whose outlaw implies the existence

of a pure Nash equilibrium (Theorem 3). We remark that an identical cycle had been earlier
constructed by Milchtaich for the more general class of weighted congestion games with player-
specific latency functions [13, Section 8].

∗ Second, we establish that this particular best-reply cycle is indeed outlawed for the more
specific class of dominance (weighted) congestion games (Theorem 4). Since a (weighted)
congestion game with player-specific constants is a dominance (weighted) congestion game,
the cycle is outlawed for weighted congestion games with player-specific constants as well,
which implies the existence of a pure Nash equilibrium for them (Corollary 3). This implies,
in particular, a separation of this specific class from the general class of congestion games
with player-specific latency functions with respect to best-reply cycles.

We remark that Corollary 3 broadens the earlier result by Georgiou et al. [8, Lemma B.1] for
congestion games with player-specific multiplicative constants and identity delay functions.

– Network congestion games:
Recall that every unweighted congestion game with player-specific additive constants has a pure Nash
equilibrium [4]. Nevertheless, we establish that it is PLS-complete to compute one (Theorem 5) even
for a symmetric network congestion game. The proof uses a simple reduction from the PLS-complete
problem of computing a pure Nash equilibrium for an unweighted asymmetric network congestion
game [3].

– Arbitrary (non-network) congestion games:
Note that Theorem 2 outlaws the possibility that every weighted congestion game with player-specific
constants has the Finite Best-Reply Property. Nevertheless, we establish that every weighted conges-
tion game with player-specific constants has an ordinal potential for the special case of linear delay
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functions and player-specific additive constants (Theorem 6). (Hence, every such game has the Finite
Improvement Property and a pure Nash equilibrium.)
The proof employs a potential function and establishes that it is an ordinal potential. For the special
case of weighted asymmetric network congestion games with affine latency functions (which are not
player-specific), the potential function we used reduces to the potential function introduced in [6] for
the corresponding case.

2 Framework and Preliminaries

Totally Ordered Abelian Groups. A group (G,�) consists of a ground set G together with a binary
operation � : G × G → G; � is associative and allows for an identity element and inverses. The group
(G,�) is abelian if � is commutative. We will consider totally ordered abelian groups with a total order on
G [9] which satisfy translation invariance: for all triples r, s, t ∈ R, if r ≤ s then r � t ≤ s � t. Examples
of totally ordered, translation-invariant ordered groups include (i) (R \ {0}, ·) under the usual number-
ordering, and (ii) (R2, +) under the lexicographic ordering on pairs of numbers. We will often focus on
the case where G is R (the set of reals).
Congestion Games. For all integers k ≥ 1, we denote [k] = {1, . . . , k}. A weighted congestion game
with player-specific latency functions [13] is a tuple Γ = (n, E, (wi)i∈[n], (Si)i∈[n], (fie)i∈[n],e∈E). Here, n
is the number of players and E is a finite set of resources. For each player i ∈ [n], wi > 0 is the weight and
Si ⊆ 2E is the strategy set of player i. For each pair of player i ∈ [n] and resource e ∈ E, fie : R>0 → R>0

is a non-decreasing player-specific latency function. In the unweighted case, wi = 1 for all players i ∈ [n].
In a (weighted) network congestion game (with player-specific latency functions), resources and strate-

gies correspond to edges and paths in a directed network. In such games, each player has a source and a
destination node, each of her strategies is a path from source to destination and all paths are possible.
In a symmetric network congestion game, all players use the same pair of source and destination; else,
the network congestion game is asymmetric. In the parallel links network, there are only two nodes; this
gives rise to symmetric network congestion games.

Definition 1. Fix a totally ordered abelian group (G,�). A weighted congestion game with
player-specific constants is a weighted congestion game Γ with player-specific latency functions
such that (i) for each resource e ∈ E, there is a non-decreasing delay function ge : R>0 → R>0, and
(ii) for each pair of a player i ∈ [n] and a resource e ∈ E, there is a player-specific constant cie > 0,
so that for each player i ∈ [n] and resource e ∈ E, fie = cie � ge.

