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Abstract

Two important performance parameters of rate-based flow
control algorithms are their locality, measured by the amount
of global knowledge required for the distributed implemen-
tation of their scheduling mechanisms, and their conver-
gence complezity, dcfined as the number of update opera-
tions performed on individual sessious il reaz-rnin fairness
is reached. Optimestic algorithms may go through transient
states in which one or more sessions receive more than their
fair share of bandwidth. Tn this work, we establish lower
and upper bounds on convergence complexity, under vary-
ing degrees of locality, for optimistic, rate-based flow control
algorithms. We assume a collection of n sessions laid out on
a network of session dependency d; thus, an update opera-
tion on one session may influence at most d sessions.

Say that an algorithm is obliviousif its scheduling mech-
anism uses no information of either the session rates or the
network topology. We show a lower bound of ©(dn) on
the convergence complexity of any oblivious algorithm. We
establish that this lower bound is tight by presenting an
optimal, deterministic, oblivious algorithm which converges
aftcr ©(dn) updatc opcrations arc performed in the worst
case; this algorithm is simple and schedules sessions [or an
increase in a round-robin fashion.

We proceed to show that randomness can be exploited
to yield an even simpler oblivions algorithm at the prize
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of a small incrcasc in convergence complexity. We present
a randomized, oblivious algorithm, where each session S;
is scheduled for an increase with probability p;. Denote
Pmin = MiNi<;<n Pi. This algorithm converges to the max-
min rates after an expected number of O(dInn/pmin) up-
date operations. The proof of this upper bound relies on an
analysis of the generalized coupon collector‘s problem, an in-
teresting variant of the classical coupon collector‘s problem.

We next turn to algorithms that are partially oblivious,
in that their scheduling mechanisms “know” and may use
session rates; but are unaware of network topology. We
show that, perhaps surprisingly, the lower bound of Q(dn)
on convergence complexity still holds for partially oblivious
algorithms; this lower bound is matched by the convergence
complexities of previously proposed algorithms which must
use session rates. Our results for partially oblivious algo-
rithms imply that knowledge of session rates cannot merely
suffice to reduce convergence complexity.

We finally show that linear convergence complexity can
be achieved if knowledge of both session rates and network
topology is available to schedulers. We present a “counter-
example”, non-oblivious algorithm, which schedules a ses-
sion for an increase only if it uses the most congested link
in the network. We show that this algorithm converges af-
ter performing an optimal number of n update operations
in every case. Our results imply a convergence complexity
separation between partially oblivious (in particular, oblivi-
ous) and non-oblivious algorithms for optimistic, rate-based
flow control.

1 Introduction

In most commercial communication networks, a connection
between different users is established by a session, a vir-
tual circuit involving a fixed path between a source and a
destination.! In such networks, situations often arise where
the externally offered load is larger than what can be han-
dled even with optimal routing; then, queue sizes at bottle-
neck links may grow indefinitely and eventually exceed the
buffer space at the corresponding nodes, and packets arriv-
ing at nodes with no available buffer space will have to be
discarded and later retransmitted, thereby wasting commu-
nication resources. The function of flow control algorithmsis
to prevent such situations from arising (see, e.g., [3, Chapter
6] or [9, 11, 13, 14, 20]).

'n the model we consider, it is assumed that each session lifetime
is infinite; this assumption is suitable for applications such as ftp,
batch jobs and Mosaic.



In particular, rate-based flow control algorithms adjust
transmission rates of different sessions in an end-to-end man-
ner, with the objective to optimize network utilization while
maintaining fairness between different sessions (see, e.g., [1,
3, 6, 10, 12, 14]). The rate-based approach has been partic-
ularly attractive due to its simplicity and its modest hard-
ware requirements per virtual circuit (as opposed to those
of credit-based [18] or virtual-channel-based [7] approaches).
Indeed, the Asynchronous Transfer Mode (ATM) Forum on
Traffic Management has adopted rate-based flow control as
the prime mechanism for flow control of Available Bit Rate
(ABR) traffic in its networks (see, e.g., [4, 8, 17, 19, 23]). A
widely accepted fairness criterion for rate-based flow control
is maz-min fairness [1, 3, 6, 12, 13, 14], requiring that it be
impossible to infinitesimally increase the rate of any session
without decreasing the rate of a session whose rate is equal
or smaller.

Any rate-based flow control algorithm falls into one of
two broad classes, conservative and optimistic, according to
the way in which rates of sessions are adjusted. Conserva-
tive algorithms converge without ever assigning a session a
rate that is larger than its final rate; in contrast, optimistic
algorithms are more “aggressive” in that they allow a ses-
sion to intermediately receive a rate larger than its final.
Optimistic algorithms fit better than conservative ones into
“real” dynamic networks that need to be able to decrease the
rates of some sessions in order to accomodate new entering
sessions; moreover, the optimistic approach appears closer
to rate-based flow control algorithms that are suggested in
the ATM Forum on Traffic Management (see, e.g., [15, 24]).
Surprisingly, however, it has been only very recently that
optimistic algorithms were introduced in a pioneering work
by Afek et al. [1].

A significant component of any rate-based flow control
algorithm, whether conservative or optimistic, is its sched-
uler, the mechanism it uses to decide which session to adjust
next by an increase. In favor of robust and efficient dis-
tributed implementations, it is desirable that the scheduler
does not require global knowledge of network topology and
session rates. Clearly, “non-centralized” schedulers adjust
easier to dynamic changes in network topology, and they
are more efficient in terms of both communication and com-
putation. So, one important parameter of a rate-based flow
control algorithm, from the point of view of network per-
formance, is its locality, measured by the amount of global
knowledge required by the scheduler.

Call a scheduler that uses no information of either the
network topology or the session rates an oblivious scheduler;
apparently, an oblivious scheduler enjoys nice properties of
robustness, efficiency, and portability. In particular, obliv-
ious schedulers avoid both the problem of communication
in a distributed algorithm, and the problem of the ambi-
guity in the meaning of rate for interactive traffic (cf. [3,
Section 6.4.2]). At the opposite extreme, a non-oblivious
scheduler requires full knowledge of both network topology
and (all) session rates; clearly, a non-oblivious scheduler is
more amenable to “centralized”, rather than distributed, im-
plementations. There is, however, a middle ground between
oblivious and non-oblivious schedulers: schedulers which,
although unaware of network topology, do have access to
session rates; call these schedulers partially oblivious. A
partially oblivious scheduler is superior to a non-oblivious
scheduler in terms of robustness to dynamic changes in net-
work topology, while it is surpassed by an oblivious scheduler
in being ambiguous with respect to the meaning of rate for
interactive traffic. Afek et al. [1, Sections 4 & 5] present two

interesting, partially oblivious schedulers called GlobalMin
and LocalMin, respectively.

