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ABSTRACT 

Balancing networks have recently been proposed by Aspnes et al. (Proceedings of  the 
23rdAnnualACM Symposium on Theory of  Computing, May 1991, pp. 348-358 as a new 
class of distributed, low-contention data structures suitable for solving a variety of 
multiprocessor coordination problems that can be expressed as balancing problems. A 
significant amount of recent research in multiprocessor computing has been devoted to 
balancing networks. By way of sampling: constructions of balancing networks satisfying 
special-purpose properties have been presented and complemented by corresponding 
inconstructibility results; combinatorial properties of balancing networks have been 
uncovered, revealing a rich, underlying mathematical structure; the actual performance 
of balancing networks has been evaluated by both theoretical and experimental means 
under a variety of degrees of processor concurrency. In this work, I attempt to survey, 
exemplify, and unify recent research on balancing networks. @Elsevier Science Inc. 
1997 

1. I N T R O D U C T I O N  

C o n s i d e r  a s i tua t ion  w h e r e  we have p p r o d u c e r s  and  c consumers .  T h e  
p r o d u c e r s  p r o d u c e  jobs  at  some  a rb i t r a ry  rate;  the  jobs  should  be  per -  
f o r m e d  by the consumers .  O n e  would  l ike to d i s t r ibu te  the  j obs  as evenly 
as poss ib le  a m o n g  the  consumers .  A very s imple  way to solve this  p r o b l e m  
m a k e s  use  o f  a counter.  W h e n  a new job  is p r o d u c e d ,  the  p r o d u c e r  
accesses  the  coun te r ,  increases  it, and  p laces  the  new job  in a given a r ray  
accord ing  to the  va lue  o b t a i n e d  f rom the  counte r .  C o n s u m e r  n u m b e r  1 
pe r iod ica l ly  checks  the  a r ray  loca t ions  1, c + l, 2c  + l . . . .  , and  w h e n e v e r  any 
o f  t hem conta ins  a new job ,  the  c o n s u m e r  p e r f o r m s  it. Clear ly,  the  
d i f fe rence  in the  to ta l  n u m b e r  o f  j obs  eventua l ly  p e r f o r m e d  by any two 
consumers  is a t  mos t  1. 

INFORMATION SCIENCES 97, 125-157 (1997) 
© Elsevier Science Inc. 1997 
655 Avenue of the Americas, New York, NY 10010 

0020-0255/97/$17.00 
PII S0020-0255(96)00175-2 



126 M. MAVRONICOLAS 

A counter  can be easily implemented using a single shared Fetch& 
Increment variable. However, empirically, the time to access a shared 
variable grows at least linearly with the contention, the extent to which 
concurrent processors simultaneously access the variable. 1 In a seminal 
paper, Aspnes et al. [6] suggest a completely different approach to such 
counting problems. Their  idea is to use a collection of shared variables, 
called balancers, each having low expected contention, in a way that a 
processor needs to access only a few variables in order  to obtain a value 
from the counter. Roughly speaking, a balancer can be thought of as a 
two-output toggle with either one or two inputs. When an input appears on 
an input wire, it takes the output wire to which the toggle is set, and 
toggles the gate so that the next input will leave on the other output wire. 
If the balancer is initialized so that the first input to pass through will exit 
on the top output wire, then, after m inputs have passed through the 
toggle, exactly [ m /2 ]  will exit on the top output wire, and tm/21 will exit 
on the bottom output wire. On a shared-memory multiprocessor machine, 
a balancer can be implemented by a single-bit Compare&Swap variable, 
and a wire can be implemented by a memory address pointer. 

One can "connect"  a collection of balancers to form a balancing 
network much in the same way a sorting network is obtained by connecting 
a collection of comparators (see, e.g., [27]). This is done by connecting 
output wires from some balancers to input wires of others. The remaining 
unconnected input and output wires are the input and output wires, 
respectively, of the network. Each request for a value corresponds to a 
traversal of the network by a token, starting from some input wire, 
following the pointer obtained by accessing the first balancer to the next 
one, and so on. Let x i denote the number of tokens that have entered the 
network on the ith input wire, 0 ~<i~<t- 1, where t is the input width of 
the network. Similarly, yj denotes the number of tokens that have left the 
network on the j th  output wire, 0 ~<j < w - 1, where w is the output width 
of the network. A balancing network of input width t and output width w 
is a counting network if each time the network becomes free of tokens, i.e., 
all entering tokens have exited, 0 ~<yi-yj ,<< 1, for any i, j, 0 <i <j <_ w - 1 .  
Slightly less demanding, a balancing network of input width t and output 
width w is a K-smoothing network if each time the network becomes free 

~The cost of contention varies according to the architecture of the system and the 
specific arbitration protocols used (cf. [5]). 
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of tokens, i.e., all entering tokens have exited, O<~yi-y/<~ 1, for any i,j, 
O<~i<j<~w-1. 

Counting and K-smoothing networks are the most well-studied classes 
of balancing networks. Counting networks have been proven suitable for 
implementing shared counters and producer/consumer buffers for multi- 
processor architectures [6, 22], while K-smoothing networks are appropri- 
ate as hardware solutions to load balancing problems [6, 22, 30]. A large 
amount of research on balancing networks has attempted to provide 
constructions of counting and K-smoothing networks and analyze the 
actual performance of such networks by both theoretical and experimental 
means [2, 3, 6, 10, 13, 15, 18, 19, 21-23, 25, 26, 32]. 

