
The Price of Defense∗

Marios Mavronicolas† Loizos Michael‡ Vicky Papadopoulou† Anna Philippou†

Paul Spirakis§

Abstract

We consider a strategic game on a graph G(V, E) with two confronting classes of randomized
players: ν attackers who choose vertices and wish to minimize the probability of being caught by
the defender, who chooses edges and gains the expected number of attackers it catches. So, the
defender captures system rationality. In a Nash equilibrium, no single player has an incentive to
unilaterally deviate from its randomized strategy. The Price of Defense is the worst-case ratio, over
all Nash equilibria, of the optimal gain of the defender (which is ν) over the gain of the defender
at a Nash equilibrium. In this work, we provide a comprehensive collection of trade-offs between
the Price of Defense and the computational efficiency of Nash equilibria.

• Through a reduction to a Zero-Sum Two-Players Game, we prove that a general Nash equilib-
rium can be computed via Linear Programming in polynomial time. However, the reduction
does not provide any apparent guarantees on the Price of Defense.

• To obtain guarantees on Price of Defense, we analyze several structured Nash equilibria:

– In a Matching Nash Equilibrium, the support of the defender is an Edge Cover of the
graph. We prove that Matching Nash equilibria can still be computed in polynomial
time, and they incur a Price of Defense of α(G), the Independence Number of G.

– In a Perfect Matching Nash Equilibrium, the support of the defender is a Perfect Matching
of the graph. We prove that Perfect Matching Nash Equilibria can be computed in
polynomial time, and they incur a Price of Defense of |V |

2 .
– In a Defender Uniform Nash equilibrium, the defender chooses each edge in its support

with uniform probability. We prove that Defender Uniform Nash equilibria incur a Price
of Defense falling between those for Matching and Perfect Matching Nash Equilibria;
however, it is NP-complete to even decide the existence of a Defender Uniform Nash
equilibrium.

– In an Attacker Symmetric, Uniform Nash equilibrium, all attackers have a common sup-
port on which each uses a uniform probability distribution. We prove that Attacker
Symmetric Uniform Nash equilibria can be computed in polynomial time and incur a

Price of Defense of either |V |
2 or α(G).

In conclusion, the Perfect Matching Nash Equilibrium both can be computed efficiently and provides
the best (known) Price of Defense, when it exists. Else, Matching Nash equilibria, Defender Uniform
Nash equilibria and Attacker Symmetric Uniform Nash equilibria provide interesting trade-offs
between the Price of Defense and computational efficiency.

Throughout the paper, missing proofs can be found in the attached Appendix. It may be read at the
discretion of the Program Committee.
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1 Introduction

Motivation and Framework. We revisit a network game with attackers and a defender, introduced
recently by Mavronicolas et al. [12] and further studied in [7, 13]; the game was conceived as an
appropriate theoretical model of security attacks and defenses in emerging networks like the Internet.
In this network game, nodes are vulnerable to infection by threats, called attackers. Available to the
network is a security software (or firewall [3]), called the defender, cleaning some part of the network.

This network game is partially motivated by Network Edge Security [11], a new distributed fire-
wall architecture where a firewall is implemented in a distributed way and protects the subnetwork
spanned by the nodes participating in the distributed implementation. The simplest case where the
subnetwork is a single link (with its two incident nodes) offers the initial basis for the theoretical
model of Mavronicolas et al. [12]. Understanding the mathematical pitfalls of attacks and defenses in
this simplest theoretical model is a necessary prerequisite for making rigorous progress in the analysis
of distributed firewall architectures with more involved topologies.

Each attacker (called a vertex player) targets a node of the network chosen via its own probability
distribution on nodes; the defender (called the edge player) chooses a single link via its own probability
distribution on links. A node chosen by an attacker is destroyed unless it crosses the link being cleaned
by the defender. The Individual Profit of an attacker is the probability that it is not caught; the
Individual Profit of the defender is the expected number of attackers it catches.

To the best of our knowledge, the network game of Mavronicolas et al. [12] is the first strategic
game where the network (system) is explicitly modeled as a distinct, non-cooperative player (namely,
the defender). Unlike previously studied games that evaluated the effect of selfish behavior on system
performance using the Price of Anarchy [10, 18] (which implicitly modeled the system), we pursue this
evaluation by defining and using the Price of Defense as the worst case ratio of ν over the Individual
Profit of the defender.

We are interested in analyzing the Price of Defense for Nash equilibria [14, 15], where no single
player has an incentive to deviate from its randomized strategy. (It is known [12] that pure Nash
equilibria do not exist for this game unless the graph is trivial.) How does the Price of Defense vary
with Nash equilibria? Are there Nash equilibria that both are computationally tractable and offer
good Price of Defense? Such questions are the focus of our work. Our answers make a comprehensive
collection of trade-offs between Price of Defense and the computational complexity of Nash equilibria.

Contribution. We prove that a (mixed) Nash equilibrium for our network game can be computed in
polynomial time (Theorem 4.1). The proof is by reduction to the case of two players (one attacker and
one defender), which is shown to be constant-sum. Constant-sum Two-Players games are reducible
to Linear Programming [16], hence solvable in polynomial time [9]. However, the reduction to Linear
Programming hides the Price of Defense. This invites the consideration of special classes of Nash
equilibria with sufficient structure for the evaluation of the incurred Prices of Defense.

Matching Nash Equilibria. Introduced in [12], a Matching Nash equilibrium is defined to satisfy
several (necessary) covering properties of Nash equilibria (for example, the support of the edge player
is an Edge Cover of the graph) and two additional properties (for example, the support of the vertex
players is an Independent Set of the graph), in addition, all vertex players use a common probability
distribution, and each player uses a uniform probability distribution on its support.

• We provide a new characterization of graphs admitting Matching Nash Equilibria (Theorem
5.3). Such graphs have their Independence Number equal to their Edge Covering Number. The
characterization improves an earlier one (stated here as Theorem 2.2) from [12]. The charac-
terization benefits from an improved understanding of structural (graph-theoretic) properties of
Matching Nash equilibria. In particular, we prove that in a Matching Nash equilibrium, the
support of the vertex players is a Maximum Independent Set of the graph (Proposition 5.1) and
the support of the edge player is a Minimum Edge Cover of the graph (Proposition 5.2).
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• We translate the characterization into a polynomial time algorithm to (decide the existence of
and) compute a Matching Nash equilibrium (Theorem 5.4). This relies on obtaining a polynomial
time algorithm for the (new) graph-theoretic problem of deciding, given a graph G, whether its
Independence Number α(G) and Edge Covering Number β′(G) are equal, and yielding, if so,
a Maximum Independent Set for the graph (Proposition 3.1). In turn, the graph-theoretic
algorithm relies on computing a Minimum Edge Cover (via computing a Maximum Matching)
and a subsequent reduction to 2SAT.

• We prove that the Price of Defense for a Matching Nash equilibrium is α(G) (Proposition 5.5).
This relies on its modeling assumption that all vertex players are symmetric and uniform, and
on its shown property that the support of the vertex players is a Maximum Independent Set.

Perfect Matching Nash Equilibria. A Perfect Matching Nash equilibrium is a Matching Nash
equilibrium where, additionally, the support of the edge player is a Perfect Matching of the graph.

• We provide a characterization of graphs admitting a Perfect Matching Nash Equilibria (Theorem

6.2). Such graphs have a Perfect Matching and their Independence Number equals |V |
2 (V is

the vertex set). The characterization benefits from a structural (graph-theoretic) property of
Perfect Matching Nash equilibria we prove, namely that the support of the vertex players has

size |V |
2 (Proposition 6.1).

• We translate the characterization into a polynomial time algorithm to (decide the existence
and) compute a Perfect Matching Nash equilibrium (Theorem 6.3). This relies on obtaining
a polynomial time algorithm for the (new) graph-theoretic problem of deciding, given a graph

G with a Perfect Matching, whether its Independence Number equals |V |
2 , and yielding, if so,

a Maximum Independent Set for the graph (Proposition 3.2). In turn, the graph-theoretic
algorithm relies on computing a Perfect Matching and a subsequent reduction to 2SAT.

• We prove that the Price of Defense for a Perfect Matching Nash Equilibrium is |V |
2 (Theorem

6.4). This relies on its modeling assumption that all vertex players are symmetric and uniform,

and on its shown property that the support of the vertex players has size |V |
2 .

The relation between the Prices of Defense for Perfect Matching and Matching Nash Equilibria is

precisely the relation between |V |
2 and α(G) for the graph G. For graphs that have both Matching

and Perfect Matching Nash Equilibria, Theorem 6.2 implies that α(G) = |V |
2 and the two Prices of

Defense coincide (as also do the two classes of equilibria). Consider a graph that has a Matching Nash
Equilibrium but not a Perfect Matching Nash Equilibrium. By the characterization of Matching Nash

Equilibria in [12, Theorem 3] (or Theorem 2.2 here), α(G) ≥ |V |
2 (else, there could not be enough

vertices inside an Independent Set to which vertices outside have to be matched). Thus, the Price of
Defense of a Perfect Matching Nash Equilibrium may not exceed that of a Matching Nash Equilibrium.