In a weighted congestion game with player-specific additive constants (resp., player-specific multiplica-
tive constants), G is R and � is + (resp., G is R\{0} and � is ·). The special case of (weighted) congestion
games with player-specific constants where for all players i ∈ [n] and resources e ∈ E, cie = e (the identity
element of G) yields the (weighted) congestion games introduced by Rosenthal [15]. So, (weighted) con-
gestion games with player-specific constants fall between (weighted) congestion games [15] and (weighted)
congestion games with player-specific latency functions [13].

We now prove that, in fact, congestion games with player-specific constants are contained within a
more restricted class of congestion games with player-specific latency functions that we introduce. Fix a
weighted congestion game Γwith player-specific latency functions. Consider a pair of (distinct) players
i, j ∈ [n] and a pair of (distinct) resources e, e′ ∈ E. Say that i dominates j for the ordered pair 〈e, e′〉
if for every pair of positive numbers x, y ∈ R>0, fie(x) > fie′(y) implies fje(x) > fje′(y). Intuitively, i
dominates j for 〈e, e′〉 if the decision of i to switch her strategy from e to e′ always implies a corresponding
decision for j; in other words, j always follows the decision of i (to switch or not) for the pair 〈e, e′〉.

Definition 2. A weighted congestion game with player-specific latency functions is called domi-
nance (weighted) congestion game if for all pairs of players i, j ∈ [n], for all pairs of resources
e, e′ ∈ E, either i dominates j for 〈e, e′〉 or j dominates i for 〈e, e′〉.

We prove:
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Proposition 1. A (weighted) congestion game with player-specific constants is a dominance (weighted)
congestion game.

Proof. Fix a pair of players i, j ∈ [n] and a pair of resources e, e′ ∈ E. We proceed by case analysis.

– Assume first that cie�cje′ ≥ cie′�cje. We will show that j dominates i for 〈e, e′〉. Fix a pair of numbers
x, y ∈ R>0. Assume that fje(x) > fje′(y) or cje � ge(x) > cje′ � ge′(y). By translation-invariance, it
follows that cie � cje � ge(x) > cie � cje′ � ge′(y). The assumption that cie � cje′ ≥ cie′ � cje implies
that cie�cje′ �ge′(y) ≥ cie′ �cje �ge′(y). It follows that cie �ge(x) > cie′ �ge′(y) or fie(x) > fie′ (y).
Hence, j dominates i for 〈e, e′〉.

– Assume now that cie′�cje > cie�cje′ . We will show that i dominates j for 〈e, e′〉. Fix a pair of numbers
x, y ∈ R>0. Assume that fie(x) > fie′(y) or cie � ge(x) > cie′ � ge′(y). By translation-invariance, if
follows that cje � cie � ge(x) > cje � cie′ � ge′(y). The assumption that cie′ � cje > cie � cje′ implies
that cje�cie′ �ge′(y) > cje′ �cie�ge′(y). It follows that cje�ge(x) > cje′ �ge′(y) or fje(x) > fje′ (y).
Hence, i dominates j for 〈e, e′〉.

The proof is now complete. ��
Profiles and Individual Cost. A strategy for player i ∈ [n] is some specific si ∈ Si. A profile is

a tuple s = (s1, . . . , sn) ∈ S1 × . . . × Sn. For the profile s, the load δe(s) on resource e ∈ E is given
by δe(s) =

∑
i∈[n] | si�e wi. For the profile s, the Individual Cost of player i ∈ [n] is given by ICi(s) =∑

e∈si
fie (δe(s)) =

∑
e∈si

cie � ge(δe(s)).