One important performance measure for a balancing network is its 
depth, the length of the longest path from an input wire to an output wire, 
since the depth of the network is equal to the number of memory locations 
that a processor may have to access before its incremental request has 
been fulfilled. An important objective of recent research on balancing 
networks has been to minimize the depth of counting and K-smoothing 
networks, as a function of the output width w. While a reduction to sorting 
reveals that depth ll(log w) is necessary [6, 11], there have been plenty of 
constructions that achieve depth O(log 2 w) [6, 10, 15, 19, 21, 23]; corre- 
sponding experimental evidence suggests that these constructions, al- 
though not optimal in depth, perform reasonably well in practice. Not so 
many constructions come close to the O(log w) lower bound on depth. The 
first explicit, deterministic construction of a counting network with input 
and output width w is one presented by Klugerman and Plaxton [26], 
achieving depth O(c I°g'w log w) for some constant c. However, this con- 
struction is truly impractical and out of the question to use for practical 
purposes since it employs the impractical AKS network [4], and this makes 
the hidden coefficients forbiddenly large. 

In all known previous constructions of counting networks [2, 6, 10, 19, 
21, 26], the output width w is equal to the input width t, and the 
constructed counting networks are also sorting networks [6]. Since the only 
known-to-date sorting network with depth ®(log w) [4] is highly impractical 
due to large hidden coefficients, insisting that t and w be equal reduces 
the problem of constructing a "practical" counting network with depth 
O(log w) to the problem of constructing a "practical" sorting network with 
depth O(log w), remaining open for about twenty-five years [8]. However, 
insisting that t and w be equal is not really a consequence of the 
specification of a counting network with w output wires, namely, that it 
"counts" modulo w. Busch and Mavronicolas use this observation to 
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provide the first simple, deterministic construction of a counting network 
with depth O(log w) [13]. 

Depth is not the only parameter affecting the actual performance of 
balancing networks. The time for a processor to traverse a balancing 
network may also be affected by the simultaneous effort of other proces- 
sors to traverse the network, and the extent to which a given balancing 
network allows for such subtle interactions between concurrent processors 
also deserves study. Recent research has studied the effect of contention, 
the extent to which concurrent processors concurrently access a balancing 
network, by both experimental and theoretical means. Carefully designed 
experiments have been conducted to account for the actual performance 
of balancing networks [6, 10, 19, 21-24, 32]; in a more formal setting, 
formal complexity models for contention in shared-memory algorithms 
have been proposed [3, 18] and used to formally explain the reported 
experimental results (see, e.g., [3, 10, 13, 15, 18, 21]). These formal studies 
of the performance of balancing networks study the contention as a 
function of the number n of concurrent processors and the network input 
and output widths t and w, respectively. 

A different research direction attempts to understand the combinatorial 
structure of balancing networks in a hope that such an improved under- 
standing would reveal any possible fundamental limitations on the perfor- 
mance of balancing networks, which the practitioners should also know, or 
help design and verify more efficient special-purpose balancing networks. 
Busch and Mavronicolas [11] develop an elegant, mathematical theory of 
the combinatorial structure of balancing networks. This theory proves 
useful for formally showing constructibility and performance (as measured 
by depth and size) limitations, developing precise algorithms for mathe- 
matically verifying that a balancing network meets its specifications, and 
developing a paradigmatic methodology for showing correctness of general 
constructions of balancing networks [12, 14]. 

I apologize for placing perhaps undue emphasis on results I have been 
involved in, but these are the ones I know best! 

The rest of this paper is organized as follows. In Section 2, we present 
definitions and preliminary facts about balancing networks. In Section 3, 
we survey constructions of counting networks known so far and their 
properties. We continue, in Section 4, with an overview of the combinato- 
rial theory of balancing networks presented by Busch and Mavronicolas 
[11]. Section 5 includes negative results on balancing networks (incon- 
structibility results and lower bounds). Section 6 surveys experimental and 
theoretical research on performance of balancing networks. We conclude, 
in Section 7, with a discussion of the results on balancing networks 
obtained so far and some directions for further research. 
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2. DEFINITIONS AND PRELIMINARIES 

In this section, we provide a brief introduction to balancing networks; a 
more complete exposition of the properties of balancing networks can be 
found in [6, 11]. 

2.1. BALANCERS AND BALANCING NETWORKS 

The construction of balancing networks is similar to that of comparator  
networks from wires and comparators (see, e.g., [16, Chapter 28] or [27, 
Section 5.3.4]). We begin by describing balancers. 

A balancer is a computing element with a number of input wires and a 
number of output wires. Tokens may arrive on one of the input wires 
0,1 . . . . .  r -  1 of the balancer at arbitrary times. Intuitively, a balancer is a 
toggle mechanism, which, given a stream of input tokens, sends them to 
output wires 0,1 . . . . .  p - 1  in that order  and in a cyclic way; thus, a 
balancer effectively balances the number of tokens that have been input 
on its output wires. 

The following definitions are tailored for a two-input, two-output bal- 
ancer. Denote  by x i, 0 ~< i ~< 1, the number of input tokens ever received on 
the balancer's ith input wire, and, similarly, by yj, 0 ~<j ~< 1, the number of 
tokens ever sent out on its j th  output wire. (Throughout,  we will some- 
times abuse notation and use x i (resp., y/) both as the name of the ith 
input (resp., j th  output) wire and the count of the number of input (resp., 
output) tokens received (resp., sent out) on the wire.) Y0 and Yl corre- 
spond to the top and bottom output wires, respectively. 

The state of a two-input, two-output balancer at a given time is defined 
as the sets of tokens on its input and output wires. For the sake of clarity, 
we will assume that tokens are all distinct. A state of a two-input, 
two-output balancer is quiescent if El=0 xi = F-~=0 Y/; that is, the number of 
tokens that entered the balancer on its two input wires is equal to the 
number of tokens that left it on its two output wires. The following formal 
safety, liveness, and step properties are required for a two-input, two- 
output balancer: 

1. In any state, E~=0 xi>~ Y'-]=0 Y/ (i.e., a balancer never creates output 
tokens). 

2. Given any finite number of input tokens m = El= 0 xi to the balancer, 
the balancer reaches within a finite amount  of time a quiescent state (i.e., 
a balancer never "swallows" input tokens). 

3. In any quiescent state, 0~<y 0-y~  ~< 1 (i.e., the output sequence has 
the step property). 



130 M. M A V R O N I C O L A S  

Corresponding  definitions for  a balancer  with general  numbers  of  input 
and output  wires follow immediately.  