Once a session has been scheduled, a control message
loops around its path and calculates on its way the mini-
mum “share” of bandwidth the session may take from the
excess capacities of links along the path; this requires possi-
ble adjustments to the rates of conflicting sessions. Roughly
speaking, the convergence complexity of a rate-based flow
control algorithm captures the number of rate adjustments
performed in the worst-case till max-min fairness is reached.
Since reaching max-min fairness fast is essential for efficient
utilization of the virtual circuits, convergence complexity
is another significant performance parameter of rate-based
flow control algorithms. We measure convergence complex-
ity in terms of a simple abstraction of update operations
introduced by Afek et al. [1, Section 2.1]; an update oper-
ation adjusts the rates of sessions in a fair and optimistic
way.

The convergence complexities of optimistic algorithms
proposed in [1] have been expressed in terms of the total
number n of sessions laid out on the network. A significant
contribution of our work is the identification of a param-
eter other than n and the derivation of more meaningtul
bounds on convergence complexity in terms of this parame-
ter. Specifically, let d be the maximum number of sessions
that share an edge either directly or indirectly; call d the
session dependency. Thus, d is the maximum number of
sessions “influenced” by a single update operation on any
session; clearly, 1 < d < n. It turns out that the ses-
sion dependency d, together with the number of sessions
n, precisely determines the optimal convergence complexity
achievable by oblivious or partially oblivious algorithms.

Our first major result is a fundamental and generic lower
bound on the convergence complexity of any oblivious al-
gorithm that computes the max-min fairness rates. We
provide a general and novel methodology for constructing,
given any fixed but arbitrary oblivious algorithm that com-
putes the max-min rates, a specific network, as a function
of the algorithm’s scheduler, so that if sessions are sched-
uled for increase on this network according to the scheduler,
dn/44n/2 update operations are required before converging
to the max-min rates. The construction uses the sequence
of sessions in order to appropriately define the edges and
assign capacities to them, in a way that “retards” sessions
from reaching their final (max-min) rates.

We show a corresponding, matching upper bound on
the convergence complexity of oblivious algorithms. We
present an oblivious, deterministic algorithm, RoundRobin,
with convergence complexity dn/2 4+ n/2. This algorithm
borrows the very simple idea of scheduling different sessions
on a “round-robin” basis, originally introduced into rate-
based flow control by Hahne and Gallager [12]; the sched-
uler conducts n “rounds,” in each of which all sessions are
scheduled in a “round-robin” fashion.

We show non-trivial properties of bottleneck algorithms,
which we use to show an upper bound of dn on the conver-
gence complexity of RoundRobin. Afek et al. [1, Sections 4 &
5] cstablish uppcr bounds of ©(r?) on the convergence com-
plexities of both schedulers GlobalMin and LocalMin; more-
over, Afek et al. present a specific network construction to
show that these upper bounds are tight in the case where
d = n (that is, all sessions fall in a single cluster). How-
ever, since there are cases where d € o(n), the upper bound
of ©(dn) we have shown for the convergence complexity of
RoundRobin is the first subquadratic upper bound on con-
vergence complexity shown for optimistic, rate-based, flow



control algorithms. Even more so, both schedulers GlobalMin
and LocalMin are only partially oblivious, while RoundRobin
is oblivious, hence more “local” and more “distributed”.

Is it possible to use randomization for obtaining opti-
mistic, rate-based flow control algorithms that are even sim-
pler than RoundRobin, yet still oblivious? We answer this
question in the affirmative by presenting an oblivious, ran-
domized algorithm, called Random; indeed, Random is the
first randomized algorithm ever proposed for rate-based flow
control (either conservative or optimistic). A probability p;
is associated with each session S;, 1 < ¢ < n, which is the
probability that the scheduler selects the session.

To determine the convergence complexity of Random, we
consider and analyze an interesting generalization of the
classical coupon collector‘s problem [22], where each coupon
Is drawn with a certain probability (not necessarily uni-
form); call it the generalized coupon collector‘s problem. We
use properties of bottleneck algorithms to observe an ap-
parent correspondence between the analysis of the gener-
alized coupon collector‘s problem and that of the conver-
gence complexity of Random. This correspondence implies
that the expectation and standard deviation of the number
of update operations performed in any run of Random are
O(dInn/pmin) and O(\/E/pmm), respectively, where poin =
minj<;<y, Pi- Lt is remarkable that the bound on the expec-
tation of the convergence complexity of Random becomes
O(dnlnn) in the uniform case, where all probabilities are
equal to 1/n; this bound is only slightly inferior to the cor-
responding bound shown for the still oblivious but somehow
less simple algorithm RoundRobin.

We next turn to partially oblivious algorithms. We ex-
tend the generic lower bound of Q(dn) we have shown on the
convergence complexity of oblivious algorithms to partially
oblivious ones. We do so by simultaneously “hand-crafting,”
in a step-by-step fashion, both the sequence of sessions pro-
duced by any partially oblivious algorithm and the network
for which Q(dn) update operations are required for conver-
gence to the max-min vector. It turns out that this lower
bound is, indeed, tight for partially oblivious algorithms.
We observe that the upper bound of @(n?) on convergence
complexity shown by Afek et al. [1] for the partially oblivi-
ous algorithms GlobalMin and LocalMin, specialized [or the
case where d = n, implies an upper bound of ©(dn) for these
algorithms in the case of general d. Thus, although intuition
may suggest that knowledge of session rates can be crucial
to performance, our results imply that this is not the case.

At this point, it is natural to ask whether it is possible to
beat the ©(dn) bound on convergence complexity achievable
by oblivious or partially oblivious algorithms, possibly at the
prize of sacrificing locality. Perhaps not too surprisingly, it
turns out that the locality enjoyed by oblivious and partially
oblivious algorithms comes at a multiplicative in d over-
head on convergence complexity. We discover a “counter-
example” (deterministic) algorithm Linear that achieves an
eract bound of n on convergence complexity; however, Lin-
ear is neither oblivious nor partially oblivious. In a nutshell,
Linear follows the natural idea of selecting for an increase
a session on the most congested link in the network (see,
e.g., [3, Section 6.4.2] or [13]).” Clearly, the algorithm Lin-
ear is optemal with respect to convergence complexity, since

?This idea forms the basis of a simple and classical iterative al-
gorithm to compute the max-min fairness rates [3, Section 6.4.2]. In
each iteration, the rates of sessions that use the “most congested” link
are fixed. In the next iteration, the fixed rates are subtracted from
the corresponding link capacities, and the procedure repeats itself.
We note that this algorithm is not optimistic.

each of the n sessions must be updated at least once by any
algorithm (whether oblivious or not).

Our lower and upper bounds exhibit interesting trade-
offs between convergence complexity and locality for opti-
mistic, rate-based flow control algorithms. Among our three
proposed algorithms, Random is the “simplest”, hence the
most “distributed”, but attains the highest (expected) con-
vergence complexity of the three. Alternatively, RoundRobin,
though less “simple” than Random, still enjoys locality but
yet manages to achieve convergence complexity which is op-
timal for the class of oblivious schedulers. On the other
hand, the “centralized” algorithm Linear achieves optimal
convergence complexity, but does not enjoy locality.