Pure Nash Equilibria. Fix a profile s. A player i ∈ [n] is satisfied if she cannot decrease her Individual
Cost by unilaterally changing to a different strategy; else, player i is unsatisfied. So, an unsatisfied
player i can take an improvement step to decrease her Individual Cost; if player i is satisfied after
the improvement step, the improvement step is called a best-reply step. An improvement cycle (resp.,
best-reply cycle) is a cyclic sequence of improvement steps (resp., best-reply steps). A game has the
Finite Improvement Property (resp., Finite Best-Reply Property) if all sequences of improvement steps
(resp., best-reply steps) are finite; clearly, the Finite Improvement Property (resp., the Finite Best-Reply
Property) outlaws improvement cycles (resp., best-reply cycles). Clearly, the Finite Improvement Property
implies the Finite Best-Reply Property. A profile is a (pure) Nash equilibrium if all players are satisfied.
Clearly, the Finite Improvement Property implies the existence of a pure Nash equilibrium (as also does
the Finite Best-Reply Property).

An ordinal potential for the game Γ [14] is a function Φ : S1 × . . . × Sn → R that decreases when
a player takes an improvement step; the special case where the decrease to the function is equal to the
decrease of the Individual Cost of the deviating player corresponds to an exact potential [14]. A game with
an ordinal potential has the Finite Improvement Property (and hence the Finite Best-Reply Property
and a pure Nash equilibrium), but not vice versa [14].
PLS(-complete) Problems. PLS [11] includes optimization problems where the goal is to find a local
optimum for a given instance; this is a feasible solution with no feasible solution of better objective value
in its well-determined neighborhood. A problem Π in PLS has an associated set of instances IΠ . There
is, for every instance I ∈ IΠ , a set of feasible solutions F(I). Furthermore, there are three polynomial
time algorithms A, B, and C. A computes for every instance I a feasible solution S ∈ F(I); B computes
for a feasible solution S ∈ F(I), the objectice value; C determines, for a feasible solution S ∈ F(I),
whether S is locally optimal and, if not, it outputs a feasible solution in the neighborhood of S with
better objective value.

A PLS-problem Π1 is PLS-reducible [11] to a PLS-problem Π2 if there are two polynomial time
computable functions F1 and F2 such that F1 maps instances I ∈ IΠ1 to instances F1(I) ∈ IΠ2 and
F2 maps every local optimum of the instance F1(I) to a local optimum of I. A PLS-problem Π is
PLS-complete [11] if every problem in PLS is PLS-reducible to Π .

3 Congestion Games on Parallel Links

We introduce a function Φ with

Φ(s) =
⊙
e∈E

δe(s)⊙
i=1

ge(i) �
n⊙

i=1

cisi .

for any profile s. We now prove that this function is an ordinal potential:
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Theorem 1. Every unweighted congestion game with player-specific constants on parallel links has an
ordinal potential.

Proof. Fix a profile s. Consider an improvement step of player k ∈ [n] to strategy tk, which transforms s
to t. Clearly, ICk(s) > ICk(t) or

gsk
(δsk

(s)) � cksk
> gtk

(δtk
(t)) � cktk

.

Note also that δsk
(t) = δsk

(s)−1 and δtk
(t) = δtk

(s)+1, while δe(t) = δe(s) for all e ∈ E \{sk, tk}. Hence,

Φ(s) =
⊙
e∈E

δe(s)⊙
i=1

ge(i) �
⊙
i∈[n]