A balancing network ~ of input width t and output width w is a collection 
o f  balancers, where  output  wires are connected  to input wires, having t 
designated input wires 0, 1 . . . . .  t -  1 (with no output  wires connec ted  to 
them), w designated output  wires 0,1 . . . .  , w -  1 (not connec ted  to input 
wires), and containing no cycles. A number  o f  tokens x 0, x 1 . . . . .  xt_ 1 arrive 
on input wires 0,1 . . . . .  t - 1 ,  respectively, and a number  o f  tokens 
Y0, Yl . . . . .  Yw- ~ are sent out  on output  wires 0, 1 . . . .  , w - 1, respectively. 
Deno te  such a network by ~ :  X ¢/) ---, yew), where X (/) = ( X ( ) ,  X 1 . . . . .  Xt- 1 ) x ,  

and y<w) = (Y0, Yl . . . . .  Yw- 1 )-r. 
We depict  a balancing network of  width w as a collection o f  w 

horizontal  lines with balancers  stretched vertically. Figure l shows a 
balancing network, with outputs  computed  on output  wires o f  all balancers 
for  a specific input. Note  that  a line does not  represent  a single wire, but  
ra ther  a sequence of  distinct wires connect ing various balancers. 

The size of  a balancing network ~ ,  size(~), is the total number  o f  
balancers  in the network.  The  depth ofa wirey, depth(y), is defined to be 
zero  if y is an input wire o f  the network,  and max i ~ trl depth(xi) + 1, if y is 
an output  wire o f  a balancer  with r>~ 1 input wires Xo,Xl,...,Xr_ 1 and 
depth(x) + 1, if y is an output  wire o f  a one- input  balancer  with input wire 
x. The  depth of a balancing network ,~, depth( ~q~), is the maximal dcpth  of  
any wire. 

The  state of a balancing network is defined as the collection o f  states o f  
all its c o m p o n e n t  balancers.  A state of  a balancing network is quiescent  if 
E~-~ x i =  E)~=0 ~ yj; that  is, the number  o f  tokens that  entered the network 
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is equal to the number of tokens that left it. The safety and liveness 
properties of a balancing network follow naturally from its definition and 
the safety and liveness properties of a balancer: 

1. In any state, E~2~ x; >-- ET=-t¢ yj (i.e., a balancing network never cre- 
ates output tokens). 

t - 1  2. Given any finite number of input tokens m = E;= 0 xi to the network, 
the network reaches within a finite amount of time a quiescent state (i.e., a 
network never "swallows" input tokens). 

2.2. CLASSES OF BALANCING NE7]4"ORKS 

The most prominent classes of balancing networks studied so far are the 
counting, K-smoothing, and merging networks. 

DEFINITION 2.1 ([6]). A counting network of fan-in t and fan-out w is a 
balancing network of these widths for which, in any quiescent state, 
O<<.yj-yk <~ 1, for any j , k ,  O<~j <k  <~w-1.  

That is, the output of a counting network has the step property. 

DEFINITION 2.2 ([2]). A K-smoothing network of  fan-in t and fan-out w is 
a balancing network of these widths for which, in any quiescent state, 
l y j -yk l  <~g, for any j , k ,  O<~j,k <~w-1.  

That is, the output of a K-smoothing network has the K-smoothing 
property. Notice that for any K >~ 1, a counting network is also a K-smooth- 
ing network. A smoothing network is a K-smoothing network for any 
integer K>_- 1. An alternative way of relaxing Definition 2.1 is to require 
the step property for the output to hold only if the input has some kind of 
a step property. 

DEFINITION 2.3 ([6]). A merging network of  fan-in t and fan-out w is a 
balancing network of these widths for which, in any quiescent state, if 
0 <~x i - x  k ~< 1 for any i, k, 0 <~ i < k <~ t / 2  - 1, and 0 <~x i - x  k ~< 1 for any i, k, 
t / 2  <~i <k  <~t-1,  then O<~yj--yk <~ l , for any j ,k ,  O<~j <k  <~w-1.  

That is, the inputs are partitioned into two "blocks," each of size t /2 ,  
and the output has the step property whenever each of the two input 
subsequences, one for each of the "blocks," does. Note the resemblance of 
Definition 2.3 to that of the "classical" comparison-merging networks [27]. 
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3. CONSTRUCI ' IONS 

In this section, we briefly survey some of the main constructions of 
counting and K-smoothing networks known to date. 

Fix throughout w to be any power of 2. We first establish some 
notation. Let X(p/2) and X~/2) denote the vectors (Xo,X 1 . . . . .  Xw/2_l  )T 
and (xw, , /2 ,  Xw/2~- 1 . . . . .  x. ,_ ~ )T, respectively. Let also X(e w/z) and X(o w/2) 
denote the vectors ( x  o, x 2 . . . .  , X w - z )  and (Xx, x3, . . . ,  Xw_ 1), respectively. 
That  is, the vectors X(e w/2) and X(o w/2) contain the odd and even, respec- 
tively, entries of X (~). Finally, let X(~/2) and X(o"~/2) denote the vectors 

(Xo, X2, . . . ,Xw/2-2,Xw/2+ 1 , X w / 2 + 3 , . . . , X w - I  ) 

and 

(Xl~ X 3 , ' ' ' ,  Xw/2-  1, Xw/2, Xw/2+2," "', X w - 2 ) ,  

respectively. That  is, the vector X (w/2) represents the concatenation of the 
~¢(w/2) vector of even entries of  X (w/2) with the vector of odd entries of "~d . . . .  --up 

while the vector X(o~/2) represents the concatenation of the vector of odd 
entries of X(~p/2) with the vector of even entries of v(w/2) ~down • 

Corresponding to the definitions for X (w/2) v~w/2) X~W/2), X(o~/2), up , zffidown, 
X(e:/2), and X(~/2), we define index sets up[w]={O, 1 . . . . .  w / 2 - 1 } ,  
d o w n [ w ] = { w / 2 ,  w / 2  + l . . . .  , w - l } ,  e [ w ] = { 0 , 2  . . . . .  w - 2 } ,  o [ w ] =  
{1,3 . . . . .  w -  1}, eo[w]={0 ,2  . . . . .  w / 2 - 2 , w / 2 +  1 , w / 2 + 3  . . . . .  w -  1}, and 
oe[w] = {1,3 . . . . .  w / 2  - 1, w / 2 ,  w / 2  + 2 . . . . .  w - 2}. 