Both RoundRobin and Random admit simple distributed
implementations. The implementation of RoundRobin makes
use of a set of underlying “logical rings,” one per session
cluster, built on top of the communication network. Each
such ring is designed to traverse at least one edge, called
logical edge, of each session in the cluster, and be as short
as possible. A “token” is circulated on each ring to simu-
late the round-robin scheduling of sessions in the cluster; the
ordering of the scheduling is determined by the sequence of
logical edges in the ring. Fach time the token traverses a log-
ical edge, an update operation on the corresponding session
is initiated; once the operation is completed, the token ad-
vances to the next logical edge, and so on. The implementa-
tion of Random relies on a randomized, distributed protocol
to toss a multiple-sided, biased coin among sessions in each
cluster; the communication between different sessions uses
shortest paths on the underlying communication network.

In conclusion, our work deviates from previous work on
rate-based flow control (e.g., [3, 9, 10, 11, 12, 13, 14, 20]) car-
ried out in the data networks community in that it adopts
the optimistic approach put forward in the pioneering work
by Afek et al. [1]; this approach emerges around the update
operation, which allows sessions to intermediately receive
rates that are lower than their final (fair) rates. We have
managed to show that certain “classical” scheduling policies,
such as round-robin scheduling [12] or scheduling a session
using the most congested link [3, 13], still work in the op-
timistic framework; moreover, we have shown that some of
these policies are superior, in terms of either convergence
complexity or locality (or both), to some other “classical”
policies, such as scheduling the session with the globally
smallest rate [3], that have been already studied within the
optimistic framework by Afek et al. [1].

The rest of this paper is organized as follows. Section 2
includes definitions for the formal model and some prelimi-
nary facts, while Section 3 exhibits key properties of bottle-
neck algorithms. Results on deterministic and randomized
oblivious schedulers appear in Sections 4 and 5, respectively.
Deterministic, partially oblivious schedulers are studied in
Section 6, while Section 7 considers non-oblivious schedulers.
We conclude, in Section 8, with a discussion of our results
and some open problems.

2 Definitions and Preliminaries

In this section, we present formal definitions and some pre-
liminary facts. Many of our definitions formalize and refine
corresponding ones in [1, 3]. This section is organized as
follows. Section 2.1 introduces the update relation, while
Section 2.2 summarizes material on a generalization of the
coupon collector’s problem. Network, sessions and alloca-
tion vectors are introduced in Section 2.3. A network model
appears in Section 2.4. Section 2.5 formally defines the up-



date operation. Schedulers and terminators are introduced
in Section 2.6, while Section 2.7 defines executions and con-
vergence complexity.

2.1 The Update Relation

The following is a restatement of [1, Appendix A, Definition
A.1]in the form of a relation. Fix any integer m > 2. The
update relation is a relation update C (R™ x [m] x R) x R™
such that ({(R,j,c), R’} € update if and only if there ex-
ists a number A > 0 for which the following conditions are
satisfied: (1) ||R'||1 = ¢ (2) r; = r; + A; (3) for each
i€ m],i# g, ifri <rj+ A, then v/ = r;; (4) for each
i€ [m],1#j,ifri >r; + A, then r! = r; + A. Whenever
{{R,j,¢),R'Y € update, call R' a reform of R (cf. [1, Ap-
pendix A, Definition A.1]). Intuitively, a reform is such that
¢ is “saturated” (Condition 1) by increasing entry r; by A
(Condition 2), while smaller entries are not affected (Con-
dition 3); moreover, the reform “preserves” fairness since
there can be left no entries larger than the increased entry
(Condition 4). A mazimum reform of R is a reform of R
that corresponds to the maximum possible A.

2.2 The Generalized Coupon Collector’s Problem

In the generalized coupon collector’s problem, there are m
coupon types denoted 1,...,m; at each trial, a coupon is
chosen at random. Each randomly chosen coupon is likely
to be of type ¢, 1 < 1 < m, with probability p;, where
Z:‘:1 ri = 1, denote Pmin = min19§mp¢. Notice that
Pmin < 1/m, and assume throughout that p.in > 0. The
random choiccs of coupons arc mutually indcpendent. In
the “standard” coupon colleclor’s problem [22], p1 = ... =
pm = 1/m. Let X be the random variable defined as the
number of trials required to collect at least one of each type
of conpon. Denote £(X) and o(X) the expectation and
standard deviation of X, respectively. We show:

Proposition 2.1 The following hold on the probability dis-
tribution of X :

(1) E&(X) < Inm/pmin + r(m), where r(m
(2) o(X) € O(1/pmin)-

) € O(1/pmin);

2.3 Network, Sessions, and Allocation Vectors

A communication network is a directed graph G = (V, E),
where each vertex v € V represents a network node, and
each edge e € F represents a link in the network. Associ-
ated with each edge e € E is a capacity cap(e), which is a
real number greater than zero. A session is a sequence of
links which is a simplc path in G between a source and a
destinalion; a sel of n sessions § = {51, S2,...,S5,} is laid
out on G. For each edge e € F, denote sesazom( ) the set
of sessions passing through e.

Define the share-an-edge relation on 8, denoted ||s, as
follows. For any pair of sessions S;,5; € §, Si ||s S; if
there exists an edge e € E such that both S; € sessions(e)
and S; € sessions(e); that is, S; ||s S; if S; and S; share
an edge “in parallel”. Notice that ||s is reflexive and sym-
metric. The transitive closure of ||s, denoted ||%, is an
equivalence relation on &, which partitions § into equiva-
lence classes 8i,...,S., called session clusters, or clusters
for short, where 1 < ¢ < n, |S;| =n; and 71 +...+n. =n;
note that for all indices 7 and k,1<j,k<candj #k SN
Sk =0, while Ui<;<.S; = S. Denote d = max{ni,... nc},

that is, d is the maximum size of a session cluster. Call d
the session dependency. Clearly, 1 < d < n.

For a sequence ¢ of session indices, denote ¢ | S; the
restriction of ¢ to indices of sessions in cluster §;. Denote
¢ 1 8; the shortest prefix of ¢ | §; that includes the indices
of all sessions in cluster §; in the order they appear in this
prefix of ¢ | §; and no repetitions, or ¢ | §; if no such prefix
exists. Denote ¢ | S; the remaining suffix of ¢ | S,.

Allocated to each session S is a bandwidth or rate, de-
noted rate(S), which is a real number. An allocation vector
is a vector R = {rate(S1), rate(Sz),. .., rate(Sn)).

The capacity constraint requires that for each edge, the
sum of rates of sessions sharing the edge does not exceed the
edge capacity. A feasible allocation vector, or feasible alloca-
tion for short, is an allocation that satisfies all capacity con-
straints. A mazimal allocation vector, or mazimal allocation
for short, is a feasible allocation in which it is not possible
to increase the rate of any session without decreasing the
rate of some other session. A maxz-min allocation vector, or
maz-min allocation for short, is a maximal allocation such
that for each session S;, mte(S,) cannot be increased (while
still maintaining feasibility) without decreasing rate(S;) for
some session S; such that rate(S;) < rate(S;); that is, an
increase in the rate of any session requires a decrease in the
rate of a session with equal or lower rate.