Defender Uniform Nash Equilibria. In a Defender Uniform Nash Equilibrium, the defender
chooses each edge in its support with uniform probability. Such equilibria are inspired by the recent
Uniform Nash equilibria introduced by Bonifaci et. al. [1, 2] for (classes of) bimatrix games. Bonifaci
et al. [1, 2] proved that deciding the existence of Uniform Nash equilibria is NP-complete. Clearly,
our Matching and Perfect Matching Nash Equilibria are themselves Defender Uniform.

• We provide a characterization of graphs admitting Defender Uniform Nash equilibria (Theo-
rem 7.1). The characterization involves Regular Subgraphs, Independent Sets and Expanders.
(Remarkably, Regular Subgraphs were also encountered in the work of Bonifaci et al. [1, 2].)
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Equilibrium class Complexity Price of Defense

Perfect Matching O

(√|V ||E| · log|V |
|V |2
|E|

) |V |
2

Matching O

(√|V ||E| · log|V |
|V |2
|E|

)
α(G)

Defender Uniform NP-complete |V ′
i | + |V ′

r |
2 where |V ′

i |, |V ′
r | are as in Theorem 7.1

Attacker Symmetric Uniform Polynomial |V |
2 or α(G)

General Polynomial ?

Table 1: Summary of results.

• We prove that deciding the existence of a Defender Uniform Nash equilibrium is NP-complete
(Theorem 7.2). This employs a reduction from the PARTITION INTO HAMILTONIAN SUB-
GRAPHS problem [6, Problem GT13], originally shown NP-complete by Valiant [19]. A signif-
icant milestone of our reduction is a reduction to a certain undirected version of the problem.
This version is also cited in [6, GT13] as NP-complete with attribution to (personal commu-
nication with) Papadimitriou [17]. Our NP-completeness result strengthens the corresponding
NP-completeness results of Bonifaci et al. [1, 2] since it applies to a specific game.

• We prove that the Price of Defense for Defender Uniform Nash equilibrium is |V ′
i |+ |V ′

r |
2 , where

V ′
i and V ′

r are suitable vertex sets determined by the characterization (Theorem 7.1). We argue
that this value is always between those for Perfect Matching and Matching Nash equilibria.

Compared with Matching Nash Equilibria, Defender Uniform Nash Equilibria provide a sometimes
better Price of Defense, but they are hard to compute (unless P = NP). This represents an interesting
trade-off for these two structured classes of Nash equilibria.

Attacker Symmetric Uniform Nash Equilibria. In an Attacker Symmetric Uniform Nash Equi-
librium, there is a common support for attackers and each attacker uses a uniform probability distri-
bution on it. This class is also inspired by the Uniform Nash equilibria of Bonifaci et. al. [1, 2].

• We provide a characterization of graphs admitting Attacker Symmetric Uniform Nash equilibria
(Theorem 7.1). Roughly speaking, such graphs either allow the definition of a certain probability
distribution on their edge set (Condition (1)), or have their Independence Number equal to their
Edge Covering Number (Condition (2)) and hence, by Theorem 5.3, admit Matching Nash
equilibria. Thus, the characterization partitions the class of Attacker Symmetric Uniform Nash
equilibria into two subclasses.

• We translate the characterization into a polynomial time algorithm to (decide the existence and)
compute an Attacker Symmetric Uniform Nash equilibrium (Theorem 8.2). This is in contrast
to the NP-completeness for the relative class of Defender Uniform Nash equilibria.

• We prove that the Price of Defense for Attacker Symmetric Uniform Nash Equilibria is either
|V |
2 or α(G) (Theorem 8.3). The two values are implied by Conditions (1) and (2), respectively,

in the characterization.

Our work reveals a case of strong interplay between Game Theory and Graph Theory. In fact, in this
case, the structure of the graph has been discovered to be shaping the Nash equilibrium of choice.
This shaping suggests certain ways of network design (for example, provide the availability of Perfect
Matchings) in order to induce Nash equilibria with sufficiently small Price of Defense. Our results are
summarized in Table 1.
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2 Background, Definitions and Preliminaries

Graph Theory. Throughout, we consider an undirected graph G = G(V,E) with no isolated ver-
tices. For a vertex set U ⊆ V , denote G(U) the subgraph of G induced by U . For an edge set F ⊆ E,
denote G(F ) the subgraph of G induced by F . For a vertex v ∈ V , denote dG(v) the degree of vertex
v in G, and ΔG and δG the maximum and minimum, respectively, degree of the graph.

• A vertex set IS ⊆ V is an Independent Set of the graph G if for all pairs of vertices u, v ∈ IS,
(u, v) /∈ E. A Maximum Independent Set of G is one that has maximum size; denote α(G) the
size of a Maximum Independent Set of G. α(G) is called the Independence Number.

• A Vertex Cover of G is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C
or v ∈ V C. A Minimum Vertex Cover of G is one that has minimum size; denote β(G) the size
of a Minimum Vertex Cover of G. β(G) is called the Vertex Cover Number.

• An Edge Cover of G is an edge set EC ⊆ E such that for every vertex v ∈ V , there is an
edge (v, u) ∈ EC. A Minimum Edge Cover of G is one that has maximum size; denote β′(G)
the size of a Minimum Edge Cover of G. It is known that a Minimum Edge Cover consists of
vertex-disjoint star graphs. (In a star graph, a distinguished vertex called center is connected to
all other vertices, called terminals). β′(G) is called the Edge Covering Number.

• A Matching of G is a set M ⊆ E of non-incident edges. A Maximum Matching of G is one
that has maximum size; α′(G) denotes the size of a Maximum Matching of G and it is called
the Matching Number. The currently fastest algorithm to compute a Maximum Matching of G

appears in [8] and has running time O

(√|V ||E| · log|V |
|V |2
|E|

)
. It is known that a Minimum

Edge Cover can be computed in polynomial time via computing a Maximum Matching. (See,
e.g., [20, page 115].) A Perfect Matching is a Matching that is also an Edge Cover.

For a graph G, it trivially holds that α(G) + β(G) = |V |, while also α′(G) + β′(G) = |V | (Gallai’s
Theorem [5]). Also, α′(G) ≤ β(G), since a Vertex Cover of G must include at least one vertex incident
to each edge in a Matching of G. It follows that α(G) ≤ β′(G).

Fix now a vertex set U ⊆ V . The graph G is a U -Expander graph (and the set U is an Expander
for G) if for each set U ′ ⊆ U , |U ′| ≤ |NeighG(U ′)∩ (V \U)|. An Expanding Independent Set [12] of the
graph G is an Independent Set IS of G such that V \IS is an Expander for G.

Game Theory. Associated with G is a strategic game Π(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on G:

• The set of players is N = Nvp ∪ Nep, where Nvp has ν vertex players vpi, called
attackers, 1 ≤ i ≤ ν and Nep has edge player ep, called defender.

• The strategy set Si of vertex player vpi is V , and the strategy set Sep of the edge player

ep is E. So, the strategy set S of the game is S =
(

×
i ∈ Nvp

Si

)
× Sep = V ν × E.

• Fix any strategy profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a pure profile.

– The Individual Profit of vertex player vpi is a function IPs(i) : S → {0, 1} such

that IPs(i) =
{

0, si ∈ sep

1, si �∈ sep
; intuitively, the vertex player vpi receives 1 if it is

not caught by the edge player, and 0 otherwise.

– The Individual Profit of the edge player ep is a function IPs(ep) : S → N such that
IPs(ep) = |{i : si ∈ sep}|; intuitively, the edge player ep receives the number of
vertex players it catches.
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A mixed strategy for player i ∈ N is a probability distribution over Si; thus, a mixed strategy for
a vertex player (resp., edge player) is a probability distribution over vertices (resp., edges) of G. A
profile s = 〈s1, . . . , sν , sep〉 is a collection of mixed strategies; si(v) is the probability that vertex player
vpi chooses vertex v and sep(e) is the probability that the edge player ep chooses edge e.

The support of player i ∈ N in the mixed profile s, denoted Supports(i), is the set of pure strategies
in its strategy set to which i assigns a strictly positive probability in s. Denote Supports(vp) =⋃

i∈Nvp
Supports(i). Set Edgess(v) = {(u, v) ∈ E : (u, v) ∈ Supports(ep)}. So, Edgess(v) contains all

edges incident to v that are included in the support of the edge player.

A profile is uniform if each player uses a uniform probability distribution on its support. For a
uniform profile s, for each vertex player vpi ∈ Nvp, for each vertex v ∈ V , si(v) = 1

|Supports(i)| ; for

the edge player ep, for each e ∈ E, sep(e) = 1
|Supports(ep)| . A profile s is attacker symmetric if for all

vertex players vpi, vpk ∈ Nvp, Supports(i) = Supports(k). An attacker symmetric uniform profile is
an attacker symmetric profile where each attacker uses a uniform probability distribution. A profile
is defender uniform if the edge player uses a uniform probability distribution on its support.