3.1. THE BITONIC COUNTING NETWORK WITH WIDTH 2 k 

We describe an inductive construction of the bitonic counting network 
~.~(~), following [6]; it uses the bitonic merger network .~'.d "tw), whose 
construction is described next, as a basic module. 

The bitonic merger network ~.¢t  "(w). The  balancing network ~..d"~w): 
X(W) ~ y(w), called b#onic merger, is defined inductively as follows: For  the 
base case, where w = 2, ~'.¢t "~2) consists of a single balancer. Assume 
inductively that we have constructed ~,¢¢,(w/2), where w >~ 4; we show how 
to construct ~,~/(w). The network ~'..¢t "~w) is the cascade of: 

• a network MAw): X (w) ~ Z (w), which is the "parallel composition" of  
two networks ..@.~'e(~'12): X(~ol2)~Z(e w12) and .~..¢t'o~'12): X(o"~/2)~ 
Z(oW/2>; 
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• a layer _oc~w): Z(w)~Y <w) consisting of w / 2  balancers b0,bl , . . . ,  
bw/2- 1, where balancer b i receives inputs z2i and z2~ + 1 and produces 
outputs Y2i and Y2i+ ~, i ~ [w/2]. 

The bitonic network ~(w). The balancing network ,~,(w): X(W)__.y(w), 
called bitonic, is defined inductively. For the base case, where w = 2, ~,(2) 
consists of a single balancer. Assume inductively that we have constructed 
..~(~/2), where w >/4; we show how to construct ~,(w). The network ~(w) is 
the cascade of: 

• a network ~g~(w): X(w)~Z(W), which is the "parallel composi- 
tion" of two networks  ,~(p/2): X(u~/2)_._~Z(p/2) and "'downaz(w/2)'. 
X(W/2) ~ 7(w/2). 

down ~down 
• a bitonic merger network ~'~'e'(w): Z (w) ~ ycw). 

The bitonic network was one of the two counting networks discovered 
first [6]. A straightforward proof by induction shows that the bitonic 
merger network preserves the step property on its inputs shows: 

THEOREM 3.1 ([6]). The network ~¢¢t "(w) is a merging network. 

By construction of ~(w), it immediately follows: 

COROU~RY 3.2 ([6]). The network 5e? (w) is a counting network. 

An alternative proof of Theorem 3.2 has been carried out in [12]. This 
proof is a concrete instance of a paradigmatic methodology for proving 
correctness of balancing networks developed in [12] which is, in turn, a 
direct application of the combinatorial theory of balancing networks pro- 
posed in [11] (see Section 4). The new proof provides an interesting 
complement to the one of Aspnes et al. [6] in terms of modularity and 
simplicity. 

It is trivial to establish that dep th (~  (w)) ~ ®(log 2 w) and size(d$ (w)) 
O(w log 2 w). 

3.2. A BITON1C COUNTING N E T W O R K  WITH WIDTH p2  k 

We describe ,an inductive construction of the bitonic counting network 
~,p: X(p2~)~y(p2~), following Busch et al. [10], for any integers ~ >I 2 and 
k >/0. The construction uses the bitonic merger network .~¢~,p(p2 ), whose 
construction is described next, as a basic module. 

(p2 k) The bitonic merger network S~t'(p pzk). The balancing network ~'.¢e'~ , 
also called bitonic merger, is defined inductively as follows: 

For the base case, where k = 1, the network ~.¢t'~ zp) consists of two 
layers ~2  zp) and .~p(2p); these layers consist solely of 2-balancers and 
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p-balancers, respectively: 

The layer c,~v2(2P): X (2p) ~ Z (2p) consists of p 2-balancers 
b(2) /*(2) 0 , ,'1 . . . . .  b(p 22 1. (For each i ~ [p], the two input wires of b} 2) are the 
ith output wire of ~,~2pp) and the (p  - 1 - i ) t h  output wire of ~(2p) 

• .;Op, d o w n  "," 

The layer .~p2p): ZC~,)__. y(2p) consists of two p-balancers b~) and 
b~ p). The p input wires of b(o p) and b~ p) are the upper and lower, 
respectively, output wires of ~0/*(2),v1/*(2),''', b p _  1 (2). The ith output wire 
of d~'.ggp (2p) is the ith output wire of b~) e) for i ~ up[2p], and the ith 
output wire of ~,g/p(2p) is the ( i - p ) t h  output wire of b~ p) for 
p ~ down[ p]. 

Assume inductively that we have constructed ~',¢t'p (p2~- b, where k >/2; 
(p2 k) we show how to construct ~.~,'~ . ~ • The network ~.q~l/p (p2) is the cascade 

of: 

• a network JVp (P2~): X (p2*) --, Z (p2k), which is the "parallel composition" 
of two networks ,~,.~. (p2k- 1). x(pZk ) ---) Z(p2k ) and ~ . ~ .  (p2/- 1). X ( P 2 t  1) 

p ,  eo  " eo  e o  p ,  o e  " o e  

_,  Z(o;e 2~- '); 
• a layer _~pp2~): Z(P2k)---,y(p 2') consisting of p 2  k-1 2-balancers 

'10h(2), ,,/*(z)~ , . . . ,  bp(2),- 1_ x, where balancer b i receives inputs z2~ and Z2i+l 
and produces outputs Yzi and Yzi-  1, i ~ [p2k]. 