2.4 Modeling the Network

The communication network is modeled as a (possibly infi-
nite) state machine. Each state @ of the network consists of
two components: a feasible allocation vector R € R™, and
an active set A C {51,52,...,5n}, which is a set of “ac-
tive” sessions; that is, @ = (R,.4). Intuitively, an active
session is one that has not yet reached its final rate. In
the initial state @' = (R, A"™), R = (0,0,...,0) and
A = (51, 52,...,5,). Astate @ = (R, A)is finalif A = 0;
that is, in a final statc, all scssions havce rcached their final
rates. Denote D = {S51,5%,...,5.} \ A; that is, D is the
set of done sessions in state (), which are sessions that have
reached their final rates in state Q. Call a session cluster
S; an active clusterif it contains at least one active session;
otherwise, S; is called a done cluster.

For each edge e € E and state @ = (R, .A), denote #¢(e)
the number of sessions that are active in state ¢} and pass
through edge e; that is #¢(e) = |AN sesszons( )|. The set
of active edges for a session cluster S; in state (2, denoted
AFEo(S;), is the set of all edges of the network traversed
by at least one active session in state (), that belongs to
cluster S;. Correspondingly, the set of active edges of the
network in state , denoted AFE(, is the set of all edges of
the network traversed by at least one session that is active
in state Q.

For cach cdge ¢ € E and statc @ = (R, A), the allotted
capacity of e in Q [1], denoted allottedg(e), is defined to
be the total rate already allocated to done sessions passing
through e. For any edge e € E and any state @ such that
#q(e) > 0, the Fair Share of e in Q [1], denoted FSg(e), is
defined as FSq(e) = (cap(e) — allottedg(e))/#q(e); roughly
speaking, F'S¢(e)is the fair share of the “available” capacity
of edge e in state () for each of the sessions passing through e
that are still active. For each state @ = (R, A), a bottleneck
edge for @ is an edge e € E such that each active session
passing through e receives its smallest fair share, among all
of its edges, on edge e. For each j € [n], the Minimum Fair
Share of session S; in state @ [1, Definition 3.6], denoted
MFSq(S;), is the smallest among all fair shares that S;



receives on any of its edges in state Q.

For each cluster §;, the set of edges with minimum fair
share for cluster S; in state Q, denoted MFSE(S;), is the
set of all edges traversed by a session in S; that is active in
state @), whose fair share is the least among all such edges.
The set of edges with minimum fair share in state @, denoted
MFSEq, includes an edge e only it there exists an active
session passing through e whose minimum fair share is equal
to the fair share of e. Of particular interest is the subset
LMFSE g of MFSE () including edges whose fair share 1s the
least among those of all edges in MFSEg.

2.5 The Update Operation

For any session S;, the marimum increase for S; in state
Q imposed by edge ¢ € S;, denoted Ag(y,e), is the maxi-
mum reform increase for (R, j, cap(e)); that is, Ag(y,e) is
the maximum A > 0 for which there exists a vector R’
such that ({R, 7, cap(e)),(R', A)) € update; roughly speak-
ing, Ag(7,e) is the maximum possible increase to the rate of
session S; that “saturates” edge e, while possibly decreasing
in a fair manner other sessions passing through e.

The mazimum increase for S; in state @, denoted Ag(j),
is the minimum, over all edges ¢ € S}, of the maximum in-
crease for S; in state @ imposed by edge e; that is, Ag(7)
is the minimum among all maximum increases of S; which
“saturate” edges traversed by S; and possibly decrease ses-
sions “parallel” to S; in a fair manner; Ag(j) captures the
fact that .S; can be increased by a certain amount only if it
can be increased by this amount on each of its edges.

An update operation is a specific instantiation of the up-
date relation. Intuitively, in an update operation, R cor-
responds to the rates of a set of sessions sharing an edge
e € F such that cap(e) = ¢, and j is a session index; R’ cor-
responds to the rates of these sessions after performing an
update operation. The operation “saturates” e (Condition
1) by increasing S; by A (Condition 2), while sessions with
lower or cqual ratcs arc not affccted (Condition 3); more-
over, the operation “preserves” fairness since, in addition,
there can be left no sessions with rate higher than that of
the increased session (Condition 4).

2.6 Schedulers and Terminators

A deterministic scheduleris a function Scheduler that maps
a pair (G, S) of a network G and a set of sessions S laid out
on G, a network state @, and an integer [ > 1 to an index
i = Scheduler((G, S), Q,1) of some session from S.

An oblivious scheduler “knows” neither the topology of
the network nor the status and rates of the sessions in choos-
ing the session to schedule next. Thus, for a session set
S = {S1,...,5:}, an oblivious scheduler may be identified
with a (finite or infinite) sequence Scheduler = 11,12, .. .,
where for each [ > 1, i; € [n]. A partially oblivious scheduler
does not “know” the topology of the network in choosing the
session to schedule next, but does know the rates of (all) ses-
sions. Thus, for a session set § = {S1,...,S»}, a partially
oblivious scheduler Scheduler may be identified with a (finite
or infinite) sequence of functions Scheduler;, one for each in-
teger [ > 1, where each function maps a network state @ to
an index ¢ = Scheduler,(Q) of a session from §.

A randomized scheduleris a function Scheduler that maps
a pair (G, 8) of a network G and a set of sessions S laid out
on G, a network state @, and an integer [ > 1 to a (discrete)
probability distribution f = Scheduler((G,S),Q,!) on the
scssion sct §. An oblivious randomizced scheduler is dcfined
in the natural way.

A terminator is a function Terminator that maps a net-
work state @ = (R, A} to a session set 7 = Terminator(Q)
such that 7 C A; intuitively, Terminator decides which ses-
sions among those still active should be marked as done.
Say that Terminator is bottleneck (see, e.g., [3, Chapter 6]) if
for any state @ = (R, .A) and session S, S € Terminator(Q)
if (and only if) there exists an edge e € S such that (1) e is
a bottleneck edge for @, and (2) rate(S) = FSqg(e).

An algorithmis a pair Alg = (Scheduler, Terminator). Say
that Algis obliviousif Scheduler is; say that Alg is bottleneck
if Terminator is.

2.7 Executions and Convergence Complexity

We model computations on the network as sequences of up-
date operations, each of which increases the rate of some ses-
sion in the network and decreases the rates of other sessions
that are “parallel” to the one being increased. Formally, an
execution of Alg on network G with session set S is an infi-
nite sequence of alternating states and session indices @ =
Qo,t1,Q1,...,2,Q, ..., satisfying the following conditions:
(1) Qo = @Q"; (2) for each I > 1, ¢y = Scheduler(Qi—1,1:-1);
(3) for each I > 1, A; = Aj_1 \ Terminator(Q;—1); (4) for
each [ > 1, for each edge e € 5,,,

({(Ry—1, 11, cap(e)), (Ri, Ag,_, (i1,€))) € update.

