A Bound on the Rounds to Reach Lattice Agreement

Marios Mavronicolas !

& Department of Computer Science, University of Cyprus, Nicosia C'Y-1678,
Cyprus

Abstract

The lattice agreement decision problem is studied in the synchronous message-
passing model of distributed computation, subject to crash failures. Processors
P1, P2y - - -, Pn start with input values Xy, Xo,..., X, respectively, drawn from a
lattice L; the size of a maximal chain of elements of £ that can be defined, start-
ing with {X1, Xo,..., X,.}, as the joins of other elements is denoted joinheight(L |
{X1,X2,..., X,}). Each non-faulty processor chooses a value greater than or equal
to its original value, and less than or equal to the join of the original values; more-
over, the chosen values must be pairwise comparable. Thus, lattice agreement is a
weakening of traditional consensus.

Farly-stopping algorithms for the stronger consensus problem are known to re-
quire O(f) rounds of communication for any execution in which f < n processors
crash. We present an early-stopping algorithm for lattice agreement whose perfor-
mance is superior to early-stopping algorithms for consensus. More specifically, each
nonfaulty processor decides within min{1 + joinheight(L£ | {X1, X2,..., X,.}), [(3+
V8 +1)/2]} rounds, for any execution of the algorithm in which f < n processors
crash. In particular, this algorithm distinguishes itself from a comparable algorithm
of Attiya et al. [5] that requires (lgn) communication rounds in every execution.

Keywords: Lattice agreement, fault-tolerance, distributed algorithms.

1 Introduction

The lattice agreement decision problem was introduced by Attiya, Herlihy and
Rachman [5] in an effort to identify connections between implementing concur-
rent objects and solving decision problems in wait-free computation. Roughly
speaking, in this problem, n processors start with input values drawn from
a lattice L, a special case of a partially ordered set, and must (non-trivially)

! Supported by funds for the promotion of research at University of Cyprus.

Preprint submitted to Elsevier Science 9 October 2000

decide on output values that are comparable to each other in the lattice. Thus,
the lattice agreement decision problem is a weakening of traditional consensus
(see, e.g., [14, Chapter 12]), which, unlike consensus, can be solved in failure-
prone asynchronous systems. The lattice agreement decision problem models
situations arising in applications such as updating a distributed database, or
detecting termination, deadlock, or a stable property of a distributed system.
In such situations, processors need to adopt recent and consistent “views” of
an execution. Such “views” capture a global snapshot of a distributed system,
and processors may use them to infer possible future behaviors of the system.

Besides the fact that lattice agreement is an interesting decision problem in
its own right, Attiya et al. show [5, Theorem 3.9] that, in the shared memory
model of computation, solving the lattice agreement problem is equivalent to
implementing the atomic snapshot object [1,3]; that is, given any solution to
lattice agreement, it is possible to construct an implementation of a snapshot
object, and vice versa. A snapshot object is a valuable tool that simplifies the
design and verification of concurrent algorithms by restricting the possible
interleavings of an execution (see, e.g., [6,9]); thus, an additional motivation
to solve the lattice agreement problem stems from this equivalence: in order to
implement a snapshot object in a given model of distributed computation for
which the equivalence holds, it may be helpful to solve the lattice agreement
problem in the specific model and reduce the solution to an implementation
of the snapshot object.

Attiya et al. [5, Section 4] present an algorithm that solves lattice agreement
in the synchronous, message-passing model of distributed computation, sub-
ject to crash failures; this algorithm is recursive, using a “branch-and-bound”
technique, and terminates after lgn + 1 communication rounds. In this work,
we still consider the same model, and we assume that the lattice has a unique
least element; this assumption is reasonable for using lattice agreement to
implement an atomic snapshot, since in such an implementation, a lattice el-
ement corresponds to a vector of “round numbers,” all of which are initially
zero, that can grow without bound.

We present a new algorithm for lattice agreement, which distinguishes itself
from the comparable algorithm of Attiya et al. in being early-stopping [8];
that is, its running time is bounded by the number of failures that actu-
ally occur in an execution, whereas the algorithm of Attiya et al. [5] re-
quires Q(lgn) rounds in every execution. In particular, consider any exe-
cution in which f < n processors crash, and assume that processors start
with input values X7, X5,..., X, (not necessarily distinct). Assume that one
starts with the set of input values { X7, X5,..., X,,}, and repeatedly enlarges
this set by “inserting” other elements of the lattice that can be formed as
joins of elements currently in the set; roughly speaking, the resulting set is
a chain if any two of its elements can be “compared” in the lattice. Denote

Joinheight(L | {X1,Xs,...,X,}) the size of a maximal chain that can be
produced in this way. We show that each non-faulty processor decides within

min{1 + joinheight(L | {X1, Xs,.... X, }), [34+ v8f +1)/2]} rounds.