For a vertex v ∈ V , the probability the edge player ep chooses an edge that contains the vertex v is
denoted Ps(Hit(v)). Clearly, Ps(Hit(v)) =

∑
e∈Edgess(v) sep(e). For a vertex v ∈ V , denote as VPs(v) the

expected number of vertex players choosing vertex v according to s; so, VPs(v) =
∑

i∈Nvp
si(v). Also,

in an attacker symmetric uniform profile s, for a vertex v ∈ Supports(vp), VPs(v) =
∑

i∈Nvp
si(v) =

ν
|Supports(vp)| . For each edge e = (u, v) ∈ E, VPs(e) is the expected number of vertex players choosing

either the vertex u or the vertex v.

A mixed profile s induces an Expected Individual Profit IPs(i) for each player i ∈ N , which is
the expectation according to s of the Individual Profit of player i. For the vertex player vpi ∈ Nvp,

IPs(i) =
∑

v∈V si(v) ·
(
1 − ∑

e∈Edgess(v) sep(e)
)
; for the edge player ep, IPs(ep) =

∑
e=(u,v)∈E sep(e) ·(∑

i∈Nvp
(si(u) + si(v))

)
.

The mixed profile s is a (mixed) Nash equilibrium [14, 15] (abbreviated as NE) if for each player
i ∈ N , it maximizes IPs(i) over all mixed profiles t that differ from s only with respect to the mixed
strategy of player i. By Nash’s result [14, 15], there is at least one NE. In a NE, for each vertex player
vpi, for any vertex v ∈ Supports(i), IPs(i) = 1−∑

e∈Edgess(v) sep(e); for the edge player ep, for any edge
(u, v) ∈ Supports(ep), IPs(ep) =

∑
i∈Nvp

(si(u) + si(v)) . We use a characterization of NE from [12]:

Theorem 2.1 ([12]) A profile s is a Nash equilibrium if and only if (1) for each vertex v ∈ Supports(vp),
Ps(Hit(v)) = minv′∈V Ps(Hit(v′)), & (2) for each edge e ∈ Supports(ep), VPs(e) = maxe′∈E VPs(e′).

Theorem 2.1 implies that a Nash equilibrium can be verified in polynomial time. A Covering profile
is a profile s such that (1) Supports(ep) is an Edge Cover of G and (2) Supports(vp) is a Vertex Cover
of the graph G(Supports(ep)). It is shown in [12] that a Nash equilibrium s is a Covering profile. (It
is also shown in [12] that a Covering profile is not necessarily a Nash equilibrium.) An Independent
Covering profile [12] is a uniform attacker symmetric Covering profile s such that (1) Supports(vp)
is an Independent Set of G and (2) each vertex in Supports(vp) is incident to exactly one edge in
Supports(ep). Clearly, by the fact that s is a Covering profile and Condition (3), it follows that for an
Independent Covering profile s, |Supports(vp)| = |Supports(ep)|. It is finally shown in [12] that for an
Independent Covering profile s, there is a Matching M ⊆ Supports(ep) that matches each vertex in
V \Supports(vp) to some vertex in Supports(vp); note that |M | = |V \Supports(vp)|. In the same work,
it was proved that an Independent Covering profile is a Nash equilibrium, called a Matching NE [12].
A graph-theoretic characterization of Matching NE is provided there:

Theorem 2.2 ([12]) A graph G admits a Matching Nash equilibrium if and only if G has an Ex-
panding Independent Set.
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We study algorithmic problems of existence and computation of various classes of Nash equilibria for
the considered game.

CLASS NE EXISTENCE FIND CLASS NE
Instance: A graph G(V, E). Instance: A graph G(V, E).
Question: Does Π(G) admit a CLASS Nash equilibrium? Output: A CLASS Nash equilibrium of G.

Variable CLASS takes values GENERAL, MATCHING, PERFECT MATCHING, DEFENDER UNIFORM
and ATTACKERS SYMMETRIC UNIFORM; it determines the classes of general, Matching, Perfect
Matching, Defender Uniform and Attackers Symmetric, Uniform Nash equilibria, respectively. We
note that for all values of CLASS, membership of a profile in CLASS can be verified in polynomial
time. Since a Nash equilibrium can be verified in polynomial time (by Theorem 2.1), it follows that
CLASS NE EXISTENCE ∈ NP .

The Price of Defense is the worst-case ratio, over all Nash equilibria s, of ν
IPs(ep) .

3 Some Problems from Graph Theory

For our negative results, we will use two known, NP-complete graph-theoretic problems, stated here
in the style of Garey and Johnson [6]:

DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS
Input: A directed graph G(V,E).
Question: Can the vertices of G be partitioned into disjoint sets V1, · · · Vk, for some k, such that
each Vi contains at least three vertices and induces a subgraph that contains a Hamiltonian circuit?

UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST SIX
Input: An undirected graph G(V,E).
Question: Can the vertices of G be partitioned into disjoint sets V1, · · · Vk, for some k, such that
each Vi contains at least six vertices and induces a subgraph that contains a Hamiltonian circuit?
These problems were proved NP-complete in [19] and [17], respectively. Furthermore, for our positive
results, we will consider two (to the best of our knowledge) new graph-theoretic problems:

MAXIMUM INDEPENDENT SET EQUAL MINIMUM EDGE COVER
Instance: A graph G(V,E).
Output: A Maximum Independent Set of G of size β′(G) if α(G) = β′(G), or No if α(G) < β′(G).

MAXIMUM INDEPENDENT SET EQUAL HALF ORDER
Instance: A graph G(V,E).

Output: A Maximum Independent Set of G of size |V |
2 if α(G) = |V |

2 , or No if such does not exist.

For these two new problems, we use reductions to 2SAT (solvable in polynomial time [4]) to prove:

Proposition 3.1 MAXIMUM INDEPENDENT SET EQUAL MINIMUM EDGE COVER ∈ P

Sketch of Proof. Compute a Minimum Edge Cover EC of G. Recall that EC consists of vertex-
disjoint star graphs. Use EC to construct a 2SAT instance φ with variable set V as follows:

(1) For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.
(2) For each single-edge star graph (u, v) ∈ EC, add the clause (u ∨ v) to φ.
(3) For each multiple-edge star graph of EC with center vertex u, add the clause (ū ∨ ū) to φ.

We prove that G has an Independent Set of size |EC| (hence, α(G) = β′(G)) if and only if φ is
satisfiable; when φ is satisfiable, the set {u | χ(u) = 1} is such a Maximum Independent Set.

Similar to Proposition 3.1, we prove:
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Proposition 3.2 MAXIMUM INDEPENDENT SET EQUAL HALF ORDER ∈ P, when restricted to
the class of graphs having a Perfect Matching.

Sketch of Proof. Compute a Perfect Matching M of G. Use M to construct a 2SAT instance φ
with variable set V as follows:

(1) For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

(2) For each edge (u, v) ∈ M , add the clause (u ∨ v) to φ.

We prove that G has α(G) = |V |
2 if and only if φ is satisfiable; when φ is satisfiable, the set {u |

χ(u) = 1} is such a Maximum Independent Set of size |V |
2 .

4 General Nash Equilibria

Denote as Π̂(G) the special case of Π(G) with ν = 1; so, Π̂(G) is a Two-Players game. Consider a Nash
equilibrium ŝ of Π̂(G). Constuct from ŝ a vp-symmetric profile s for Π(G) where for each vertex player
vpi, for each vertex v ∈ V , si(v) = ŝvp(v), where vp denotes the (single) vertex player of Π̂(G); for the
edge player ep, for each edge e ∈ E, sep(e) = ŝep(e).We prove that s satisfies the characterization of
Nash equilibria in Theorem 2.1 (assuming that ŝ does); so, s is a Nash equilibrium for Π(G). Hence,
a Nash equilibrium s for Π(G) can be computed from a Nash equilibrium ŝ for Π̂(G) in polynomial
time.

We now prove that the two players game Π̂(G) is a constant-sum (two players) game: for each
profile ŝ, IPŝ(vp) + IPŝ(ep) is a constant (independent of ŝ). Clearly,

IPŝ(vp) + IPŝ(ep) =
∑
v∈V

ŝvp(v) ·
⎛
⎝1 −

∑
e∈Edgess(v)

ŝep(e)

⎞
⎠ +

∑
(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v))

=
∑
v∈V

ŝvp(v) −
∑
v∈V

ŝvp(v)

⎛
⎝ ∑

e∈Edgess(v)

ŝep(e)

⎞
⎠ +

∑
(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v))

= 1 −
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v)) +
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v)) = 1

Since a Nash equilibrium of a constant-sum, two-players game can be computed in polynomial time
via reduction to Linear Programming [16] (which can be solved in polynomial time [9]), we obtain:

Theorem 4.1 FIND GENERAL NE ∈ P

5 Matching Nash Equilibria

We first prove some graph-theoretic properties of Matching NE.