cisi

=
⊙

e∈E\{sk,tk}

δe(s)⊙
i=1

ge(i) �
⊙

i∈[n]\{k}
cisi �

δsk
(s)⊙

i=1

gsk
(i) �

δtk
(s)⊙

i=1

gtk
(i) � cksk

=
⊙

e∈E\{sk,tk}

δe(s)⊙
i=1

ge(i) �
⊙

i∈[n]\{k}
cisi �

δsk
(s)−1⊙

i=1

gsk
(i) �

δtk
(s)⊙

i=1

gtk
(i) � gsk

(δsk
(s)) � cksk

>
⊙

e∈E\{sk,tk}

δe(s)⊙
i=1

ge(i) �
⊙

i∈[n]\{k}
cisi �

δsk
(s)−1⊙

i=1

gsk
(i) �

δtk
(s)⊙

i=1

gtk
(i) � gtk

(δtk
(t)) � cktk

=
⊙

e∈E\{sk,tk}

δe(t)⊙
i=1

ge(i) �
⊙

i∈[n]\{k}
cisi �

δsk
(t)⊙

i=1

gsk
(i) �

δtk
(t)⊙

i=1

gtk
(i) � cktk

=
⊙
e∈E

δe(t)⊙
i=1

ge(i) �
⊙
i∈[n]

citi

= Φ(s′),

so that Φ is an ordinal potential. ��

Theorem 1 immediately implies:

Corollary 1. Every unweighted congestion game with player-specific constants on parallel links as the
Finite Improvement Property and a pure Nash equilibrium.

We continue to prove:

Theorem 2. There is a weighted congestion game with additive player-specific constants and 3 players
on 3 parallel links that does not have the Finite Best-Reply Property.

Proof. By construction. The weights of the 3 players are w1 = 2, w2 = 1, and w3 = 1. The player-specific
constants and resource-specific delay functions are as follows:

cie Link 1 Link 2 Link 3
Player 1 0 ∞ 5
Player 2 0 0 ∞
Player 3 ∞ 0 2

Link 1 Link 2 Link 3
ge(1) 1 2 1
ge(2) 8 13 2
ge(3) 14 ∞ 10

Notice that the profiles 〈1, 2, 3〉 and 〈3, 1, 2〉 are Nash equilibria. Consider now the cycle 〈1, 1, 3〉 →
〈1, 1, 2〉 → 〈1, 2, 2〉 → 〈3, 2, 2〉 → 〈3, 2, 3〉 → 〈3, 1, 3〉 → 〈1, 1, 3〉. The Individual Cost of the deviating
player decreases in each of these steps:

IC1 IC2 IC3

〈1, 1, 3〉 14 3
〈1, 1, 2〉 14 2

IC1 IC2 IC3

〈1, 2, 2〉 8 13
〈3, 2, 2〉 7 13

IC1 IC2 IC3

〈3, 2, 3〉 2 12
〈3, 1, 3〉 15 1

So, this is an improvement cycle. Furthermore, note that each step in this cycle is a best-reply step, so
this is actually a best-reply cycle. The claim follows. ��
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We continue to consider the special case of 3 players but for the general case of weighted congestion
games with player-specific constants). We prove:

Theorem 3. Let Γ be a weighted congestion game with player-specific latency functions and 3 players
on parallel links. If Γ does not have a best-reply cycle

〈l, j, j〉 → 〈l, l, j〉 → 〈k, l, j〉 → 〈k, l, l〉 → k, j, l〉 → 〈l, j, l〉 → 〈l, j, j〉
(where l �= j, j �= k, l �= k are any three links and w1 ≥ w2 ≥ w3) then Γ has a pure Nash equilibrium.

Proof. Assume that Γ does not have a best-reply cycle of the given form. We will construct a pure Nash
equilibrium for Γ . We start by assigning player 1 to a best link: one that minimizes her Individual Cost.
Then, we assign player 2 to her best link (given the assignment of player 1). We now distinguish three
different cases.

– Case (A): Players 1 and 2 are assigned to the same link a and player 1 remains satisfied.
– Case (B): Players 1 and 2 are assigned to the same link a and player 1 becomes unsatisfied.
– Case (C): Players 1 and 2 assigned to different links a and b, respectively.

We will show how, in each of these cases, a pure Nash equilibrium can be reached by assigning player 3
and taking some best-reply steps.