The rest of this paper is organized as follows. We provide our definitions in
Section 2. The algorithm that solves the lattice agreement problem is presented
and analyzed in Section 3. We conclude, in Section 4, with a discussion of our
results and a look ahead to some possible future work.

2 Definitions

In Section 2.1, we define our model of computation. Lattices are introduced
in Section 2.2, while Section 2.3 poses the lattice agreement problem. Both
Sections 2.2 and 2.3 borrow from Attiya et al. [5, Section 2]. Throughout,
denote for any integer n > 2, [n] = {1,2,...,n}.

2.1 Model of Computation

Our model of distributed computation is a standard synchronous, message-
passing model subject to crash failures; we sketch the model here, and we refer
the reader to [14, Chapter 6], or to previous work using this model [7,10,12,16],
for more details. We consider a message-passing system with n processors de-
noted p1,ps,...,p,. We will sometimes use processor indices to denote pro-
cessors. Each processor is modeled as a (possibly infinite) state machine.

Processors execute in lock-step, and an execution proceeds in a sequence of
consecutively numbered rounds; the initial round is round 1. In each round,
a processor may perform some local computation and send messages to any
group of processors; the processors in that group are guaranteed to receive
these messages before the next round. We assume that the state of processor
p; contains a special component buff; in which incoming messages are buffered
at each round, and removed by the next round.

We consider a mild form of failure where a processor may halt in the mid-
dle of an execution. If a processor crashes in a certain round, then only some
(possibly empty) subset of the messages it sent during that round arrives. Fur-
thermore, this processor will not participate in any of the subsequent rounds.
A crashed processor is called faulty; processors that do not crash are called
nonfaulty.

2.2 Lattices

A partially ordered set is a (possibly infinite) set £ with a partial order <.
For any two elements 57,5 € L, say that 57 and S, are comparable within
L under <, or comparable for short, if either 57 < S5 or 53 < 573 57 and
Sy are incomparable if they are not comparable. Write S; < S, if 1 < 5,
but S7 # S3. A chain of L is a totally ordered subset of £. The height of L,
denoted height(L), is the size of a maximal chain of £, or infinite if £ has
infinite chains.

For any (possibly empty) subset S of £, say that S € £ is an upper bound
of §if for each S; € S, S; < S. A least upper bound, or join, of S, denoted
Join(S), is an upper bound S of S such that if S is an upper bound of S,
then S < S. A lower bound of S and a greatest lower bound, or meet, of S,
denoted meet(S), are defined similarly. A lattice is a partially ordered set £
such that for every (possibly empty) subset S of £, join and meet of S exist.
A least element of L is a meet of £. We will assume that the lattice £ has a
unique least element, denoted O.. (Lattices with no infinite chains have this
property; see, e.g., [13, Chapter 23].)

For any (possibly empty) subset S of £, we inductively define the sublattice
of L generated by S, denoted L | S, as follows:

(i) foreach S €S8, 5€ L | S;
(ii) for any integer [> 2,if S;,,5;,,...,5;, € L | S, then
(a) join({Si,5,...,5,}) € L] S, and
(b) meet({Sil, Sigyeves S”}) eL]S,
(iii) nothing is in £ | S unless it can be obtained by using rules (i) and (ii).

So, £ | § is the smallest sublattice of £ including S (cf. [2, Exercise 11.1.6]).

Roughly speaking, for any (possibly empty) subset S of £, the joins of £L | S
is the subset of £ | & that contains all elements that can “enter” £ | § as
elements or S or as joins of other elements; formally, define the joins of £ | S,

denoted joins(L | S), as follows:

(i) for each S € S, S € joins(L | S);
(ii) for any integer [> 2,if S;,,5,,...,S; € joins(L | S), then

Join({Sy, S, ..., 5, }) €joins(L | S);

(iii) nothing is in joins(L | §) unless it can be obtained by using rules (i) and
(ii).

We show that each element of joins(L | §) is the join of some subset of S.