Proposition 5.1 In a Matching NE s, Supports(vp) is a Maximum Independent Set of G.

Sketch of Proof. By definition of a Matching NE, Supports(vp) is an Independent Set of G, or
V \Supports(vp) is a Vertex Cover of G. So, it suffices to prove that V \Supports(vp) is a Minimum
Vertex Cover of G. (Since α(G) + β(G) = |V |, this will imply that Supports(vp) is a Maximum
Independent Set of G.) Clearly, |V \Supports(vp)| ≥ β(G). Since s is an Independent Covering profile,
there is a Matching M of G such that |M | = |V \Supports(vp)|. Thus, β(G) ≥ α′(G) ≥ |M | =
|V \Supports(vp)|. It follows that |V \Supports(vp)| = β(G), as needed.

We continue to prove:
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Proposition 5.2 In a Matching NE s, Supports(ep) is a Minimum Edge Cover of G.

Sketch of Proof. Assume, by way of contradiction, that Supports(ep) is not a Minimum Edge
Cover of G. This implies that |Supports(ep)| > β′(G). Since s is a Matching NE, |Supports(ep)| =
|Supports(vp)|. It follows that |Supports(vp)| > β′(G). Since Supports(vp) is an Independent Set of G,
|Supports(vp)| ≤ α(G). It follows that α(G) > β′(G). A contradiction.

We are now ready to prove:

Theorem 5.3 The graph G admits a Matching NE if and only if α(G) = β′(G).

Sketch of Proof. Assume first that α(G) = β′(G). Let IS and EC be a Maximum Independent
Set and a Minimum Edge Cover of G, respectively. So, |IS| = |EC|. Consider a uniform, attack-
ers symmetric profile s with Supports(vp) = IS and Supports(ep) = EC. Thus, |Supports(vp)| =
|Supports(ep)|. We will prove that s is an Independent Covering profile.

By construction, s is uniform and attackers symmetric, Supports(ep) is an Edge Cover of G and
Supports(vp) is an Independent Set of G. So, there remains to show Condition (2) in the definition of
a Covering profile and additional Condition (2) in the definition of an Independent Covering profile.
Since EC is a Minimum Edge Cover, it is a union of disjoint star graphs. Since |Supports(vp)| =
|Supports(ep)| and Supports(vp) is an Independent Set of G, it follows that Supports(vp) consists of all
terminal vertices of the star graphs. This implies that both (i) Supports(vp) is a Vertex Cover of the
graph G(Supports(ep)) (Condition (2)) and (ii) each vertex in Supports(vp) is incident to exactly one
edge of Supports(ep) (additional Condition (2)). Hence, s is an Independent Covering profile. Since
an Independent Covering profile is a Nash equilibrium, the claim follows.

Assume now that G admits a Matching NE s. By Proposition 5.1, Supports(vp) is a Maximum Inde-
pendent Set of G, so that |Supports(vp)| = α(G). By Proposition 5.2, Supports(ep) is a Minimum Edge
Cover of G, so that |Supports(ep)| = β′(G). Since s is a Matching NE, |Supports(vp)| = |Supports(ep)|.
It follows that α(G) = β′(G), as needed.

The constructive parts of the sufficiency proofs of Proposition 3.1 and Theorem 5.3 yield together a
polynomial time algorithm MatchingNE to compute a Matching NE, if one exists:

Algorithm MatchingNE
Input: A graph G(V, E).
Output: The supports in a Matching NE s for G, or No if such does not exist.

1. Compute a Minimum Edge Cover EC of G.

2. Construct an instance φ of 2SAT as follows:

• For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

• For each single-edge star graph (u, v) ∈ EC, add the clause (u ∨ v) to φ.

• For each multiple-edge star graph of EC with center vertex u, add the clause (ū ∨ ū) to φ.

3. Compute a satisfying assignment χ of φ, or output No if such does not exist.

4. Set IS = {u | χ(u) = 1}.
5. Set Supports(ep) := EC and Supports(vp) := IS.

Theorem 5.4 Algorithm MatchingNE solves FIND MATCHING NE in time O

(√|V ||E| · log|V |
|V |2
|E|

)
.

We finally prove:

Proposition 5.5 In a Matching NE, the Price of Defense is α(G).

Sketch of Proof. Fix a Matching NE s. By the fact that s is is a Covering profile and Condition
(1) of a Matching NE, it follows that exactly one of the endpoints (say v) of edge e is contained
in Supports(vp). By Lemma 5.1, |Supports(vp)| = α(G). Since s is a NE, the Price of Defense is

ν
IPs(ep) = ν

VPs(e)
= ν

VPs(v) = ν
ν

|Supports(vp)|
= α(G), as needed.
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6 Perfect Matching Nash Equilibria

A Perfect Matching NE is a Matching NE s such that Supports(ep) is a Perfect Matching of G. For
the characterization, we first prove:

Proposition 6.1 For a Perfect Matching NE s, |Supports(vp)| = |V |
2 .

Sketch of Proof. By definition of a Perfect Matching NE, Supports(ep) is a Perfect Matching of G;

so, Supports(ep) = |V |
2 . Since a Perfect Matching NE is a special case of a Matching NE (that is, an

Independent Covering profile), |Supports(vp)| = |Supports(ep)|. It follows that |Supports(vp)| = |V |
2 ,

as needed.

We are now ready to prove a characterization of Perfect Matching NE:

Theorem 6.2 A graph G admits a Perfect Matching NE if and only if G has a Perfect Matching and

α(G) = |V |
2 .

Sketch of Proof. Assume first that G has a Perfect Matching M and α(G) = |V |
2 . Consider

a Maximum Independent Set IS of G. Define a uniform, attackers symmetric profile s by setting
Supports(ep) := M , Supports(vp) := IS. By the choice of Supports(ep), we only need to prove that s is
an Independent Covering profile. Since a Perfect Matching is a Minimum Edge Cover, this reduces to
the corresponding proof of Theorem 5.3 (where Supports(ep) was chosen as a Minimum Edge Cover).

Assume now that G admits a Perfect Matching NE s. By definition of Perfect Matching NE,
Supports(ep) is a Perfect Matching of G. Since a Perfect Matching NE is a special case of a Matching
NE, Proposition 5.1 applies to yield that Supports(vp) = α(G). By Proposition 6.1, Supports(vp) =
|V |
2 . It follows that α(G) = |V |

2 , as needed.

The constructive parts of the sufficiency proof of Proposition 3.2 and Theorem 6.2 yield together
a polynomial time algorithm PerfectMatchingNE to compute a Perfect Matching NE, if one exists.

Algorithm PerfectMatchingNE
Input: A graph G(V, E).
Output: The supports in a Perfect Matching NE s for G, or No if such does not exist.

1. Compute a Perfect Matching M of G, or output No if such does nots exist.

2. Construct an instance φ of 2SAT as follows:

• For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

• For each edge (u, v) ∈ M , add the clause (u ∨ v) to φ.

3. Compute a satisfying assignment χ of φ, or output No if such does not exist.

4. Set IS = {u | χ(u) = 1}.
5. Set Supports(ep) := M and Supports(vp) := IS.

Theorem 6.3 Algorithm PerfectMatchingNE solves FIND PERFECT MATCHING NE in time O
(√|V ||E|·

log|V |
|V |2
|E|

)
.

Observe that a Perfect Matching NE is a Matching NE for which, by Theorem 6.2, α(G) = |V |
2 .

Hence, Proposition 5.5 implies:

Theorem 6.4 In a Perfect Matching Nash equilibrium, the Price of Defense is |V |
2 .
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Figure 1: An illustration of the characterization of a Defender Uniform Nash equilibrium for G.

7 Defender Uniform Nash Equilibria

A Defender Uniform Nash equilibrium is a Defender Uniform profile that is a Nash equilibrium. We
prove a characterization of graphs admitting Defender Uniform Nash equilibria:

Theorem 7.1 A graph G admits a Defender Uniform Nash equilibrium if and only if there are sets
V ′ ⊆ V and E′ ⊆ E such that:

1. (i) ∀ v ∈ V ′, dG(E′)(v) = r, for some integer r, 1 ≤ r ≤ δ(G), and (ii) ∀ v ∈ V \V ′, r ≤ dG(E′)(v).

2. V ′ can be partitioned into two disjoint sets V ′
i and V ′

r such that,
(a) V ′

i is an Independent Set of G,

(b) Let Vout = V \(V ′
i ∪ V ′

r ). The graph G(E′(V ′
i ∪ Vout))) is a {V ′

i , Vout}-bipartite graph and a
Vout-Expander graph.

(c) It holds that E′(V ′
r ) ∪ E′(V ′

i ∪ Vout) = E′.

An illustration of a Defender Uniform Nash equilibrium for a graph G is shown in Figure 1. The edges
of G(E′) are shown with dark lines, the rest edges of G are shown with either dotted edges or with a
shadow in corresponding subgraphs of G. We now turn to studying the computational complexity of
DEFENDER UNIFORM NE EXISTENCE. We prove:

Theorem 7.2 DEFENDER UNIFORM NE EXISTENCE is NP-complete.