For any integers I1 and l>, 1 < 1 < o, the (I1, L2)-suffix
denoted suffiz(l1,12), is defined to be the set of indices of
all sessions that were updated by at least one of the update
operations performed strictly after the network entered state
(¢, and no later than when the network enters state ¢,.
For any state @, let |Ag,| = k& > 1. We denote by F(k)
the minimum number of required update operations, over
all bottlencck algorithms, so that suffiz(s, ¢+ F'(k)) contains
all sessions active in @Q;; clearly, suffiz(i,i 4+ F(k)) = Ag,.

The convergence complexity of Alg on network G for the
cluster S;, denoted Un(G, S;), is defined to be the maxi-
mum, over all executions of Alg on network G of the min-
imum number of update operations that need to be per-
formed in an execution in order for all sessions in §; to be
marked as done. The convergence complexity of Alg on net-
work G with a set of sessions 8, denoted Ua(G,S), is the
sum, over all session clusters, of Uaig(G,S;). The conver-
gence complexity of Alg, denoted Uai, is defined to be the
maximum, over all pairs of a network G and a session set
S laid out on G, of the convergence complexity of Alg on
network G with session set S.

Consider any algorithm Alg such that Uag(S;) < ni.
Since 2]21 n? < dn and Uag = 25:1 Unig((S;), it follows
that Uag < dn. In particular, for the partially oblivious
schedulers LocalMin and GlobalMin [1, Sections 4 & 5], it
holds that:

PI‘OpOSitiOH 2.2 Z/[(3|o|,a||\/|]n § dn and Z/{Loca”\mn S dn.

3 Bottleneck Algorithms

In this section, we exhibit basic properties of bottleneck al-
gorithms. Some of these properties have been known previ-
ously, while most of them are new. The first property states
that the output allocation vector of a bottleneck algorithm
is a max-min allocation vector.

Proposition 3.1 (Bertsekas & Gallager [3]) Let Alg be
a bottlencck algorithm. Then, for any final statc @ = (R, 0),
R is a max-min allocation vector.



The next result states that the fair share of an edge is
monotonically non-decreasing for any execution of a bottle-
neck algorithm.

Proposition 3.2 (Afek et al. [1]) Let Alg be a bottleneck
algorithm . Then, for each edge ¢ € E and l > 1 such that
#Ql(e) >0,

FSq(e) > FSq,_,(e).

Roughly speaking, Proposition 3.2 implies that the fair
share of an edge may not decrease, as long as there are still
active sessions using the edge, while a bottleneck algorithm
is running. We continue to show:

Proposition 3.3 Assume that Alg is a bottleneck algorithm.
Consider a cluster S; that is active in state Qr, and fix any
edge e € MFSE g, (S;). Then, for any indexl > k such that
S; is active in Qi, for each edge ¢’ € AFEq,(S;),

FSq(¢) > FSq,(e).

Proof: Take any edge ¢’ € AEq,(S;). Obviously, ¢’ €
AEq, (S;). Hence, by definition of MFSE g, (S5), F'Sq, (e) <
FSq,(e'). By Proposition 3.2, FSq,(¢') > FSq, (¢'). Tt fol-
lows that FiSg,(e') > FSq,(e), as needed. |

The next result presents another property of bottleneck
algorithms.

Proposition 3.4 (Afek et al. [1]) Let Alg be a bottleneck
algorithm. Consider any state Qp such that either i, = 3 or
rateq, ., (55) < rateq, (S,). Then for all 1 > k,

rateg, (S;) > MFSq, (S;).

We continue to show some additional properties of bot-
tleneck algorithms.

Proposition 3.5 Assurne thal Alg is a boltleneck algorithm.
Consider a cluster S; that is active in state Q;, and fix any
edgee € MFSEq,(S;). For every session Sr € sessions(e)N
Ag, the following hold:

(1) There is no edge that may cause a decrease of the rate
of Sy, to a value less than FSq,(e).

(2) Sr can not have final rate greater than FSq,(e).

Proof: Wc first prove (1). Since ¢ € MFSEq,;(S;) for
each session S; € sessions(e) N Ag, we have, FSq,(e) =
minges, FSq,(e'), which implies that e is a bottleneck edge.
Hence, each of the sessions S, € sessions(e) N.Ag, receives
on edge e the minimum among all fair shares on any edge
e/ € AFq,(S;). Thus, there is no edge that may cause a
decrease of the rate of any S, € sessions(e) N Ag,, to a
value less than FSq,(e).

The second property is an immediate consequence of fair-
ness and the capacity constraint. [ |

An immediate consequence of Proposition 3.5 follows.

Corollary 3.6 Assume that Alg is a bottlenek algorithm.
Consider a cluster §; that is active in state Q, and fiz any
edge e € MFSEQ(S;). Then, the final rate of any session
traversing e that is active in state Q is FSq(e).

The next property implies that that the edge with the
minimum fair share among all edges that are active for some
particular cluster is “stable”; that is, this cdges rctains its
property as long as it remains active.

Proposition 3.7 Assume that Alg is a bottleneck algorithm.
Consider a cluster §; that is active in state Q;, and fix any
edge e € MFSEq,(S;). Take any index | > 1 such that
e € AEq,. Then, e € MFSEq,(S;).

Sketch of proof: By Proposition 3.3, the following holds:
FSq,(e') > FSg,(e), V¢! € AEq,(S;) and | > i . We
will prove that FSqg,(e) = FSg,(e), which implies that
FSq,(e') > FSg,(e), that is e continues to be the edge with
the smallest fair share. For any state @i, | > 1, if none of
the Sy € sessions(e) N Ag, has been marked done, then
FSq,(e) = FSq,(e). This and the fact that fair share is
non decreasing imply that for every { > 1 such that none
of the S, € sessions(e) N Ag, has been transfered to done,
e € MFSE,(S;).

Let S; € sesstons(e) N Ag,; be the first session among
all sessions S, € sesstons(e) N Ag,, that becomes done in
some state Q. By Corollary 3.6 the final rate of S; equals
FSq,(e).

Since @1 is the state in which the rate of session S; re-
ceives its final value and S; is the first session that is marked
done among all sessions S, € sessions(e) N Ag,, it holds
that allottedg, () = allottedg,(e) + FSq,(e), which im-
plies that FSg,(e) = FSq,(e). Thus, e remains the edge
with the minimum fair share among all ¢’ € AFq,(S;), even
after any session becomes done.

Applying repeatedly the preceding arguments, we get
that edge e remains the edge with the minimum fair share
among all edges e’ € AEg,(S;) in every state @ such that
sessions(e) NAg, # 0. ]

We continue to show that, for any bottleneck algorithm,
after the rates of all sessions traversing the minimum fair
share edge for some particular cluster, have been increased
at least once, these sessions must have all become done.

Proposition 3.8 Assume that Alg is a bottleneck algorithm.
Consider a cluster S, that is active in state Q;. Fir any edge
e € MFSE g, (S;). After all sessions Sy € sessions(e)NAg,
have been updated once, all these sessions Sy € sessions(e)N
Ag, can not further increase their rate (that is, for every
Il >k, rateq,(Sr) = rateq, (Sr), where Qi ts the network
state where the last update occured).