Proposition 1 For each S € joins(L | S), S = join(T) for some set T C S.

Moreover, if S = jom(’j') for some set T such that for each 1 € T, 1 =
Join(T;) for some set T; C S, then S = join(U;T;).

Proof. By induction on the number of applications of rule (ii) required for S
to enter joins(L | S).

For the base case, where zero applications of rule (ii) are required, S enters
Joins(L | §) by rule (i). Then, S = 5; for some S; € S. Since S; = join({5;}),

the claim follows.

Assume now that a nonzero number of applications of rule (ii) is required
for S to enter joins(L | S); thus, S = jom(’j') where for each 7, € T, 7; €
Joins(L | §). Assume inductively that for each 7, € T, 7= Join(7;) for some
set 7; C S.

Since the join is an upper bound, for each 7, € ’j', 7 < S5, and 7; is an
upper bound of 7;. Hence, by transitivity, S is an upper bound of 7;, which
implies that S is an upper bound of U;7;. By definition of join, it follows that
Join(U;7;) < S.

By definition of join, join(U;7;) is an upper bound of U;7;; since 7; C U, 7, it
follows that join(U;7;) is an upper bound of 7;, so that, by definition of join,
Join(7T;) < join(U;T;). Thus, join(U;7;) is an upper bound of U;{join(7;)} =
Ui{m} = 7. Since S is the least upper bound of 7, this implies that S <
Join(U;7;). Hence, S = join(U,;T;), as needed. O

The joinheight of L | S, denoted joinheight(L | S), is the height of joins(L |
S).

2.3 The Lattice Agreement Problem

In the lattice agreement problem [5], each processor p; is assigned some in-
put X;, and must decide on some output Y;. Both input and output values
are drawn from a lattice £ with partial order <. An algorithm solves lattice
agreement if it satisfies the following three conditions:

— Comparability: for all indices ¢, 5 € [n], Y; and Y] are comparable;
— Downward-Validity: for all indices ¢ € [n], X; < Yj;
— Upward-Validity: for all indices 1 € [n], V; < join({ X1, Xa,..., X, }).

The comparability condition requires that outputs of processors are all com-
parable to each other within the lattice. The downward-validity condition
requires that the output of each processor is not smaller in the lattice than its
input. The upward-validity condition requires that the output of each proces-
sor is not greater in the lattice than the join of all the inputs.

An algorithm that solves lattice agreement is wait-free (cf. [11]) if, for each
of its executions, every nonfaulty processor decides within a bounded number
of rounds, regardless of the execution or failures of other processors; say that
it solves lattice agreement in r rounds if every nonfaulty processor decides no
later than round r. An algorithm that solves lattice agreement is early-stopping
(cf. [8]) if for each execution in which f processors crash, every nonfaulty
processor decides after running for O(f) rounds. Clearly, any early-stopping
algorithm is also wait-free.

3 The Algorithm

In this section, we present our main result.

Theorem 2 There is an early-stopping algorithm that solves lattice agree-
ment in min{1+joinheight (L | {X1, X2,..., X0 }), [((3+V8f + 1)/2]} rounds,
for any execution in which processors pi,pa,...,p, start with input values
X1, Xg, ..., X, respectively, and | processors crash.

In Section 3.1, we provide a description of an algorithm A with the claimed
properties. A correctness proof and analysis of round complexity for A are
presented in Sections 3.2 and 3.3, respectively.

3.1 Description and Preliminaries

The local state of processor p; contains components S; and r;; the component
S; represents the “current decision value,” while the component r; holds a
nonnegative integer round number, initially 1.

Roughly speaking, a processor changes its current decision value in a round
only if some value received in the previous round is incomparable to its current
decision value. In round 1, if X; = O, then p; decides on 0, and halts, else p;
adopts X, as its current decision value S; and broadcasts it. In round r > 1,
p; checks if any of the values received in round r — 1 is incomparable to S;. If
so, then 5; is replaced by its join with all values received in round r — 1, and
p; broadcasts S; and passes to round r + 1; else, p; decides on 5; and halts.