Case (A): Assign now player 3 to her best link (given the assignments of players 1 and 2). If this link is
different from a, we reached a Nash equilibrium. If all players are assigned to link a but the current profile
is not a Nash equilibrium, at least one of the players 1 and 2 is unsatisfied. We reach a Nash equilibrium
by a best-reply step for one unsatisfied player.

Case (B): We now do a best-reply step for player 1. Let b, b �= a, be the link where player 1 is now
assigned. Both players 1 and 2 are satisfied in the current profile. Assign now player 3 to her best link.

– If this link is different from both a and b, we reached a Nash equilibrium.
– If player 3 is together with player 2, we also reached a Nash equilibrium since w1 ≥ w3 and a was a

best link for player 2 initially.
– There remains the case where player 3 is together with player 1. If player 1 is satisfied, we reached

a Nash equilibrium. Else, we take a best-reply step for player 1. Now player 1 is either assigned to
link a or to a link that is different from both a and b. In both cases, players 1 and 3 are obviously
satisfied, while player 2 is also satisfied since a was a best link for player 2 initially (even with player
1 on it). So, we reached a Nash equilibrium.

Case (C): Note that both players are satisfied in the current profile. We now assign player 3 to her best
link. If this link is different from both a and b, we reached a Nash equilibrium. We will now consider the
two remaining cases (C1) where player 3 is assigned to a together with player 1, and (C2) where player
3 is assigned to link b together with player 2. Both cases (C1) and (C2) are shown in diagrammatic form
in Figure 1.

Case (C1): If player 1 is satisfied, we reached a Nash equilibrium. Else, we take a best-reply step for
player 1. Now player 1 is either assigned to link b or to some other link different from a. In both cases,
players 1 and 3 are obviously satisfied. If player 2 is satisfied we reached a Nash equilibrium. Otherwise
we do a best-reply step for player 2.

If player 1 were assigned to link b, the best-reply step takes player 2 either to link a or to some other
link different from b. In both cases, players 1 and 2 are obviously satisfied. Player 3 is satisfied since a
was a best link for player 3 initially (even with player 1 on it). So, we reached a Nash equilibrium.

Thus, the case remains where player 1 were assigned to a link c different from both a and b. The initial
decision of player 2 for to her best link implies that her current best-reply step will assign her to link a
together with player 3. If the current profile is not a Nash equilibrium, then player 1 is either satisfied of
unsatisfied. We proceed by case analysis.

– If player 1 is satisfied, we take a best-reply step for player 3. The initial decision of player 3 for her
best link implies that player 3 will go to link b, and both 2 and 3 are obviously satisfied. Player 1 is
also satisfied since she neither can improve by switching to link a (due to her earlier best-reply step)
nor to some other different link (since she was satisfied on link c before the best-reply step of player
3). So, we reached a Nash equilibrium.
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– If player 1 is unsatisfied, we take a best-reply step for player 1. Now player 1 will be assigned to link b
(since choosing any other link would imply a contradiction to her earlier best-reply step). The initial
decision of player 3 for a best link implies that she is still satisfied. Player 2 is also satisfied since she
neither wants to deviate to link b (due to her last best-reply step) nor to any other link different from
a. (For the latter, observe that her initial decision for her best link implies that a deviation to a link
different from a and b would induce an Individual Cost greater than or equal to her Individual Cost
after her deviation to link b.) Since all players are satisfied, we reached a Nash equilibrium.

Case (C2): If player 2 is satisfied, we reached a Nash equilibrium. Else, we take a best-reply step for
player 2. Now player 2 is assigned to link a or to a link different from a and b. In the latter case, we
obviously reached a Nash equilibrium. If player 2 is assigned to link a, players 2 and 3 are obviously
satisfied. If player 1 is also satisfied, we reached a Nash equilibrium. Else, we take a best-reply step for
player 1 by which she is assigned either to link b or to a link c different from a and b. In both cases, both
players 1 and 2 are obviously satisfied. If player 3 is also satisfied, we reached a Nash equilibrium. Else,
we take a best-reply step for player 3.