The bitonie network ~qY~ p2~). The balancing network ,(~(P2k): X (p2k) 
Y (pzk), also called bitonic, is defined inductively• 

For the base case, where k = 0, ~'p(P) consists of a single p-balancer. 
Assume inductively that we have constructed 5~(v2Pk 1), where k >~ 1; we 

show how to construct ,~(2P k). The network ~,~fi2p k) is the cascade of: 

• a network ~'~P2k): X (p2~) ---~y (p2*), which is the "parallel composi- 
• 7 ,  - -  k -  1 9 k  1 k -  l t,on of two networks ~ ( p 2  ): X(p- )__,y(p2 ) and ~'(p.Zk-') • 

X ( P 2 k -  1) ~ y ( p 2  k- 1). p , u p  u p  u p  p ,  a o w n  " 

d o w n  d o w n  ' 

• a bitonic merger network 2~'p(P2'): Z (pzk) ----~ y (p2k). 

Figure 2 depicts the network .~12. 
The following result has been shown following the paradigmatic 

methodology for proving correctness of balancing networks developed in 
[12] (see also Section 4). 

THEOREM 3.3 ([10]). The network c.gd.ft'p (p2~) is a merging network. 

By construction of the network .~p (p2~), it immediately follows: 

COROLLARY 3.4 ([10]). The network 5~'p (p2k) is a counting network. 



BALANCING NETWORKS: STATE OF THE ART 135 

1 
v 

Fig. 2. 
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v 

The bitonic counting network -~'~2. 

• z , . 7 ~ ( p 2  k ) It is trivial to establish that d e p t n ~  )EO(k 2) and size(~(w))~ 
O(2kk2). This amounts to a significant improvement over a corresponding 
construction by Aharonson and Attiya [2] (not based on the AKS network 
[4]) that achieves depth and size of O(k 3) and ®(2kk3), respectively. 

3.3. A PERIODIC kp-SMOOTttlNG NETWORK WITH WIDTH pk 

We describe a general construction of a kp-smoothing network ~.~(pk), 
for any integers p >/2 and k >/1, following Hardavellas et al. [21]. This 
network uses p-balancers only and achieves depth O(k2). The periodic 
counting network introduced by Aspnes et al. [6] is the special case where 
p = 2 .  

p-Chains and p-cochains. We present definitions for p-chains and 
p-cochains, patterned after those in [17] modified to accommodate 
p-balancers. 

Consider a sequence X=xo,  xx, . . . ,xn_ 1. We represent each index 
(subscript) of a term in X as a p-ary string, i.e., a string over {0,1 . . . . .  p - 1} 
rcpresenting the index in the p-ary arithmetic system. In our discussion, 
we will use terms, indices, and representations of indices interchangeably. 
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DEFINIaaON 3.1. The /eve/= 0 p-chain of  X is X itself. For any integer 
i>~ 1, a level-ip-chain of  X is a subsequence of X whose indices have the 
same i low-order p-ary digits. 

There are, for each integer i >~ 0, pi level-ip-chains of X. For i >/1, the 
level-/p-chain of X corresponding to the i low-order p-ary digits PiPi-1 
""Pl  will be denoted as X pi'pi, ,...vl. In particular, X ° , X  1 . . . . .  X p-I  
denote the level-I p-chains of X, namely, the subsequences of X of terms 
with indices 0,1 . . . . .  p -  1 modulo p, respectively. 

DwvIymON 3.2. Let ~ be a set of p-chains of X. The p-cochain of  X 
defined by ~ ,  X ~', is the subsequence of X consisting of all terms of 
p-chains in ~ .  

Of  special interest are p-cochains of X defined by certain combinations 
of level-2 p-chains of X. Specifically, let ~ o = { X ° ° , X  11 . . . . .  XP- lP -1 } ,  
~1 = { X°l,  X12 . . . . .  X v-  L0}, through Wp_ x = { X ° p -  1, X v-  1.p-2 . . . . .  xl0}.  

Each of these sets of  p-chains of X defines a corresponding p-cochain of 
X. These p-cochains, denoted by X ~0, X ~v,, through X~p - ~, will be called 
the specialp-cochains of  X.  Notice that, by definition of special p-cochains, 
x i J E ~ k  if and only if j = - ( i + k ) m o d p .  

As an example, consider the sequence X = x o ,  x~ . . . . .  x63. It is straight- 
forward to obtain the special 4-cochains of X, namely, X ~',, X ee,, X ~2, 
and X%: 

• "~0 = {X°°, XI1, X22, X33}, and: 

X~'0 =Xo~ x 5~ xlo~ x15 ~ x16 ~ x21, x26, x31 ~ x32,  x37, x42, x47 ~ x48~ x53, x58 ~ x63. 

" ~:::'1 = { /01 ,  X12, X23  X30}, and: 

X c~1 =Xl~X6~Xll,X12,x17~x22~x27~x28~x33~x38~x43~x44~x49~x54,x59,x60. 

• o~ 2 = {X 02, X 20, X 13, X31}, and:  

Xg"2=x2 ,x  7~x 8,x13,x18~X23~x24,x29~x34~x39~x40,x45~x50,x55~x56,x6!. 

• "~'3 = { X°s ,  x3z ,  X21, XI°},  and: 

X ~'g~2 = X 3 ~ X 4 , X 9 , X I 4 ~ X I 9 ~ X 2 0 , X 2 5 , X 3 0 , X 3 5 , X 3 6 , X 4 1 , X 4 6 , X 5 1 , X 5 2 , X 5 7 , X 6 2  , 
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The next two lemmas establish important properties of p-chains and 
p-cochains that will be used later. The first lemma reveals the close 
relationship between p-chains and p-cochains. 

LEMMA 3.5 ([21]). For each integer i > 1, a subsequence of  X is a level-i 
p-chain of  X if and only if it is a level-i - 1 p-chain of  one of  the special 
p-cochains of  X. 