Precondition: initial next-phase transition

=1
Xi 75 0,
Effect:
Si = X;
broadcast(5;)
rii=r;+ 1
Precondition: initial decision transition
=1
Xi=0¢
Effect:
decide(0.)
Precondition: next-phase transition
T > 1
for some R; € buff;, 5; £ R; and R; £ 5;
Effect:
Si = join({S;} U{R; | R; € buff;})
broadcast(.5;)
=1+ 1
Precondition: decision transition
r; > 1
for every R; € buff;, either 5; < R; or R; < 5;
Effect:
decide(5;)

Fig. 1. The algorithm A: program for processor p;

Figure 1 presents the code for processor p; in a precondition-effect style that
is commonly used to describe 1/O automata [15]. A decide(Y’) operation
causes p; to enter a decision state for value Y (by recording the decision in the
appropriate state component); a broadcast(S) operation causes p; to send
the message S to all other processors.

For each nonfaulty processor p;, define the decision round of p;, denoted p;,
to be the round in which p; decides. For the case where p; > 1, consider the
sequence 52(2)7 cees S of values held by 5;, where for each r, 2 < r < p;, 5

is the value held by 5; right before p; executes round r. The next result sum-

(pi)

marizes certain properties of the sequence 52(2)7 ..., 5" these properties will

be crucial in both showing correctness for and analyzing the round complexity

of A.
Lemma 3 For each nonfaulty processor p; such that p; > 1,

(1) S® = X, and S¥) = v;;

(2) S < .. <80,

K3

(3) for each r, 2 <r < p,, SZ»(T) € joins(L | {X1, X2y ... X0 }).

Proof. Property (1) follows immmediately from the algorithm (see initial
next-phase transition and decision transition in Figure 1).

To show (2), consider any consecutive SZ»(T_I) and SZ»(T), where 2 < r < p;. By
the algorithm, SZ»(T) is the least upper bound of SZ»(T_I) and all values received
by p; at the end of round r — 1; thus, SZ»(T_I) < SZ»(T). By the algorithm, there is
some value R; received by p; at the end of round r — 1 that is incomparable
to SZ»(T_I); since I; < SZ»(T), it follows that SZ»(T_I) # SZ»(T). Hence, SZ»(T_I) < SZ»(T),

as needed.

We continue to show (3) by induction on r. For the base case where r = 2,
SZ»(I) = X, by (1), and the claim holds trivially. Assume inductively that the
claim holds for all rounds 2,...,r — 1, and consider round r. By induction
hypothesis, both SZ»(T_I) and each of S](T_l) are in joins(L | { X1, Xa,..., X, }).
By the algorithm, SZ»(T) = jom({SZ»(T_l)} U {S](T_l) | S](T_l) € buff;}). It follows,
by rule (ii)(a) used in defining the joins(L | {X1, Xs,..., X, }) that SZ»(T) €
Joins(L | { X1, Xs,...,X,}), as needed. O

3.2 Correctness

We show that processors’ decisions satisfy the three conditions in the definition
of the lattice agreement problem (Section 2.3).

We first show comparability. Consider nonfaulty processors p; and p;, and
assume, without loss of generality, that p; decides no later than p;, i.e., p; < p;.
If p; = 1, then, by the algorithm, ¥; = O, so that ¥; and Y, are trivially
comparable, since O is the least element of £. So assume p; > 1. By the
algorithm, p; broadcasts SZ»(M) in round p; — 1. There are two possibilities
regarding the values received by p; in round p;:

(ri). (pi)

(i) All of these values are comparable to S;"’; in particular, Y; = 5" and

S](pi) are comparable. Then, by the algorithm, p; decides on Y; = S](pi) in
round p;, and comparability holds. »
pi

(ii) Some of these values is incomparable to S}, so that p; does not decide
in round p;, i.e., p; < p;. By the algorithm, S;piﬂ) is the join of S](pi) with
all values received by p; in round p;; in particular, SZ»(M) < S](pi+1). Since

pi+1 < p;, Lemma 3(2) implies that S](pi+1) < S](pj) =Y;. It follows that

Y, = SZ»(M) < Y;, and comparability holds.

We continue to show downward-validity. Consider any nonfaulty processor p;.
We proceed by case analysis on the decision round of p;. Assume first that
pi = 1, so that p; decides on Of; since, by the algorithm, p; decides on O,
only if its input equals 0;, downward-validity holds trivially. Assume now
that p;, > 1. By Lemma 3(1) and (2), X, = SZ»(Q) <. < SZ.(W) =Y, and
downward-validity holds.