Proof. Recall that DEFENDER UNIFORM NE EXISTENCE ∈ NP . To prove NP-hardness, we reduce
from DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS. From any instance of this problem,
Gd(Vd, Ad), we first construct an undirected graph G(V,E) as follows:

1. Set G(V, E) to be an empty graph.

2. Add to G two cycle graphs of size 5; denoted by C1 and C2. Set V (Ci) = {vk
i : 1 ≤ k ≤ 5}, 1 ≤

i ≤ 2.

3. From Gd(Vd, Ad), compute an undirected graph G1 as follows:

• For each v ∈ Vd, add vertices v1, v2, v3 to V (G1) and edges (v1, v2)), (v2, v3) to E(G1).

• For each edge (v, u) ∈ Ad do the following:

– If edge (u, v) /∈ Ad add edge (v3, u1) to E(G1).
– Otherwise (edge (u, v) ∈ Ad) add the following to G1:

∗ Add vertices vu4, evu, e′vu, euv, e′uv,uv4, called vu-vertices, to V (G1).
∗ Add edges (v1, vu4), (v3, vu4), (vu4, evu), (vu4, e′uv), (e′uv, euv), (uv4, uv4),

(u3, uv4), (uv4, euv), (uv4, e′vu), (e′vu, evu) and (euv, evu) to E(G1).

4. Add V (G1) to V (G) and E(G1) to E(G).

5. For each v ∈ V (G1), add edges (v1
1 , v) to E(G).
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Figure 2: An illustration of (a) the transformation of a directed graph Gd to an undirected graph G1

and (b) the construction of the (undirected) graph G.

Figure 2 presents an example of (a) the transformation of a directed graph Gd to the undirected graph
G1 and (b) the construction of the (undirected) graph G from graphs G1, C1 and C2. In the following,
we adapt the notation of Theorem 7.1. Our analysis will establish several structural properties of
Defender Uniform Nash equilibria. We first prove:

Lemma 7.3 In a Defender Uniform Nash equilibrium, (i) r = 2, (ii) C2 ⊆ G(E′), (iii) V (C2) ⊆ V ′
r ,

(iv) V (C1) ⊆ V ′
r , (v) C1 ⊆ G(E′(V ′

r )) and (vi) NeighG(E)(v1
1) = {v2

1 , v5
1}.

Lemma 7.4 In a Defender Uniform Nash equilibrium of G, V (G1) ⊆ V ′
r .

We are now ready to prove a reduction from DIRECTED PARTITION INTO HAMILTONIAN SUB-
GRAPHS (with instance Gd) to UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF
SIZE AT LEAST SIX (with instance G1).

Lemma 7.5 If DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS is answered positively for
Gd, then UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST SIX is
answered positively for G1.

Lemma 7.6 If UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST
SIX is answered positively for G1 then DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS
problem is answered positively for Gd.

We finally proceed to the details of our NP-hardness proof. We prove:

Lemma 7.7 If DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS is answered positively for
Gd, then G admits a Defender Uniform Nash equilibrium.

Lemma 7.8 If G admits a Defender Uniform Nash equilibrium, then DIRECTED PARTITION INTO
HAMILTONIAN SUBGRAPHS is answered positively for Gd.

Concluding the proof are Lemmas 7.7 and 7.8. (Lemmas 7.5 and 7.6 provide in isolation an alter-
native NP-completeness proof to one in [17] for UNDIRECTED PARTITION INTO HAMILTONIAN
SUBGRAPHS.)

We finally prove:

Theorem 7.9 In a Defender Uniform Nash equilibrium, the Price of Defense is |V ′
i | + |V ′

r |
2 , where

the notation refers to Theorem 7.1.
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Sketch of Proof. In the proof of the characterization of Defender Uniform Nash equilibria, we

showed that IPs(ep) = ν

|V ′
i | + |V ′

r |
2

. Thus, the Price of Defense is ν
IPs(ep) = |V ′

i | + |V ′
r |
2 .

The worst case (maximum value) of the Price of Defense in Theorem 7.9 is obtained when Supports(vp)
is the maximum possible and set V ′

r is empty. Then, the Defender Uniform Nash equilibrium s is
actually a Matching NE and, by Proposition 5.5, the Price of Defense is equal to α(G). For the best
case (minimum value), recall that by Condition 2(b) of the characterization of Defender Uniform Nash
equilibria, the graph G(E′((V ′

i ∪ Vout)) is a Vout-Expander graph. Thus, by definition of Expander
graphs, |Vout| ≤ |V ′

i |. Since |V | = |V ′
r | + |V ′

i | + |Vout|, it follows that |V ′
r | + 2|V ′

i | ≥ |V |. Hence,

|V ′
i | + |V ′

r |
2 ≥ |V | − |V ′

r |
2 = |V |

2 . So, Defender Uniform Nash equilibria fall between Perfect Matching

and Matching Nash equilibria (with respect to Price of Defense), for the case where |V |
2 ≤ α(G).

8 Attacker Symmetric Uniform Nash Equilibria

An Attacker Symmetric Uniform NE is an Attacker Symmetric Uniform profile that is a NE. We prove
a characterization of graphs admitting Attacker Symmetric Uniform Nash equilibria:

Theorem 8.1 A graph G admits an Attacker Symmetric Uniform Nash equilibrium if and only if:

(1) There is a probability distribution p : E → [0, 1] such that (1/a)
∑

e∈EdgesG(v) p(e) =∑
e′∈EdgesG(v′) p(e′), ∀ v, v′ ∈ V and (1/b)

∑
e∈EdgesG(v) p(e) > 0 ∀ v ∈ V , OR

(2) α(G) = β′(G).

We are now ready to prove:

Theorem 8.2 FIND ATTACKERS SYMMETRIC UNIFORM NE ∈ P

Sketch of Proof. We prove that Conditions (1) and (2) can be checked in polynomial time. Condition
(1) can checked in polynomial time via solving a linear system. Condition (2) was considered before
for Matching Nash equilibria (see Theorem 5.3 and Proposition 3.1).

Finally we show:

Theorem 8.3 In an Attacker Symmetric Uniform NE, the Price of Defense is either |V |
2 or α(G).

Proof. Fix an Attacker Symmetric Uniform NE s. We compute the Price of Defense for each one of
Conditions (1) and (2) in Theorem 8.1. For Condition (2), note that Supports(vp) = |V |. Since s is a at-
tackers symmetric, vertex players uniform profile, it follows that VPs(v) =

∑
vpi∈Nvp

1
|Supports(vp)| =

ν
|V | , for any v ∈ Supports(vp). Furthermore, since s is a NE, it follows that IPs(ep) = VPs(e) = 2ν

|V | ,

for any e ∈ Supports(ep). Thus, the Price of Defense is ν
IPs(ep) = |V |

2 . For Condition (2), the case

reduces to a Matching NE for which, by Proposition 5.5, the Price of Defense is α(G).
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A Graph Theory Notation (Leftovers)

We include here some notation used in the proofs of the Appendix. For a vertex set U ⊆ V , denote
NeighG(U) = {u /∈ U : (u, v) ∈ E for some vertex v ∈ U}. The graph G is bipartite if V = V1 ∪ V2

for some disjoint vertex sets V1, V2 ⊆ V so that for each edge (u, v) ∈ E, u ∈ V1 and v∈V2. Call G a
(V1, V2)-bipartite graph.

B Proof of Proposition 3.1

Denote as C1, and C2 and C3 the set of clauses of φ obtained by rules 1, 2 and 3, respectively. Assume
first that G has an Independent Set IS of size β′(G). For each variable v of φ, set χ(v) := 1 if v ∈ IS
and χ(v) := 0, otherwise. For each edge (u, v) ∈ E at most one of its vertices can be included in IS.
Thus, the set C1 is satisfied in χ. Since |IS| = |EC|, set IS must consists of exactly one vertex of
each single-edge star graph and all terminal vertices of each multi-edge star graph of EC. Thus, sets
C2 and C3 are satifisfable in χ.

Assume now that χ is a satisfying assignment of φ. Define set IS := {u|χ(u) = 1}. Since for every
edge (u, v) ∈ EC ⊆ E, the clauses (u ∨ v) and (ū ∨ v̄) are both in φ. Thus, exactly one of vertices
u and v is included in IS. Since all clauses of set C3 are satisfied in φ, all center vertices of EC are
excluded from IS. It follows that IS consists of all terminal vertices of EC. Thus, |IS| = |EC|.
Now, consider any pair of vertices u, v ∈ IS. Then, variables u and v are true under the satisfying
assignment, and therefore the clause ū∨ v̄ does not appear in φ. Thus, (u, v) /∈ E, which implies that
IS is an Independent Set.