– If player 1 were assigned to link b, then player 3 (after her best-reply step) either is assigned to link a
or to a link different from a and b. In both cases, both players 1 and 3 are obviously satisfied; it follows
from player 2’s earlier best-reply step that she is also satisfied. So, we reached a Nash equilibrium.

– If player 1 were assigned to link c, then player 3 (after her best-reply step) will be necessarily assigned
to link a. (Player 3’s initial decision for her best link implies that she cannot switch to another link.)
If the current profile is not a Nash equilibrium player 1 is either unsatisfied or satisfied.
If she is unsatisfied, we take a best-reply step for player 1 by which she will be necessarily assigned to
link b. All other links would imply a contradiction to her earlier best-reply step. Player 3 is satisfied
since she wants to deviate neither to link b (due to her last best-reply step) nor to any link other than
b (due to her last best-reply step and her initial decision for a best link). Player 2’s last best-reply
step implies that she is also satisfied. So, we have reached a Nash equilibrium.
If player 1 is satisfied, we take a best-reply step for player 2 by which she is necessarily assigned to link
b. All other links would imply a contradiction to her initial decision for a best link. Note that both
players 2 and 3 are now satisfied. If we have not yet reached a Nash equilibrium, we take a best-reply
step for player 1 by which she will be necessarily assigned to link a (due to her latest best-reply step).
Player 2 is now satisfied since she neither wants to go to link a (due to her last best-reply step) nor
to any link other than a (due to her initial decision for a best link). If we have not yet reached a
Nash equilibrium, we take a best-reply step for player 3. Player 3 is now necessarily assigned to link b
(since all other links would imply a contradiction to her initial decision for a best link). But this would
complete a best-reply cycle 〈a, b, b〉 → 〈a, a, b〉 → 〈c, a, b〉 → 〈c, a, a〉 → 〈c, b, a〉 → 〈a, b, a〉 → 〈a, b, b〉.
A contradiction.

It follows that Γ has a pure Nash equilibrium. ��
We continue to prove:

Theorem 4. Every dominance weighted congestion game with 3 players on parallel links does not have
an improvement cycle of the form

〈l, j, j〉 → 〈l, l, j〉 → 〈k, l, j〉 → 〈k, l, l〉 → k, j, l〉 → 〈l, j, l〉 → 〈l, j, j〉
where l �= j, j �= k, l �= k are any three links and w1 ≥ w2 ≥ w3.

Proof. Assume, by way of contradiction, that there is a dominance congestion game with such a cycle.
Since all steps in the cycle are improvement steps, one gets for player 2 that

f2j(w2 + w3) > f2l(w1 + w2) (1)
f2l(w2 + w3) > f2j(w2). (2)

In the same way, one gets for player 3 that

f3j(w3) > f3l(w2 + w3) (3)
f3l(w1 + w3) > f3j(w2 + w3). (4)

We proceed by case analysis on whether 2 dominates 3 for 〈j, l〉 or 3 dominates 2 for 〈j, l〉.
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– Assume first that 2 dominates 3 for 〈j, l〉. Then (1) implies that

f3j(w2 + w3) > f3l(w1 + w2) ≥ f3l(w1 + w3)

(since f3l is non-decreasing and w2 ≥ w3), a contradiction to (4).
– Assume now that 3 dominates 2 for 〈j, l〉. Then, (3) implies that

f2l(w2 + w3) < f2j(w3) ≤ f2j(w2)

(since f2j is non-decreasing and w2 ≥ w3), a contradiction to (2).

The proof is now complete. ��
Since dominance (weighted) congestion games are a subclass of (weighted) congestion games with player-
specific latency functions, Theorems 3 and 4 immediately imply:

Corollary 2. Every dominance weighted congestion game with 3 players on parallel links has a pure
Nash equilibrium.