We finally show upward-validity. Consider any nonfaulty processor p;. We pro-
ceed by case analysis on the decision round of p;. Assume first that p; = 1, so
that p; decides on O; then, upward-validity holds trivially since O is the least
element of £. Assume now that p; > 1. By Lemma 3(1), V; = SZ»(M). It follows
by Lemma 3(3) that Y; € joins(L | {X1, Xs,...,X,}). Thus, by Proposi-
tion 1, Y; = join({X,,,..., X;,}), where { X, ..., X;,} C{Xy,Xq,..., X, }. It
follows that Y; < join({ X1, Xs,..., X, }), as needed.

3.3 Round Complexity

In this section, we prove an upper bound on the number of rounds incurred by
the algorithm A in the worst case; this will establish the wait-freedom (and,
thereby, the termination) of this algorithm.

Consider processor p; deciding on Y; in round p; > 1. By Lemma 3(1),
Y, = SZ»(M). By Lemma 3(3), for each r, 1 < r < py, SZ»(M) € joins(L |
{X1,Xs,...,X,,}). Thus, it follows by Lemma 3(2) that the sequence of length
pi — 1 52(2)7 ce SZ»(M) forms a chain of joins(L | {X1, Xs,..., X, }). Since the
size of a maximal chain of joins(L£ | {X1, X2, ..., X, }) is joinheight(L |
{X1,Xs,..., X, }), thisimplies that p;—1 < joinheight(L | {X1, Xs,..., X0 }),
so that:

Lemma 4 A solves lattice agreement in 1+ joinheight (L | { X1, Xa,..., X, })
rounds, for any exvecution in which processors pi,pa,...,p, start with input
values X1, Xs,..., X, respectively.

We continue to show an upper bound on the number of rounds taken by A,
which is a function of the number of failures f occurring in an execution.

Lemma 5 A solves lattice agreement in [(3 + /8f + 1)/2| rounds, for any

execution in which [processors crash.

Proof. Consider any execution « of A in which f processors crash; denote
fr < f the number of processors that crash in round r > 1. We show:

Claim 6 [In «, for any round ro > 1, every processor decides within ro+ f,,+1
rounds.

Proof. Without loss of generality, let 1,..., f., be the processors crashing in
round r¢ of a. Clearly, by Lemma 3, for any nonfaulty processor p;, for each

r,ro+ 1 <r < p, SZ»(T) € joins(L | {X1,Xz,...,X,}). Thus, by Proposi-
(r)

tion 1 and the structure of the algorithm, for each r, ro +1 <r < p;, S;7/ =

Join({Xs, 4150+ X JU{XG .0, X5y }), where {4y, ...y} © {1, ..., fip). Since,

by the algorithm, p; does not decide in round r only if it updates SZ»(T_I), the

maximum number of rounds p; can remain undecided after it completes round
(ro+1) S(Pi)

ro, is at most the length of the longest possible sequence S; ey S

Since, by Lemma 3, 5; (ro+1) o< SZ»(M), this longest possible sequence is the
following sequence of length fTO + 1:

- jOiTL({Xfr0+17X27 s 7Xn}7
a ‘]:Olin({Xfro‘Fle?v s 7Xn} U {Xiﬂ(l)})7
_ jOZn({Xfro T AR 7Xn} U {Xiﬂ(1)7XiTr(2)})7

- jOin(({XfrO-I-lv R ,Xn} U {Xiﬂ(l), R 7Xifr(fr0)})7

where 7 is any permutation of {1,..., f. }. That is, the f,, + 1 elements of
the sequence are those obtained by joining in 0,1,... and f,, elements from
Xi,..., Xy, - Thus, the total number of rounds for p; to decide is no more
than r¢ (for rounds up to round ro) plus f,, 4+ 1, the number of rounds needed
subsequently, which is ro + f,, + 1, as needed. O

Assume that A solves lattice agreement in ¢ rounds, for any execution in which
f processors crash. Clearly, ¢ is no more than the upper bounds established
in Claim 6 for any such execution. Thus, for each index rq, 1 < ry < ¢,

{<ro+ f, +1, so that

£-1 - =1 =1
> (0—19) gZ (fot) = DS+ 200 < fHl-1,
ro=1 o=1 ro=1 ro=1

or ZTO 1m0 < fHl—1,0r ({—1)(/2 < f+{—1, implying that *—3(—2f+2 < 0.
Thus, £ may not exceed the positive root of the quadratic form in the left side,
so that ¢ < (3+ \/9 —4(=2f +2))/2 = (3++/8f +1)/2. Since { is an integer,
this implies that £ < [(3 + /8f +1)/2], as needed. O

Lemmas 4 and 5 together imply:

10

Proposition 7 Algorithm A solves lattice agreement in min{1+joinheight (L |
{X1, Xs, ... X0 1), B+ V8 + 1)/2]} rounds, for any execution in which pro-
CESSOTS P1, P2y - - - Pn Start with input values X1, Xo, ..., X, respectively, and
f processors crash.