C Proof of Proposition 3.2

Denote as C1 and C2 the set of clauses of φ obtained by rules 1 and 2, respectively. Assume first that

G contains a Maximum Independent Set IS of size |V |
2 . For each variable v of φ, set χ(v) := 1 if

v ∈ IS and χ(v) := 0, otherwise. For every edge (u, v) ∈ M , exactly one of u and v are contained in

IS, for otherwise it is impossible to get a Maximum Independent Set with size |V |
2 . Hence, χ satisfies

all clauses of set C2. Also, for every edge (u, v) ∈ E, at most one of u and v is contained in IS. Thus,
χ satisfies all clauses of set C1. Overall, χ satisfies φ.

Assume now that χ is a satisfiable assignment of φ. Define set IS := {u|χ(u) = 1}. Since for
every edge (u, v) ∈ M ⊆ E, the clauses (u∨ v) and (ū∨ v̄) are both in φ, it follows that the satisfying

assignment makes exactly |V |
2 variables true, and thus |IS| = |V |

2 . Now, consider any pair of vertices
u, v ∈ IS. Then, variables u and v are true under the satisfying assignment, and therefore the clause
ū ∨ v̄ does not appear in φ. Thus, (u, v) /∈ E, which implies that IS is an Independent Set. Since

G contains a Perfect Matching it follows that α(G) ≤ |M | = |V |
2 . It follows that IS is a Maximum

Independent Set of G and |IS| = α(G) = |V |
2 .

D Proof of Theorem 7.1

We show the Theorem via the following two Lemmas.

Lemma D.1 If conditions (1) and (2) hold then Π(G) admits a Defender Uniform Nash equilibrium.

Proof. Construct a Defender Uniform, Attackers Symmetric profile s with the following supports for
the players: Supports(vp) := V ′ and Supports(ep) := E′. For any vpi ∈ Nvp, set si(v) := 2

2 · |V ′
i | + |V ′

r |

i



for all v ∈ V ′
i and si(v) := 1

2 · |V ′
i | + |V ′

r | for all v ∈ V ′
r . Note that s is a valid profile of Π(G): For any

vertex player vpi,
∑

v∈Supports(i)
si(v) =

∑
v∈V ′

i

2
2 · |V ′

i | + |V ′
r |+

∑
v∈V ′

r

1
2 · |V ′

i | + |V ′
r | = 2|V ′

i |
2 · |V ′

i | + |V ′
r |+

|V ′
r |

2 · |V ′
i | + |V ′

r | = 1. We next show that s is a NE.

We first show that profile s is a Covering profile: By Condition (1), Supports(ep) is an Edge
Cover of G. Set V ′

r ⊆ Supports(vp) is a Vertex Cover of the edge set E′(V ′
r ) ⊆ Supports(ep) and set

V ′
i ⊆ Supports(vp) is a Vertex Cover of the edge set E′(V ′

i ∪Vout) ⊆ Supports(ep). Since Supports(ep) =
E′(V ′

r ) ∪ E′(V ′
i ∪ Vout), it follows that Supports(vp) is a Vertex Cover of the graph G(Supports(ep)),

which concludes the claim.

Claim D.2 For any v ∈ Supports(vp), Ps(Hit(v)) = r · 1
|E′| = mine Ps(Hit(v)).

Proof. Since s is a defender uniform profile, Ps(Hit(v)) =
∑

e∈Edgess
sep(e) = |Edgess(v)| = r cdot 1

|E′| ,
when v ∈ Supports(vp) and Ps(Hit(v)) =

∑
e∈Edgess(v) sep(e) = |Edgess(v)| ≥ r · 1

|E′| , when v /∈
Supports(vp). The claim follows.

Claim D.3 For any edge e ∈ Supports(ep), VPs(e) = 2ν
2·|V ′

i |+|V ′
r | = maxe VPs(e).

Proof. Consider any e = (u, v) ∈ E. We consider all possible cases:
(i) when both u, v ∈ V ′

r , by construction, VPs(e) =
∑

vpi∈Nvp
si(v)+si(u) = ν

2 · |V ′
i | + |V ′

r | + ν
2 · |V ′

i | + |V ′
r | =

2ν
2 · |V ′

i | + |V ′
r | .

(ii) when v ∈ V ′
i and u ∈ Vout, then by construction, VPs(e) =

∑
vpi∈Nvp

si(v) + si(u) =
∑

vpi∈Nvp

2
2 · |V ′

i | + |V ′
r | +0 = 2ν

2 · |V ′
i | + |V ′

r | .
(iii) when v, u ∈ Vout, then by construction, VPs(e) = 0.

Note that the following cases are not possible: (iv) case v, u ∈ V ′
i can not exists by Condition 2(a).

(v) case v ∈ V ′
r and u ∈ Vout ∪ V ′

i can not exists by Condition 2(d).

Now consider any e = (u, v) ∈ E′. By Condition (2) of Theorem 7.1, only cases (i) or (ii) are
possible for e, which concludes that for any e ∈ Supports(ep), VPs(e) = 2ν

2 · |V ′
i | + |V ′

r | = maxe VPs(e).

We now returning in the proof of Lemma D.1 to show that s is a NE. We prove this by showing
that s satisfies the conditions of Theorem 2.1. Profile s was shown to be a Coverign profile. Moreover,
Condition 1 of Theorem 2.1 is satisfied by Claim D.3 and Conditon 2 of the Theorem by Claim D.2.
It follows that s is a NE.

Lemma D.4 A Defender Uniform NE s satisfies conditions (1) and (2).

Proof. Set V ′ = Supports(vp) and E′ = Supports(ep) . We prove that sets V ′ and E′ satisfy the
requiremements of corresponding sets of Theorem 7.1.

Condition (1): For any veretx of V , since s is a uniform profile, Ps(Hit(v)) =
∑

e∈Edgess(v) Ps(ep, e) =∑
e∈Edgess(v)

1
|E′| = dG(E′)(v)· 1

|E′| . Also, since s is a NE, for any v ∈ V ′, Ps(Hit(v) = minv′∈V Ps(Hit(v).

Thus, dG(E′)(v) = dG(E′)(u) = ΔG(E′)(V ′) = r ≤ dG(E′)(v′), for any three vertices v, u ∈ V ′, v′ ∈ V \V ′.

Now consider the vertex of minimum degree in G. By the above results we get that r ≥ dG(E′)(v).
In order this to be feasible it must be that r ≤ δG. Condition (1) of Theorem 7.1 follows.

ii



Condition (2): Let V ′
i ⊆ V ′ such that V ′

i is an Independent Set of G and for any v ∈ V ′
i , for each

vertex u such that u ∈ NeighG(E′)(v) it holds that u /∈ V ′. Let also V ′
r = V ′\V ′

i and Vout = V \V ′.

Condition 2(a): By the definition of set V ′
i .

The following Claim will be utilized to prove the rest of the conditions.

Claim D.5 For any v ∈ V ′
i and (u, v) ∈ E′, it holds that VPs(v) = maxe VPs(e) and u /∈ V ′. For any

v ∈ V ′
r and (u, v) ∈ E′, it holds that VPs(v) < maxe VPs(e) and u ∈ V ′

r .

Proof. Consider any v ∈ V ′
i and any edge (v, u) ∈ E′ (such edge exists because V ′ is a Vertex Cover

of E′, since s is a Covering profile). By definition of set V ′
i , u /∈ V ′. Since s is a NE, it follows that

VPs(e) = VPs(v) = maxe VPs(e).

Consider any v ∈ V ′
r and any edge (v, u) ∈ E′ (such an edge exists, similarly to above). By the

definition of set V ′
r , it holds that also u ∈ V ′

r . Since s is a NE, it follows that VPs(v),VPs(u) <
maxe VPs(e).

Condition 2(c): Consider any e = (u, v) ∈ E′. If v ∈ V ′
i then by Claim D.5, u ∈ Vout and thus

e is contained in the bipartite graph E′(V ′
i ∪ Vout). If v ∈ V ′

r , then by the same claim, u ∈ V ′
r and

hence e is contained in E′(V ′
r ). Finally, note the remaining case, where both v, u /∈ Vout is not possible

since V ′ is a Vertex Cover of E′ (s is a overing profile). Thus, any edge of E′ is contained either in
E′(V ′

i ∪ Vout) or in E′(V ′
r ).

Condition 2(b): Consider any edge e = (u, v) ∈ E′ such that v ∈ V ′
r . By Claim D.5, also u ∈ V ′

r .
This combined with that ΔG(E′)(v) = r, for any v ∈ V ′ proved in Condition (1) above, concludes that
G(E′(V ′

r )) is an r-regular graph.

Consider any U ⊆ Vout. By Condition (1) showed above, dG(E′)(u) ≥ r, for any u ∈ U . Moreover
by 3(d), all neighbors of each such u, i.e., set NeighG(E′)(U), are included in V ′

i . This combined
with that for any v ∈ V ′

i ⊆ V ′, dG(E′)(v) = r (proved in (2) above), concludes that it must be that
|NeighG(E′)(U)| ≥ r · |U |. Thus, |NeighG(E′)(U)| ≥ |U | and G(E′(V ′

i ∪ Vout)) is a Vout-expander graph.