The construction. Define the balancing network .c~_~ ~pk), called block, 
as follows. When k is equal to 1, the network . ~ ' S  p~) consists of a single 
p-balancer. For larger values of k, the network .~'_~,~P~) is constructed 
recursively. We start with p networks .~'_~¢,~ P~- ') denoted by./r 0, ~4/11, through 

jrp_ 1. Given an input X, the input to ~ is X ~',, where 0 ~<i ~<p - 1. Let y~e 
be the output sequence for the network J/'7/, i ~ [p]. The final stage of the 

k) 
network ~_~¢~P combines each p-tuple y~", y~',  through y~p-, in a single 
p-balancer, yielding final outputs Zpj, Zpj+ ~, through Zpj.p_ 1, O<~j<~ 
pk  X _ l .  

For example, the case p = 3 and k = 3 yields the balancing network 
6~.~ 27) shown in Figure 3. 

The balancing network .~(pk) is the cascade of k balancing networks 
. f ~ P ~ )  joined so that the ith output wire of one is the ith input wire of 
the next, 0 <~ i <~pk _ 1. Figure 4 shows the balancing network ,.~(27). 

Through a series of lemmas providing interesting combinatorial proper- 
ties of p-chains and p-cochains, it is shown: 

THEOREM 3.6 ([21]). The network ~(P~) is a pk-smoothing network. 

Hardavellas et al. provide counterexample executions to show that for 
several values of p>~3, the network ~(P~) is not a counting network. 
However, it turns out that the special case where p = 2 is different: 

THEOREM 3.7 ([6]). The network ~ (2k) is a counting network. 

It is an important open question to precisely determine those values of 
p other than 2, if any, for which the network ~(P ' )  is a counting network. 

It is trivial to establish that depth(.~ (pk)) c O ( k  2) and size(.~ (p~)) 
®(pkk2).  

3.4. A LOGARITHMIC-DEPTH COUNTING NETWORK 

We describe an inductive construction of the logarithmic-depth counting 
network ~t.w with t and w input and output wires, respectively. The 
construction follows that presented by Busch and Mavronicolas [13]; it uses 
the bounded-difference 6-merging network .dw(6), whose construction is 
described next, as a basic module. 
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w 

q 

Fig. 3. The balancing network ,~ ,.~2v). 
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The bounded-difference &merging network ~'w(8). We present a con- 
struction of a network that merges two input step sequences with a 
bounded difference between their sums into a sequence that has the step 
property. Assume, as usual, that w and 8 are powers of 2 and 2 <~ 8 <~ w/2,  
and consider a partition of [w] into blocks 7r 0 and w:. We start with a 
formal definition of this formal property. 
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A bounded-difference &merging network is a balancing network ~ ' :  
X (w) ~ Y(W) such that, if for every r ~ {0, 1}, then, for any i and k, i, k ~ zr r 
and i<k ,  O<~xi-xk<~l and Ej~,~oXj-Ej~,~ xj<~6, for any j and l, 
0 <~j <l <~w- 1, 0 <~Yi-Yt ~ 1. That  is, the input sequence is partitioned 
into two blocks, each of size w/2,  and the output has the step property 
whenever the difference of sums of inputs in these blocks is at most 8, and 
the restrictions of the input sequence to each of these blocks each have 
the step property. The construction of a bounded-difference &merging 
network will involve, as a building block, a network that halves an upper 
bound on the difference between sums of inputs in each of two blocks that 
individually have the step property. A formal definition of this property 
follows. 

A bounded-difference &halving network is a balancing network ~ ' :  
X ( ~ ) ~ Y  (w) such that if for every r~{0,1}, for any i and k, i , k~Tr  r and 
i<k ,  O<~xi--Xk<~l, and E i ~ o x j - E j ~ ,  xj<~6, then, for any j and l, 
j, l ~ qT r and j < l, 0 <~ yj -Y t  <~ 1, and Y'.j ~ ~o yj - Ej ~ ~, yj <~ 6/2. That is, the 
input and output sequences are each partitioned into two blocks, each of 
size w/2,  and the difference of  sums of outputs in these blocks is at most 
6/2,  and the restrictions of the output  sequence  to each 
of these blocks has the step property whenever the difference of sums of 
inputs in these blocks is at most 6, and the restrictions of the input 
sequence to each of these blocks each have the step property. We present 
a bounded-difference &halving network g(~(3): X (w) ~ y(w), which is just a 
single layer, consisting only of two-input balancers. 

Let ~'0 ={2klO<~k<~w/2- 1} and 7r, = { 2 k +  l [O<~k<w/2-  1}; that is, 
7r 0 and 7r, index the even and odd, respectively, subsequences of X (~) and 
y(w). We describe the connections of ~w(6): 

• For each k, 0 ~ < k ~ < 6 / 2 - 1 ,  input wires 2 k ~ z r  0 and 2 ( w / 2 - 6 / 2 +  
k) + 1 ~ 7r~ are connected through a two-input balancer. The top and 
bottom output wires of this balancer are the 2kth  and ( 2 ( w / 2 -  6/2  
+ k ) +  1)th, respectively, output wires of the network ,Uw(6). 

• For each k, 6 /2<~k<~w/2-  1, input wires 2 k ~  ~'0 and 2 ( k -  6 / 2 ) +  
1 ~ ~-, are connected through a two-input balancer. The top and 
bottom output wires of this balancer are the ( 2 ( k - 6 / 2 ) +  lth and 
2kth, respectively, output wires of the network ,Z~w(6). 

As an example, Figure 5 depicts the network ,,~8(4): X (8) ~y(8) ,  with 
wires drawn as horizontal lines and balancers stretched vertically. 

The bounded-difference &merging network .¢t'~(6) is the cascade of 
log 6 bounded-difference &halving networks ~ ( 6 ) ,  ,g~(6/2)  . . . .  , g(~(2) in 
this order. 
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Fig. 5. The bounded-difference 4-halving network ,,~fs(4). 
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A simple induction shows: 

THEOREM 3.8 ([13]). The network ~¢t'(w)(8) is a bounded-difference & 
merging network. 