4 Discussion

We have presented a synchronous, early-stopping algorithm for lattice agree-
ment in the message-passing model of distributed computation. Each processor
decides using no more than min{l + joinheight(L | {X1, X2,..., X0 }), [(3 +
V8f +1)/2]} rounds, for any execution in which n processors, out of which
f crash, start with input values Xi, X5, ..., X,,. The translation of this algo-
rithm to the synchronous shared memory model subject to crash failures is
straightforward.

The most obvious open question left open by our work is whether this upper
bound is tight or not; does there exist an early-stopping algorithm that solves
lattice agreement in the synchronous, message-passing model in o(+/f) rounds?
Also, can our synchronous algorithm be extended to yield a wait-free and
early-stopping algorithm for lattice agreement in the completely asynchronous
model (see, e.g., [14, Chapter 21])7 (Attiya et al. [5, Section 5] show that their
synchronous algorithm can be extended to yield a corresponding asynchronous,
wait-free lattice agreement algorithm.) It would also be interesting to study
the lattice agreement problem in the partially synchronous message-passing
model of computation (see, e.g., [14, Chapter 25]), in the presence of crash (or
even more severe) processor failures.

Some more recent results on lattice agreement in the shared, read /write mem-
ory model of computation appear in [4].

Acknowledgments:

We are indebted to one anonymous referee for numerous valuable comments,
corrections and suggestions.

11

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, “Atomic
Snapshots of Shared Memory,” Journal of the ACM, Vol. 40, No. 4, pp. 873—
890, September 1993.

[2] M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.

[3] J. Anderson, “Composite Registers,” Distributed Computing, Vol. 6, No. 3, pp.
141-154, 1993.

[4] H. Attiya and A. Fouren, ” Adaptive Wait-free Algorithms for Lattice Agreement
and Renaming,” Proceedings of the 17th Annual ACM Symposium on Principles
of Distributed Computing, pp. 277-286, June/July 1998.

[6] H. Attiya, M. Herlihy and O. Rachman, “Atomic Snapshots Using Lattice
Agreement,” Distributed Computing, Vol. 8, pp. 121-132, 1995.

[6] H. Attiya, N. Lynch and N. Shavit, “Are Wait-Free Algorithms Fast?” Journal
of the ACM, Vol. 41, No. 4, pp. 725-763, July 1994.

[7] S. Chaudhuri, “Towards a Complexity Hierarchy of Wait-Free Concurrent
Objects,” Proceedings of the 3rd IFEF Symposium on Parallel and Distributed
Processing, pp. 730-737, October 1991.

[8] D. Dolev, R. Reischuk, and H. R. Strong, “Early Stopping in Byzantine
Agreement,” Journal of the ACM, Vol. 37, No. 4, pp. 720-741, October 1990.

[9] R. Gawlick, N. Lynch and N. Shavit, “Concurrent Time-Stamping Made
Simple,” Proceedings of the 1st Israel Symposium on Theory of Computing and
Systems, Lecture Notes in Computer Science, Vol. 601, pp. 171-185, Springer-
Verlag, May 1992.

[10] J. Halpern and Y. Moses, “Knowledge and Common Knowledge in a Distributed
Environment,” Journal of the ACM, Vol. 37, No. 3, pp. 549-587, July 1990.

[11] M. Herlihy, “Wait-free Synchronization,” ACM Transactions on Programming
Languages and Systems, Vol. 13, No. 1, pp. 124-149, January 1991.

[12] M. Herlihy and M. Tuttle, “Wait-Free Computation in Message-Passing
Systems,” Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, pp. 347-362, August 1990.

[13] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge
University Press, 1992.

[14] N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[15] N. Lynch and M. Tuttle, “An Introduction to Input/Output Automata,” CWI
Quarterly, Vol. 2, No. 3, pp. 219-246, September 1989.

[16] Y. Moses and M. Tuttle, “Programming Simultaneous Actions Using Common
Knowledge,” Algorithmica, Vol. 3, No. 1, pp. 121-169, 1988.

12