Consider any v, u ∈ V ′
i . Set V ′

i is an Independent Set of G by its definition. Thus, (v, u) /∈ E′.
Also, for any v, u ∈ Vout, there is no edge e = (v, u) ∈ E′, since otherwise VPs(e) = 0 < max VPs(e),
contradiction to that VPs(e) = maxVPs(e), for any e ∈ E′ in a NE. The above two observations
conclude that G(E′(V ′

i ∪ Vout)) is a {V ′
i , Vout}-bipartite graph.

E Proof of Theorem 7.2

E.1 Proof of Lemma 7.3

Note that δG = 2, since the vertices of C2 are connected to no other vertex of G besides the vertices
of C2. Thus, by Condition (1) of Theorem 7.1, r ≤ δG = 2, as required for condition (i).

Recall that C2 is disconnected from the rest of the graph G. Thus, we can apply Theorem 7.1 on
this graph. Observe that the graph can not be partitioned into two sets IS, V C such that IS is an
Independent Set of G and C2 is a V C-expander. So, by Theorem 7.1 on C2, in any Defender Uniform
Nash equilibrium of Π(C2) the support of the edge player must be an r′-regular graph, with 1 ≤ r′ ≤ 2.
Since C2 does not have a Perfect Matching it must be that r′ = 2, which determines parameter r of G
to be equal to 2. The above fundings conclude also that C2 ⊆ G(E′)and that V (C2) ⊆ V ′

r , as required
for conditions (ii) and (iii), respectively.

We next show some auxiliary Claims.

Claim E.1 In any Defender Uniform Nash equilibrium of G, C1 ⊆ G(E′).

Proof. By Lemma 7.3, for any any vj
1 ∈ V (C1), 1 ≤ i ≤ 5, it must be dG(E′)(v

j
1) ≥ 2 and since

dG(vj
1) = 2, we get that dG(E′)(v

j
1) = 2 and that C1 ⊆ G(E′).
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Figure 3: The possible vertex disjoint cycles covering of graph G1.

Claim E.2 In any Defender Uniform Nash equilibrium of G, v1
1 ∈ V ′.

Proof. Assume the contrary. By Claim E.1, C1 ⊆ G(E′). By the characterization of a NE, V ′ is a
Vertex Cover of E′. So, in order V ′ to cover the edge set C1, it should include some vertices of the set
v2
1 , · · · , v5

1 . This vertex set will unavoidably contain at least two neighbour vertices in C1. Moreover,
two of these vertices would be neigbours to v1

1 , since v1
1 �∈ V ′ and hence it must be that dE′(v1

1) ≥ 2.
So, assume w.l.g. that these vertices include v2

1 , v
3
1 , v

5
1 . But then, VPs(v2

1 , v
3
1)) = VPs(v2

1) + VPsv
3
1) >

VPs(v1
1 , v

2
1)) = VPs(v2

1). This contradicts to Condition 2 of the characterization of a NE for edges
(v2

1 , v
3
1), (v1

1 , v
2
1), contained in E′.

By Claim E.2, v1
1 ∈ V ′. We first show that v1

1 /∈ V ′
i . Assume the contrary. Then, since V ′

i is
an Independent Set of G, vertices v2

1 , v
5
1 , which are neighbours to v1

1 in G are not included in V ′.
Recall that C1 ⊆ G(E′) (Claim E.1) and that and V ′ is a Vertex Cover of G(E′) (s is a Covering
profile). Thus, in order V ′ to cover edge set C1, it should include both vertices of set {v3

1 , v
4
1}. But

then VPs(v3
1 , v

4
1)) = VPs(v3

1) + VPsv
4
1) > VPs(v4

1 , v
5
1)) = VPs(v4

1). This contradicts to Condition 2 of
the characterization of a NE for edges (v3

1 , v
4
1), (v

4
1 , v5

1), contained in E′. Thus, v1
1 ∈ V ′

r .

We next show that the rest of the vertices of C2 are also included in V ′. Recall that V ′ is a
Vertex Cover of E′ and that C1 ⊆ G(E′). In order V ′ to cover C1, we need to include in V ′, besides
v1
1 , at least two other vertices of C1. So, two of these vertices are neighbours in C1, assume w.l.g.

v3
1 , v

4
1 . But then, vertex v5

1 should also be contained in V ′, for otherwise edge (v4
1 , v

5
1) contained in

E′ has VPs(v4
1 , v

5
1)) = VPs(v4

1) < VPs(v3
1 , v

4
1)). Applying same arguments and for v2

1, we get that
the vertex should also be contained in V ′. Summing up, we get that V (C1) ⊆ V ′, as required
for condition (iv). Moreover, since for each such vertex there exists a neighbour to it vertex also
in V ′, we get that V (C1) ⊆ V ′

r . This combined with that C1 ⊆ E′ (Claim E.1), concludes that
C1 ⊆ G(E′((V ′

r )), as required for condition (v). Finally, note that since r = 2 we also get that actually
NeighG(E′)(v1

1) = {v2
1 , v5

1}, as required for condition (vi).

E.2 Proof of Lemma 7.4

Note first that any v ∈ V (G1) can not be contained in V ′
i . This is so, because v is connected to

another vertex contained in V ′, vertex v1
1 , by Claim E.2. Since also, VC1 , VC2 /∈ V ′

i , by Lemma 7.3, we
conclude that actually the subgraph G(E′(Vout ∪ V ′

i )) of the characterization of a Defender Uniform
Nash equilibrium, Theorem 7.1 is an empty graph. Recalling that E′ is an Edge Cover of G, the
vertices of G1 must be covered by an r-regular subgraph of G1, where r = 2, by Lemma 7.3. Finally,
since there are no edges between any vertex of the r-regular graph and any vertex of Vout, we get that
actually all vertices V (G1) ∈ V ′

r .
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E.3 Proof of Lemma 7.5

Consider a sequence of vertex disjoint directed graphs c, contain all vertices of Gd, i.e., c = c1, · · · , ck,
where cj is the j-th cycle of the sequence. We compute a sequence of cycles in G1 as follows:

1. Consider each directed cycle cj ∈ c of Gd, w.l.g. let cj = {(v, u), (u,w), · · · , (x, z), (z, v)}.
Compute an undirected cycle c′j in G1 as described below. Consider consecutive edges of the
cycle cj , starting from (v, u) and do the following:

(a) If edge (v, u) is bidirectional, then we add the following path in c′j , pvu = {(v1, v2), (v2, v3),
(v3, vu4), (vu4, e′vu), (e′vu, evu), (evu, euv), (euv , e

′
uv), (e′uv , u4), (u4, u1), (u1, u2), (u2, u3)} in

c′j ; see Figure 3(ii) for an illustration.

(b) Otherwise, if edge is unidirectional, add edges (v1, v2), (v2, v3), (v3, u1), (u1, u2), (u2, u3).

2. Now consider each pair of edges (u, v), (v, u) ∈ Ad. If none of the two edges is contained in
c′ by now, then add in c′ the cycle given by cuv = {(vu4, e′vu), (e′vu, evu), (evu, u4), uv44, e′uv),
(e′uv , euv), (euv , vu4)(euv , vu4)}; see Figure 3(iii) for an illustration.

We show that c′ is a spanning subgraph of G1. Note first that for each vertex v ∈ Vd contained
in c, vertices v1, v2, v3 are contained in c′ constructed, by rule (1) above. Since c contains all vertices
of Gd, all vertices of the form v1, v2, v3, for all v ∈ Vd are contained in c′. Consider now any pair of
edges (u, v), (v, u) ∈ Ad. Note that not both of these edges can be contained in the sequence of cycles
c. This is so because the cycles of the sequence are vertex disjoint graphs of size at least 3 each. Thus,
there are two cases to consider: either (a) one of the two edges is contained in c, assume w.l.g. (v, u),
or (b) none of the two edges in c.
In case (a), the path pvu is contained in the sequence c′, by rule 1(a) of the construction of c′. In
case (b), by rule 2 of the construction of c′, the cycle cuv is contained in c′. In both cases, subgraphs
pvu and cuv contains all vu-vertices of G1. We conclude that for all uv-vertices, for all pairs of
edges (u, v), (v, u) ∈ Ad, are contained in c′ constructed. This combined with the above observations
conclude that all vertices of G1 are contained in c′ constructed.

E.4 Proof of Lemma 7.6

Let c′ the sequence of vertex cycles containing all vertices of G1, i.e. c′ = c′1, · · · , c′k′ . In order a vertex
of the type v2 ∈ V (G1), for some v ∈ Vd, to be covered by a cycle in c′, edges (v1, v2), (v2, v3) should be
contained in c′. Consider such a cycle c′j ∈ c′ containing these edges. Look the next edge of the cycle.
There are two possible cases for it; it is either of type (1) (v3, vu4), when edges (v, u), (u, v) ∈ Ad or
of type (2) (v3, u1).