The logarithmic-depth network ~c'~t,w. We continue with the construction, 
for any integers t and w which are powers of 2, 1 ~< t ~< w and 2 ~< w, of the 
network S~,w. 

For the construction, we proceed by induction on t. For  the base case, 
we consider the cases t = 1 and t = 2 which are both special. 

The case t = 1. For the first base case, where t = 1, we describe the 
construction of the network ~ . ~ .  We proceed by induction on w. For the 
base case, where w = 2 ,  ~ , 2  consists of a single one-input balancer. 
Assume inductively that we have constructed S~'~,~/2 for some integer 
w >~ 2. We describe the construction of the network ~l ,~:  x(1) ~ Y(~). Take 
a one-input balancer b. The input wire of the network 6~1, W is the input 

~01 • U o ) - ) V  (~/2) and wire to the balancer b. Take next two copies 1,~/:. 
~11~/2: W°)--)Z(~/2) of c~1,~/2. The top and bottom output wires of the 
balancer b are the input wires of the networks ~ ° 1 / 2  and ~I1~/2, 
respectively. Our inductive construction is completed by defining the 
output wires of the network ~ , w  in terms of the output wires of the 

- 0] _c~ll 1 networks 6z~,~/2 and _ J,~/2. The even and odd output subsequences of 
0l the network S'~1,~ are the output sequences of the networks S'~,~/2 and 
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5<, TM , respectively. Formally, for each i, O < i < . < w / 2 - 1  y 2 i = v i  and l ,w /2  

Y2i  ) 1 = Zi" 

The  case t = 2. For the second base case, where t = 2, we describe the 
construction of the network ,~2,w. We proceed by induction on w. For the 
base case, where w = 2 ,  ~'z2 consists of a single two-input balancer. 
Assume that we have constructed ,5~,w/2 for some integer w>~2. We 
describe the construction of the network S°2,~: X(2)~Y (w). Take a two- 
input balancer b. The two input wires of the network 5~2,~ are the input 
wires to the balancer b. Take next two copies Salt°~/2: U ° ) ~ V  (~/2) and 

~ 1  [1] W (1) ....) Z(W/2) ,w /2 :  of ,~G~l,w/2. The top and bottom output wires of the 
balancer b are the input wires of the networks ~'lt°wl/2 and ~]1wl/2, 
respectively. Our construction is completed by defining the output wires of 
the network 5~2,w in terms of the output wires of the networks 5~°1/2 and 
,c/~[1~/2. The even and odd output subsequences of the network Sa2,w are 
the output sequences of the networks 5~1E°1/2 and bE, till,w/2, respectively. 
Formally, for each i, 0 <~ i <~ w / 2  - 1, Y2i = vi and Y2i* 1 =zi .  

The  case t > 2. Assume inductively that we have constructed the net- 
work S~t/2,w/2 for all integers w and any integer t, 4<~t<~w. We describe 
the construction of the network ~t.w. Take t / 2  two-input balancers 
b o , b  x . . . . .  bt /2_ 1. For each i, O < ~ i < ~ t / 2 - 1 ,  the input wires i and i + t / 2  
are the two input wires to the balancer b i. Take next two copies 5~t1~,~/2: 
U (t/2) ~ V (w/2) and t~ • W(t/2) . ~  Z(W/2) ~t/~,~/2. of the network ~ t / 2 , w / 2 "  F o r  
each i, 0 <~ i <~ t / 2 -  1, the top and bottom output wires of the balancer b i 
are the ith input wires of the networks - t0 I~ S~t/~,~/2 and S~t/~,w/2, respec- 
tively. Take next a bounded-difference t /2-merging network .¢t'~(t/2). The 
output wires of the networks to t~ ~t /~ ,w/2  and 5~tt/~.w/2 are the even and odd 
subsequences, respectively, of the input sequence to the network .¢{w(t/2).  
The output sequence of the network 5~t.~ is the output sequence of the 
network ~e'~(t/2). Notice that since t >74, the induction is grounded on 
t = 2 .  

As an example, Figure 6 depicts the counting network ~4, ~6: X(4) -- '  y(16), 
using the same conventions as in Figure 5. 

An inductive proof establishes: 

THEOREM 3.9 ([13]). The ne twork  ~ . , ,  is a count ing network.  

It is trivial to exploit the inductive construction of the network .~.w and 
show that depth(b~t,w) = log w + log t(log t - 1) /2  ~ O(log w + log 2 t), and 
sizeCT~,.w) = w - t + t log t / 2  + w log t(log t - 1)/4. 

We briefly comment on thc extreme cases of values taken on by the 
parameter  t. For t =  1 and t = 2 ,  5;'].,,. and 5z~.w are binary trees with 
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Fig. 6. The counting nctwork ~ • 4,16" 

depth(,~l, w) =depth(S2. w) = log w and size(S:1, w) =size(S:2, w) = w - 1. For 
t=w,  ~w.w provides a counting-network alternative to the bitonic and 
periodic counting networks presented in [6]. This network attains identical 
bounds on depth and size with the bitonic and periodic networks, namely, 
dep th(~ ,w)  = log w(log w + 1 ) / 2  ~ ®(log 2 w) and size(,Y~w.~) = 
w log w(log w + 1) /4  ~ O(w log 2 w). 

For suitably "small" t, the depth of the network S'~t,~ is ®(log w): 
logarithmic in the output width w. This is the first construction achieving 
logarithmic depth, and represents a vast improvement over previous con- 
structions (e.g., [6, 26]). 