Proof: Since the initial rate of every session equals 0 and
increases of rates occur only by session updating, in order
all sessions S, € sessions(e) N Ag; to become done, each of
them must be updated at least once. We will prove next,
that if all these sessions are updated at least once, then all
becomes done.

By Proposition 3.7, edge e € MFSEg,(S;), for any state
Q: such that sessions(e)N.Ag, # 0. By Proposition 3.5, for
every session S, € sessions(e) N Ag,, there is no edge that
may cause a decrease of the rate of S,, while simultaneously
the reate of S; can not be greater than F'Sq,(e) = FSq,(e).
However, after all these sessions have been updated at least
once all of them have rate equal to FSg,(e) and they can
not increase their rate any more. |

Finally, we prove that whenever all active sessions have
been updated at least once, at least one session in each clus-
ter must have become done.

Proposition 3.9 For any state Q;, let Q;, 7 > t, be the
first state of the network such that suffiz(i,j) = Ag,.
Then, at least one session in each cluster can not increase
its rate any more after the state Q;.



Proof: Consider a cluster Sy such that e € MFSEq,(Sk).
Since suffiz(1,5) = Ag,, in state @Q; all active sessions
in state (J; have been updated at least once. Thus, every
session S, € sessions(e) N .Ag, has also been updated at
least once and by Proposition 3.8 all these sessions can not
increase their rate any more. Thus, in any cluster, at least
one session can not increase its rate any more after state Q)5
as needed. |

4 Deterministic, Oblivious Schedulers

Sections 4.1 and 4.2 include our lower and upper bound,
respectively, for oblivious schedulers.

4.1 Lower Bound

We present a lower bound of Q(dn) on the convergence com-
plexity of any oblivious algorithm that computes the max-
min vector.

Theorem 4.1 Assume that Alg is a deterministic oblivious
algorithm that computes the maz-min vector. Then,

dn n
Ung > 1 + 5"
Sketch of proof: Fix any even integer d, and choose any
integer n that is a multiple of d. We construct a network
G = (V, E) with a set of sessions S = {51, S2,..., 5, } laid
out on G so that Uaig(G,S) =dn/4+n/2.

The construction uses two sequences of real numbers, b
and p (for “bottom” and “potential,” respectively), defined
as follows: b = 0 and p1 = 2F for any integer p > 2d;
for each index r, 1 < r < n/d, b, = by—1 + pr—1/2, and
Pr = Pr—1 /4

Partition § into n/d session clusters 81,82,...,8,/4 so
that SJ = {Sd(]_1)+1,sd(]_1)+2,...Sd(]_1)+d}, where 1 S
J < n/d; notice that for each j, 1 < j < n/d, |S;| =d. For
cach cluster S;, we construct a nctwork G; = (V}, Ej) so
that G = (:Ulsjgn/dxlj’UlSJS”/dEJ)' For each j, 1 S ] S
n/d, denote Uag(Gj,S;) the number of update operations
performed by Alg on sessions in cluster S; laid out on the
network G;. Clearly, Uaig(G,S) = Z;lz/cll Unig(G;,8;5). The
construction of the network (G proceeds in a sequence of
d/2 epochs; the network Ggr) = (VJ(T), E;T)) is constructed
in epoch r, where G; = (UlSTSd/QVJ(”, UlSTSd/QEET)).

For each v, 1 < 7 < d/2, the construction of the net-

work Ggr) uses b, and p, as parameters. The construc-
tion is inductive. For the basis case, where r = 1, we de-

scribe the construction of the network GUY. Assume that
Scheduler T &; = 121,12,...,tq. Clearly, it must be that
Scheduler T §; is not empty (that is, each session in S; is
eventually scheduled by Scheduler), since otherwise at least
one session in §; would never be updated and thus keep zero
rate, which contradicts the fact that Alg computes the max-
min vector. By our notation, S;; and S;, are the sessions in
cluster S; which are updated first and last, respectively, in

the prefix Scheduler T §;. We construct GST) as follows: ses-
sions ¢1 and ¢4 share an edge e(dl) with cap(e(dl)) =2 +p1/2;
for each I, 2 < 1 < d — 1, sessions i1 and #; share an edge
egl) with cap(e‘il)) =2b + p1.

Note that, by the construction of the network Ggl), each
of the sessions #1,12,...,74 18 increased only once during

Scheduler T S;, even if there were more than one occur-
rences of any particular session in this prefix before remov-
ing repetitions. This is so because, on the first update of any
particular session other than 24, the edge traversed by the
session becomes saturated; so this session cannot increase its
rate any further before session 24 is updated, which is the
last session to be updated in Scheduler T §;. This update
on ig decreases the rate of i1 by pi/4, thereby increasing
the “free” capacity on each other edge by p1/4. Clearly, the

execution of the prefix Scheduler | §; on G(71) results on the
marking of 7; and ig as done, while the remaining d — 2
sessions in cluster §; remain active. Since Alg computes the
max-min vector, it follows that the sequence Scheduler | §;
is not empty.

Assume inductively that we have constructed Glr=1
Let Scheduler := Scheduler | §;. Clearly, the number of
sessions In S that are still active equals now d — 2(r — 1),
since, inductively, two sessions are marked as done in each
of the previous r — 1 epochs.

We prove that Scheduler must contain all indices of ses-
sions that have not yet become done; that is, we prove that
Scheduler T §; is not empty. Assume, by way of contradic-
tion, that Scheduler does not contain all indices of active
sessions; let ¢ be any index of an active session that is not
included in Scheduler. Denote 7; the index of the session
updated first. We construct Ggr) as follows: sessions 21 and

ix share an edge e‘;;) with cap(egf)) = 2 b + pr/2; for each
{, 2 <1 <d-2(r—1), 1 # k, sessions i1 and i; share
an edge e(ir) with cap(:egr):) = 2b, + p,. In this construc-
tion, if session ix is not updated, none of the sessions i,
2<1<d—-2(r—1)and I # k, can become done, which
contradicts the fact that Alg computes the max-min vector.
It follows that Scheduler T §; is not empty.

Assume, without loss of generality, that Scheduler T §; =
1,82, .., 1g_a(r—1). Clearly, S;; and Sid_2(r_l) are the ses-
slons in cluster §; which are updated first and last, respec-

tively, in the prefix Scheduler T §;. We construct GST) as

follows: sessions 41 and ig_p(r_1) share an edge e(dr_),z(r_l)

(r) ) = 2b 4+ pr/2; for each I, 2 < 1 <

with cap(ed_mr_l\'

d —2(r —1) — 1, sessions 73 and 7; share an edge e‘ir) with
cap(egr)i) = 2b, + pr.