By Proposition 1, Corollary 2 immediately implies:

Corollary 3. Every weighted congestion game with player-specific constants and 3 players on parallel
links has a pure Nash equilibrium.

4 Network Congestion Games

We prove:

Theorem 5. It is PLS-complete to compute a pure Nash equilibrium in an unweighted symmetric net-
work congestion game with player-specific additive constants.

Proof. Clearly, the problem of computing a pure Nash equilibrium in an unweighted symmetric congestion
game with player-specific additive constants is a PLS-problem. (The set of feasible solutions is the set
of all profiles and the neighborhood of a profile is the set of profiles that differ in the strategy of exactly
one player; the objective function is the ordinal potential since a local optimum of this functions is a
Nash equilibrium [14].) To prove PLS-hardness, we use a reduction from the PLS-complete problem of
computing a pure Nash equilibrium for an unweighted, asymmetric network congestion game [3]. For the
reduction, we construct the two functions F1 and F2:

– Given an unweighted, asymmetric network congestion game Γ on a network G, where (ai, bi)i∈[n] are
the source and destination nodes of the n players and (fe)e∈E are the latency functions, F1 constructs
a symmetric network congestion game Γ ′ with n players on a graph G′, as follows:
• G′ includes G, where for each edge e of G, g′e := fe and c′ie = 0 for each player i ∈ [n].
• G′ contains a new common source a′ and a new common destination b′; for each player i ∈ [n],

we add an edge (a′, ai) with g′(a′,ai)
(x) := 0, c′i(a′,ai)

:= 0, and c′k(a′,ai)
:= ∞ for all k �= i; for

each player i ∈ [n], there we add an edge (bi, b
′) with g′(bi,b′)(x) := 0, c′i(bi,b′) := 0, and c′k(bi,b′) :=

∞ for all k �= i.
– Consider now a pure Nash equilibrium t for Γ ′. The function F2 maps t to a profile s for Γ (which,

we shall prove, is a Nash equilibrium for Γ ) as follows:
• Note first that for each player i ∈ [n], ti (is a path that) includes both edges (a′, ai) and (bi, b

′)
(since otherwise ICi(t) = ∞). Construct si from ti by eliminating the edges (a′, ai) and (bi, b

′).
It remains to prove that s = F2(t) is a Nash equilibrium for Γ . By way of contradiction, assume
otherwise. Then there is a player k that can decrease her Individual Cost in Γ by changing her
path sk to s′k. But then player k can decrease her Individual Cost in Γ ′ by changing her path
tk = (a′, ak), sk, (bk, b′) to t′k = (a′, ak), s′k, (bk, b′). So, t is not a Nash equilibrium. A contradiction.

The claim follows. ��
We remark that Theorem 5 holds also for unweighted symmetric network congestion games with player-
specific additive constants and undirected edges since the problem of computing a pure Nash equilibrium
for an unweighted, asymmetric network congestion game with undirected edges is also PLS-complete [1].
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5 Arbitrary Congestion Games

We now restrict attention to weighted congestion games with player-specific additive constants (cie)i∈[n],e∈E

and linear delay functions fe(x) = ae · x with e ∈ E. This gives rise to weighted congestion games with
player-specific affine latency functions fie(x) = ae · x + cie, where i ∈ [n] and e ∈ E. For this case, we
introduce a function Φ with

Φ(s) =
n∑

i=1

∑
e∈si

wi · (2 · cie + ae · (δe(s) + wi)).

for any profile s. For any pair of player i ∈ [n] and resource e ∈ E, define φ(s, i, e) = wi ·(2·cie+ae ·(δe(s)+
wi)), so that Φ(s) =

∑n
i=1

∑
e∈si

φ(s, i, e). We now prove that this function is an ordinal potential:

Theorem 6. Every weighted congestion game with player-specific affine latency functions has an ordinal
potential.