1. We show that the next vertex of the cycle must be vertex e′vu: Assuming otherwise, there are
two possible cases; the next edge of the cycle is either (I) (vu4, v1) or (II) (vu4, e′vu).
For case (I), it can be easily seen, that there is no way for vertices e′vu and e′uv to be covered by
a vertex disjoint cycle in c′, a contradiction.
For case (II), by the construction of G1, the next edges of the cycle are, in order the following:
(evu, euv), (euv , e

′
uv), (e′uv , u4), (u4, u1), (u1, u2), (u2, u3), since any other case would exclude a

vu-vertex from being covered by c′.
Thus, in this case, cycle cj contains a pvu path, and it can be illustrated as in Figure 2(c)(ii).

2. When (v3, u1) is the next edge of cj , then the following edges of the cycle are avoidably edges
(u3, u2), (u2, u3), otherwise vertex u2 could not be covered by any other cycle of c′.

Continue with the next edge of the cycle. Again there are two possible cases for it; it is either of type
(1) or (2) as described above.
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Now, from c′, we construct a set of directed edges c in Gd as follows. For each v ∈ Vd, consider
any edge of c′ containing vertex v3 ∈ V (G1). By the above remarks, the edge can be either of type
(v3, u1), or of type (v3, vu4). Then, we add edge (v, u) in c. Note that, Gd contains such an edge, by
its construction of G1. Thus, c ⊆ A. Moreover, by the structure of any cycle of c′, shown in cases
1 and 2 above, we conclude that the set of edges c′ constitute a set of vertex disjoint cycles of Gd.
Finally, since each vertex of type v1, for any v ∈ Vd, is contained in c′, c constructed contains all
vertices of v ∈ Vd.

E.5 Proof of Lemma 7.7

Consider a set of vertex disjoint directed cycles contained in Gd, c, containing all of its vertices.
Then, by Lemma 7.5, G1 contains vertex disjoint cycles containing all of its vertices, assume any
such sequence c′. Compute the following profile of Π(G), s: Set Supports(ep) = C1 ∪ C2 ∪ c′ and
Supports(vp) = V (C1) ∪ V (c) ∪ V (C2). Set, Ps(ep, e) = 1

Supports(ep) , ∀e,∈ E and si(v) = 1
Supports(vp) ,

∀v ∈ V and all vpi ∈ Nvp. Note that s is a Defender Uniform Nash Equilibrium profile. Also that,
ΔG(E′) = 2, as required by Lemma 7.3. It can be easily seen than all conditions of Theorem 2.1 are
satisfied, thus it is a NE.

E.6 Proof of Lemma 7.8

By Lemma 7.3, r = 2. Also, by the same Lemma, C2 ⊆ G(E′) and V (C2) ⊆ V ′
r and V (C1) ⊆ V ′

r ,
C1 ⊆ G((E′(V ′

r )) and that by Lemma 7.4, V (G1) ∈ V ′
r . Thus, G1 contains a r-regular graph containing

all of its vertices, which is contained in Supports(ep). That is G1 contains a sequence of vertex disjoint
cycles, c′, containing all of its vertices. Then by Lemma 7.6, the DIRECTED PARTITION INTO
HAMILTONIAN SUBGRAPHS problem in Gd is answered positively.

F Proof of Theorem 8.1

We first show that if at least one of cases (1) or (2) hold then Π(G) contains an attacker symmetric
uniform NE. We show the claim when each one of the two cases hold:

Case 1. Construct an attacker symmetric uniform profile s such that Supports(vp) := V and Ps(e) :=
p(e), for all e ∈ E. Since p is a probability distribution, s is a valid mixed profile of Π(G). We prove
that all conditions of Theorem 2.1 hold for s, i.e. it is a NE. Condition 1/b implies that any vertex
v ∈ V is hit a with positive probability equal to Ps(Hit(v)) =

∑
e∈EdgesG(v) Ps(e) =

∑
e∈EdgesG(v) p(e).

Condition 1/b guarantees that Ps(Hit(v)) = Ps(Hit(v′)), for any two vertices v and v′ ∈ V , which
proves Condition (1) of Theorem 2.1.

By Condition 1/b, it follows Supports(vp) = V . Alos, since s is an attacker symmetric uni-
form profile, for any e = (u, v) ∈ E, VPs(e) = VPs(v) + VPs(u) =

∑
vpi∈Nvp

1
|Supports(vp)|+∑

vpi∈Nvp

1
|Supports(vp)| = 2ν

|V | . It follows that, VPs(e) = maxe∈E VPs(e), for any e ∈ Supports(ep),

proving Condition (2) of Theorem 2.1.

Case 2. Theorem 2.2 implies that G contains a Matching NE, which is, by its definition, an attacker
symmetric uniform NE.

It follows that if at least one of cases (1) or (2) hold then Π(G) contains an attacker symmetric
uniform NE.

We proceed to show that if G admits an Attacker Symmetric Uniform NE then at least one of cases
(1) or (2) of the Theorem hold. Consider an attacker symmetric uniform NE s. There are two cases
for set Supports(vp): either (i) there exist two vertices v and u of Supports(vp) such that e = (v, u) ∈ E
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or (ii) for any two vertices v and u of Supports(vp), it holds that e = (v, u) /∈ E. We show that when
case (i) holds, Case (1) holds and when (ii) holds, Case (2) holds.

Case (i): Observe that for any edge (v, u) = e ∈ E, for which v, u ∈ Supports(vp), it holds that
VPs(e) = VPs(v) + VPs(u) =

∑
vpi∈Nvp

1
|Supports(vp)|+

∑
vpi∈Nvp

1
|Supports(vp)| = 2ν

|Supports(vp)| ,
by the definition of an attacker symmetric uniform profile. We first show that Supports(vp) = V .
Assume, in contrary, that there exists a vertex v′ /∈ Supports(vp). Then consider an edge e′ = (u′, v′) ∈
Supports(ep), for some u′ ∈ V ; such an edge exists by the Covering Conditions of any NE. For edge e′ it
holds that VPs(e′) = VPs(v′)+VPs(u′) = ν

|Supports(vp)| < VPs(e). A contradiction to that Condition

(2) of the characterization of a NE regarding edges e and e′. It follows that Supports(vp) = V .

We next show that setting p(v) := Ps(v), for all v ∈ V , we get a feasible solution of the Lin-
ear System p(·). Condition (1) of the characterization of a NE implies that for any v ∈ Supports(vp),
Ps(Hit(v)) =

∑
e∈EdgesG(v) Ps(e) = minv′∈V Ps(Hit(v′)). Thus,

∑
e∈EdgesG(v) p(e) = minv′∈V

∑
e′∈EdgesG(v′)

p(e′), for any v ∈ Supports(vp). Since V = Supports(vp), Condition 1/a of function p(·) is satisfied.
Moreover, since Supports(ep) is an Edge Cover of G, for any v ∈ V ,

∑
e∈EdgesG(v) Ps(e) > 0 and hence

Condition 1/b of function p(·) is also satisfied. It follows that the assignment of p(·) is a feasible
solution of the linear system p(·) and so Case (1) of the Theorem holds.

Case (ii): Let IS := Supports(vp). IS is an Independent Set of G, by assumption. We show that
IS is actually an Expanding Independent Set of G. Assume, the contrary. Then, there exists a set
A1 ⊆ V \IS such that |NeighG(A1) ∩ IS| < |A1|. Note that is also Supports(vp) is a Vertex Cover
of G(Supports(ep)). It follows that for each edge e ∈ Supports(ep), exactly one of its endpoints is
contained in Supports(vp).

Thus, regarding vertex set NeighG(A1) ∩ IS ⊆ IS, it holds that
∑

v∈NeighG(A1)∩IS

Ps(Hit(v)) =
∑

v∈NeighG(A1)∩IS

∑
e∈Edgess(v)

sep(e) =
∑

v∈NeighG(A1)∩IS

sep(e) = P1.

Since for each v ∈ Supports(v), Ps(Hit(v)) = minv∈V Ps(Hit(v)), it follows that P1 ≤ |NeighG(A1) ∩
IS| · minv∈V Ps(Hit(v)).

Also, regarding the vertex set A1 ⊆ V \IS, it holds that
∑
v∈A1

Ps(Hit(v)) =
∑
v∈A1

∑
e∈Edgess(v)

sep(e) =
∑
v∈A1

P (Hit(v))sep(e) = P1.

We argue that in any probability assignment on Edgess(A1), there exists a vertex v′ ∈ A1, such that
Ps(Hit(v′)) < minv∈V Ps(Hit(v)), which contradicts to Condition 1 of the characterization of a NE. The
probabilities assignment problem on Edgess(A1) is equivalent to the problem of distributing a quantity
of P1 ≤ |NeighG(A1)∩ IS| ·minv∈V Ps(Hit(v)) to a set of |A1| distinct bins. Since |NeighG(A1)∩ IS| <
|A1|, by assumption, it follows that in any assignment there must be a vertex u ∈ A1 such that∑

e∈Edgess(u) sep(e) = Ps(Hit(v)) < minv∈V Ps(Hit(v)), as claimed.

It follows that if at least one of cases (1) or (2) hold then G contains an attacker symmetric uniform
NE, which concludes the Theorem.
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