Note that, by the construction of the network Ggr), each
of the sessions 11,42, .. . ; ig_z(r—1) is increased ouly once dur-
ing Scheduler T §;, even if there were more than one occur-
rences of any particular session in this prefix before removing
repetitions. This is so because, on the first update of any
particular session other than ¢q_5(,_1), the edge traversed
by the session becomes saturated; so this session cannot
increase its rate any further before session i4_s(-_1) is up-
dated, which 1s the last session to be updated in Scheduler |
S;. This update on i4_»(,_1y decreases the rate of i1 by p, /4,
thereby increasing the “free” capacity on each other edge by
pr/4. Clearly, the execution of the prefix Scheduler T §; on

Ggr) results on the marking of ¢1 and ig_p(,—1) as done,
while the remaining d — 2(r — 1) — 2 = d — 2r sessions in
cluster §; remain active.

We prove that, by the way capacities of edges in E;T) are
chosen, there is no effect of these edges during epoch r—1 of
the execution on the network Ggr_l). We do so by showing
that the capacity of any edge in EET:' exceeds the capacity

of every edge in Egr_l); this is shown using the definitions



of the edge capacities in the construction, and those of the
sequences b and p. Roughly speaking, this implies an ap-
propriate ordering of the fair shares of edges in consecutive
epochs, which determines that the edges restricting the al-
located capacity in each session during a particular epoch
are those “constructed” during the epoch.

For each y, 1 < j < m/d and r, 1 < r < d/2, denote
U/(\rg)(:GJ,SJ) = d — 2(r — 1) the number of update opera-
tions performed on sessions in cluster §; during epoch r.
Summing up H/(\ITE)(GST),S]) over all clusters and epochs, we
obtain that Uag(G,S) = dn/4 + n/2, as needed. ]

4.2 Upper Bound
We present the algorithm RoundRobin and show:

Theorem 4.2 RoundRobin computes the mazx-min alloca-
tion vector within dn/2 + n/2 update operations.

The RoundRobin scheduler conducts n scheduling rounds.
In each round, each of the n sessions is scheduled in “round-
robin” order; The terminator of RoundRobin works as fol-
lows. The session currently scheduled for an increase is
marked as done if it cannot be increased, while some of
its edges is a bottleneck edge such that each of its incident
sessions receives a rate equal to the fair share of the edge.
Thus, RoundRobin is a bottleneck algorithm, and computes
the max-min vector. We continue to prove:

Proposition 4.3 Ursundrobin < dn/2+n/2

Sketch of proof: All active sessions are updated once in
each round, so Proposition 3.9 implies that at least one
session of each active cluster is marked as done in each
round. Consider any cluster S;. Then, Uroundrobin(S;) <

ny+n; —1+...+1 = n§/2+nj/2, and UroundRobin <
E]>1(n§/2+nj /2). However, ZJ>1 n;‘) < dn, which implies
that Uroundrobin < dn/2 +n/2, as needed. ]

We proceed to establish a lower bound on UroundRobin-

Proposition 4.4 Ursundrobin > dn/4+n/2

Sketch of proof: Fix any intcger d, and choosc any intc-
ger n thatl is a multiple of d. We construct a network G =
(V, E) with a set of n sessions & = {51, ..., 5, } laid out on
G, so that G has session dependency d and Ursundrobin(G) =
dnj/4+n/2.

For each j € [n/d], fix any even integer c¢; > 10(d +
1). For any pair of integers j and &, j € [n/d] and % €
[d — 1], sessions Sg;_1y4x and Sg;_1)4r41 share an edge
eq;—1)+x of capacity c;(d —k +2). Clearly, ||5 partitions
S into clusters 8i,...,8,/q4, where for each j, j € [n/d],
S; = {Saj—1)415- -+ » Sa(j—1)4a}. It follows that the session
dependency of G is d.

During the Ith round, session Sg(;_1)4; is increased from
ci(d —j +2)/2 to (ci(d — j + 3)/2 because capacity d/2 is
available. Afterwards, session Sg(i_1)4,41 is increased from
ci(d — 7+ 1)/2 to ci(d — 5 + 2)/2, which causes the rate of
session Sg(i—1)4; to be decreased to ¢i(d—j+2)/2,1 < i <k
and 1 < j < d— 1. Furthermore, sessions Sg;_s;_2) and
Sgi—a(i—2)-1, ¢ = l,..., k, are marked done. The number
of update operations performed in each cluster S; is equal
to d —2(I —1). For each cluster index j and r, 1 < r <

d/2, denote ulgzzndRobin(G’Sﬂ) =d — 2(r — 1), the number of

update operations performed on sessions in cluster S; during
round r. Summir.lg up UégzndRobin(G, S;) over all clusters and
rounds, wc obtain that Ureundrebin(G,S) = dn/4 + n/2, as
needed. |

5 A Randomized, Oblivious Scheduler
We present the algorithm Random and show:

Theorem 5.1 Random computes the maz-min alloca-
tion wector within an capected number of O(dInn/pmin)
update operations.

Fix probabilities  p1,p2,...,pn, such that pmin =
mini<;<n Py > 0. The scheduler of Random is randomized;
for each j, 1 < j < n, session 5; is scheduled for an increase
with probability p; > 0. Thus, thc scheduler of Random is
oblivious. The terminator of Random works as follows. The
session currently being scheduled for an increase is marked
as doneif it cannot be increased, while some of its edges is a
bottleneck edge such that each of its incident active sessions
is receiving a rate equal to the fair share of the edge. Thus,
the terminator of Random is bottleneck. Hence, Random
computes the max-min allocation vector.

We continue to show upper bounds on the expectation
and standard deviation of the number of update operations
required for the convergence of Random.

Proposition 5.2 The following hold on the probability dis-
tribution of URandom -

(1) g(uRandom) S dlnn/pmzn+®(d/pmzn),
(2) o(Urandom) € O(\/g/l’min)'

Proof: We start by showing (1). Let |Ag,| = I in some
state Q;. By Proposition 3.9, after F'(I) update operations,
at least one session in each active cluster will become done.

Let Qj,,Qj,,...,Q;, be states such that suffiz(0,j1) =
AQus « -+ suffiz(ja—1,34) = Agq,,, correspondingly. Sup-
pose further that |Ag, | =L, |Ag,| =k, ...,|Aq,,| = L.

Then, Urandom < (L) + F(L) + ...+ F(la).

Bounding F(l;) corresponds to bounding the random
variable X in the generalized coupon collector’s problem.
Let Sy, Sr,, ..., S, be the active sets in state ();,, and let
Pri>Pro,---,Pr. be the corresponding scheduling probabili-
ties. Let pi, min = min{pr,, Pra, - - - s Py, }. Then, £(F (L)) <
log &; /pt, min+O(1/pt; min) < log n/pmin+O0(1/pmin), sincc
Pmin < Pi;,min and l; < n for each i € [d]. By linearity of
expectation, the previous imply:

g(Z/{Random) S leg n/pmzn + O(d/pmzn) S O(dlog n/pmzn) .

We continue to show (2). For each pair of ¢ and j,
corrcsponding to F'(I;) and F({;), the appcarcnce of onc
of them only “complicates” the other; thus, the random
variables are negatively correlated, so that by the FKG in-
equality [2, Chapter 6], all covariances are negative. Hence,
var (Urandom) < var(F(l1)) + ... + var(F (la)).