Proof. Fix a profile s. Consider an improvement step of player k ∈ [n] to strategy tk, which transforms s
to t. Clearly, ICk(s) > ICk(t) or∑

e∈sk

(ae · δe(s) + cke) >
∑
e∈tk

(ae · δe(t) + cke).

This implies that ∑
e∈sk\tk

(ae · δe(s) + cke) >
∑

e∈tk\sk

(ae · δe(t) + cke).

Clearly,

Φ(s) − Φ(t) =
∑
i∈[n]

∑
e∈si

φ(s, i, e) −
∑
i∈[n]

∑
e∈ti

φ(t, i, e)

=
∑
i∈[n]

(∑
e∈si

φ(s, i, e) −
∑
e∈ti

φ(t, i, e)

)

= +
∑
e∈sk

φ(s, k, e) −
∑
e∈tk

φ(t, k, e)

+
∑

i∈[n]\{k}

(∑
e∈si

φ(s, i, e) −
∑
e∈ti

φ(t, i, e)

)

We consider the first and the second part of this expression separately. On one hand,∑
e∈sk

φ(s, k, e) −
∑
e∈tk

φ(t, k, e)

=
∑

e∈sk\tk

φ(s, k, e) −
∑

e∈tk\sk

φ(t, k, e)

=
∑

e∈sk\tk

wk · (2 · cke + ae · (δe(s) + wk)) −
∑

e∈tk\sk

wk · (2 · cke + ae · (δe(t) + wk)).

On the other hand,

∑
i∈[n]\{k}

(∑
e∈si

φ(s, i, e) −
∑

e∈ti=si

φ(t, i, e)

)

=
∑

i∈[n]\{k}

∑
e∈si

(φ(s, i, e) − φ(t, i, e))

=
∑

i∈[n]\{k}

⎛
⎝ ∑

e∈si∩(sk\tk)

(φ(s, i, e) − φ(t, i, e)) +
∑

e∈si∩(tk\sk)

(φ(s, i, e) − φ(t, i, e))

⎞
⎠
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=
∑

e∈sk\tk

∑
i∈[n]\{k} | e∈si

(φ(s, i, e) − φ(t, i, e)) +
∑

e∈tk\sk

∑
i∈[n]\{k} | e∈si

(φ(s, i, e) − φ(t, i, e))

=
∑

e∈sk\tk

∑
i∈[n]\{k} | e∈si

(wi · ae · (δe(s) − δe(t))) +
∑

e∈tk\sk

∑
i∈[n]\{k} | e∈si

(wi · ae · (δe(s) − δe(t)))

=
∑

e∈sk\tk

∑
i∈[n]\{k} | e∈si

(wi · ae · wk) +
∑

e∈tk\sk

∑
i∈[n]\{k} | e∈si

(wi · ae · (−wk))

= wk ·
∑

e∈sk\tk

ae · (δe(s) − wk) − wk ·
∑

e∈tk\sk

ae · (δe(t) − wk) .

Putting these together yields that

Φ(s) − Φ(t) = −wk ·
∑

e∈sk\tk

(2 · cke + ae · (δe(s) + wk) + ae · (δe(s) − wk))

−wk ·
∑

e∈tk\sk

(2 · cke + ae · (δe(t) + wk) + ae · (δe(t) − wk))

= 2 · wk ·
⎛
⎝ ∑

e∈sk\tk

(cke + ae · δe(s)) −
∑

e∈tk\sk

(cke + ae · δe(t))

⎞
⎠

> 0,

so that Φ is an ordinal potential. ��
Theorem 6 immediately implies:

Corollary 4. Every weighted congestion game with player-specific affine latency functions has the Finite
Improvement Property and a pure Nash equilibrium.
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A Appendix

A diagrammatic representation of the proof of Theorem 3
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Fig. 1. Proof of Theorem 3: two diagrams for cases (C1) and (C2). Circles show the players that are necessarily
satisfied in a given profile.