By the correspondence between our problem and the gen-
eralized coupon collector’s problem, we have var(F(l;)) <
1/p‘l?,,min S 1/p2nzn ThllS, VaI'(MRandom) S d/pfrun It fol-

lows that o(Urandom) € O(\/E/pmm), as needed. [ |

A significant special case occurs when pmin 1s bounded
below by an inverse power n™*; since pmin < 1/n, it must
be that £ > 1. In this case, Proposition 5.2 immediately
implies:

Corollary 5.3 Assume that pmin > l/nk for some con-
stant k > 1. Then, the following hold on the probability
distribution of Urandom *



(1) E(Urandom) < nk|C|ln n+r(n), wherer(n) € O(nk|C|);
(2) J(Z/{Random) S O(nk\/ |C|) .

Clearly, the upper bounds on &(Urandorn) and a(Urandom)
attain their lowest values when k£ = 1; in this case, for each
i € [n], pi > Pmin > 1/n, which implies that p; = 1/n for
each ¢ € [n], so that:

Corollary 5.4 Assume that p; = 1/n for each i € [n].
Then, the following hold on the probability distribution of

Z/{Random ’

(1) £E(Urandom) < dnlnn +7(n), where r(n) € O(dn);
(2) o(Urandom) € O(n\/g)

6 Deterministic, Partially Oblivious Schedulers

We show a lower bound of ©(dn) on the convergence com-
plexity of any partially oblivious algorithm that computes
the max-min vector.

Theorem 6.1 Let Alg be a deterministic partially oblivious
algorithm that computes the maz-min vector. Then,
dn n
Ung > 1 + 7"

Sketch of proof: Our proof is similar to that of Theo-
rem 4.1; the main complication is due to the fact that the
“complete” sequence of sessions produced by any partially
oblivious scheduler is not known a priori, as has been the
case for oblivious schedulers. Hence, our modified proof si-
multaneously “hand-crafts” in a step-by-step fashion both
the sequence of sessions produced by any arbitrary but fixed
partially oblivious scheduler (by using all intermediate rates)
and the network for which Q(dn) update operations are re-
quired for convergence to the max-min vector (whose ca-
pacities determine the intermediate rates). For purpose of
exposition, we sketch the construction of the session se-
quence 17,12,...,14 for the first epoch. This sequence is
dcfined indutivcly.  For the basis casc, where I = 1, sct
i = Schedulerl(O); that is, S5;, is the session scheduled
first by Scheduler. Assume inductively that we have de-
fined 21, 12,...,8—1; let Q1,Q>, ..., Qi—1 be the sequence of
network states right after the scheduling of each of these ses-
sions. Define 3; = Scheduler;(Qi—1) such that #; is different
from each of 71, ¢2,...,%—1 (we continue applying Scheduler
till we reach an index different than those seen so far). De-
note #1,12,...,tq = Scheduler T §;. The rest of the proof
closely follows that of Theorem 4.1. [ |

Proposition 2.2 implies that the lower bound on the con-
vergence complexity of any partially oblivious algorithm es-
tablished in Theorem 6.1 is tight (within a constant factor).

7 A Non-Oblivious Scheduler
In this section, we present the algorithm Linear and show:

Theorem 7.1 Linear computes the max-min allocation vec-
tor within exactly n update operations in every case.

The scheduler of Linear selects any arbitrary edge e from
LMFSE g and increases one by one all the sessions S, €
sessions(e) N Ag,. Note that the edge e is the one of the
smallest fair sharc among all cdges ¢’ € AE g, (by the dcfi-
nition of LMFSEq,).

Proposition 7.2 Linear is a bottleneck algorithm.

Proof: Let o« = Qo,101,Q1,...,1,Q1, ..., be any execu-
tion of Linear on some network G with session set S. We
argue that there is some index m > 1 such that Q. =
(Rgm,AQ,,) € @ and Ag,, =0 (i.e., Linear “terminates”).
Let 7 be any step of Linear and e be any edge in LMFSEq,.
Note that all sessions S, € sessions(e) N Ag,; will increase
their rate. Since e is the edge with the globally smallest fair
share and all S, € sessions(e) N .Ag, were increased once,
Proposition 3.8 implies that all these sessions can not in-
crease their rate any more. Thus, all such sessions will be
marked done. However, when this happens, e will not belong
to LMFSE g, any more, since when sessions(e)N.Ag, =0,
e & AEg,, and another (new) edge will be examined in
subsequent steps of the algorithm. It follows that Linear
terminates.

We continue to show that Linear is a bottleneck algo-
rithm. We need to show that when a session S is marked
done, there is an edge e € S that is a bottleneck edge in @,
and rateq,(S) = FSg,(e). This holds, indeed, for the edge
e with the globally smallest fair share, which is selected by
Linear. Clearly, this edge is a bottleneck edge. Furthermore,
by Corollary 3.6, for every session S, € sessions(e) N Ag,,
rateq,, ., (S») = FSq,(e). It follows that Linearis a bottle-
neck algorithm, as needed. |

By Proposition 7.2, Proposition 3.1 implics that Linear
computes the max-min allocation vector. We continue to
show a tight bound on the convergence complexity of Linear.

Proposition 7.3 Ulinear = 7.

Sketch of proof: The upper bound of n on Upjnear is an
immediate consequence of Proposition 3.8: if all active ses-
sions traversing an edge with the smallest fair share among
all active edges have been updated, then all of them will
become done, without any further update operation to be
performed on them. The lower bound of n is obvious. [ |

8 Conclusion

We have presented a collection of lower and npper bounds
on the convergence complexity of optimistic, rate-based flow
control algorithms, under varying degrees of the “knowl-
edge” used by the scheduling component of the algorithms.
We have shown that the classes of oblivious algorithms and
partially oblivious algorithms “coincide” with respect to con-
vergence complexity; moreover, our results imply a conver-
gence complexity separation between partially oblivious al-
gorithms (in particular, oblivious) and non-oblivious algo-
rithms for optimistic, rate-based flow control. Our algo-
rithms demonstrate remarkable combinations of moderate
convergence complexity with interesting locality properties;
these algorithms improve on the ones in [1]. On the other
hand, our lower bounds identify fundamental limitations on
the performance of oblivious or even partially oblivious al-
gorithms. Both lower and upper bounds on convergence
complexity we have shown have been expressed in terms of
session dependency, a critical network parameter which has
been introduced by our research as a measure of “locality”
into complexity considerations.

Our work has envisioned the problem of optimistic, rate-
based flow control as one of distributed decision-making with
incomplete information (see,e.g. [16, 21]), and has provided
yct another demonstration of the cconomic valuc of informa-
tion as a key computational resource in a distributed system.



There remain a number of practical issues still com-
pletely untouched by our work. In the first place, we feel
that the max-min fairness criterion may be undue in some
realistic situations, where there are widely varying demands
on different sessions. Second, the limitation to “static” sets
of sessions is overly restrictive; it would be extremely sig-
nificant to extend our model and techniques to handle set-
up/take-down of sessions.
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