4. COMB INATORIAL PROPERTIES  

In this section, we provide a brief outline of a combinatorial theory of 
balancing networks developed by Busch and Mavronicolas [11], and its 
applications. 
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4.1. NOTATION 

For any real number x, [x] denotes the smallest integer no smaller than 
x, and [x] denotes the largest integer no larger than x. For any vector 
X(~)= (x0,x~ . . . . .  X w - 1 )  T, IX (w)] and tX (w)] denote the integer vectors 
<[x0l, Ixd . . . . .  rxw_11) a" and <lx0J, tx ] . . . . .  l x ._  l J) T, respectively¥ We use 
0 (w) and 1 (w) to denote the vectors (0 ,0 , . . . , 0 )  T and (1,1 . . . . .  1) , respec- 
tively, each with w entries. The definition of  1 (*) is extended to matrices 
with w rows and w columns in the natural way to yield 1 (~×w). For any 
integer p>~ 1, denote [p ]={0 ,1  . . . . .  p - 1}. We use N and 91 to denote the 
sets of natural and real numbers, respectively. 

The minimum norm function II'llmin: 91w __, 9l is defined by IlX(W)llmin = 
mini~t~, Ix~l. The maximum norm function II-Ilmax: 91w~91 is defined by 
IlX('~)llmax =maxi~t~j  Ix~l. Both the minimum and the maximum norms can 
be extended from vectors to matrices in the natural way. We will also use 
an extension of the maximum norm function from vectors to vector 
functions F: D ~ 9 1  w over any domain D, which is defined by setting 
IlFllm~x=maXx~ D IlF(x)llm~x; that is, IlFllmax is the maximum value attained 
by a component  of F over the domain D of F. The 1-norm function II'lh: 

= Z w -  1 IXil" 91w ~ 91 is defined by IIX(W)lll ~=0 
Fix any integer p>~2, and let )-"i>~0 x i p  i denote the representation of 

the integer x >t 0 in the p-ary arithmetic system, where, for each i, x~ ~ [p]. 
For any integer k>~l,  define x S p k = ~ , o < i < k _ l x i p  i and X'~pk= 
~,i>~ k xipi; that is, x St, k is the integer represented by the k least signifi- 
cant digits in the representation of x in the p-ary arithmetic system, while 
x I" e k is the integer obtained from this representation by setting each of 
those digits to zero. Clearly, x Sp k + x  $, k=x .  The following result pro- 
vides simple expressions for x Sp k and x l"p k. 

LEMMA 4.1. For any integers x >1 O, p >i 2, and k >~ 1, 

X * p k = [ - ~ l p k  and x ,l, p k = X - [ - ~ ] p  k. 

Furthermore,  define X~pk=Xk_ lpk -1 ;  that is, xSpk is the integer 
represented by the k th least significant p-ary digit of x. 

The definitions of x Sp k, x l"p k, and x Sp k involving the integer x can 
be extended component-wise to any vector X (w) to yield 

X (w) J,p 

X (w) l"p 

X(~)$p 

k = ( x  0 $ , k , x  1Spk . . . . .  Xw_ 1 ~,pk> 1", 

k = ( x 0  ?pk,xx  Sek  . . . . .  xw_l "fpk) a, 

k =  (Xo$ p k , x  1 Sp k . . . . .  Xw_ 1 Sp k )  T. 
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In all of  our discussion, we will refer to a set ~ = {P0, Pl . . . . .  Pm- 1} of 
positive integers no less than 2, and we will let P denote the least common 
multiple of integers in ~ .  Without loss of generality, assume P0 is the 
largest integer in g .  

4.2. A MATRIX REPRESENTATION 

In case d e p t h ( ~ ) =  1, $8 will be called a layer, and it will be uniquely 
represented by a matrix 14 with w rows and w columns, called the 
incidence matrix, z which determines incidences between input and output 
wires, and a vector O~ with w rows, called the order vector, which 
determines the order  of each output wire. Formally, we define: 

• for any i and j ,  0 <~i,j <~ w - 1, l.~[ji] = 1 / p  if input wire i and output 
wire j are connected via a p-balancer, for some p ~ ,~ ;  else l~ [ f i ]  = 1 
if output wire j coincides with input wire i, and 0 otherwise; 

• for any j, 0 ~<j ~< w -  1, O~[ j ]  = ord( j )  if output wire j is the output 
wire of a balancer; else O.~[j] = 0. 

For example, for the layer ~ '  depicted in Figure 7 using the same 
conventions as for Figure 1, we have that 

1 / 2  0 0 0 1 / 2  / 

0 1 /3  1 /3  1 /3  o[ 
I ~ =  0 1 /3  1 /3  1 /3  ~ 1, 

0 1 /3  1 /3  1 /3  

1 /2  0 0 0 1 /2  ] 

2Our notion of an incidence matrix is different from all similar notions of incidence 
matrices encountered in combinatorial matrix theory (see, e.g., [9]) in that it explicitly 
uses node degrees. 

Fig. 7. The layer .~'. 
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O ~ = ( 0  0 1 /3  2 /3  1 /2 )  r. 

Apparently, by definitions of balancers, the incidence matrix I~ ,  and 
the order vector O~, it immediately follows: 

PROPOSITION 4.2 ([11]). For a layer ,~': X ~) ~Y(~), 

y(w) = [i e.X<W)_ o ~ l  " 

If d e p t h ( ~ ) = d >  1, then ~ can be uniquely partitioned into layers 
• ~'1,.~¢2 . . . . .  ~ a  from left to right in the obvious way. The incidence matrix 
I~, and the order vector O.~, are associated with layer ,~'i, 1 ~< i ~< d. We 
represent 6/¢ by the sequence of d connection matrices l.~,,Iw2 . . . . .  I .~,  
and the sequence of d order vectors Os~,,O.~2,... ,O~. 

4.3. A STRUCTURAL RESULT 

Busch and Mavronicolas [11] show that for any balancing network, the 
outputs take a particular algebraic form as a function of the inputs, 
depending on the types of balancers used, and the depth and topology of 
the network. 

THEOREM 4.3 ([11]). Let ~' :  X (~) ~ y(w) be a balancing network of  depth 
d over 9 with associated incidence matrices I.ue~, I.~ 2 . . . . .  I ~  and order 
r, ectors O ~ ,  O~ 2 . . . . .  Os~ ~. Then 

y(w)=c .X(W) T2d+F~(X (~)$2d), 

for  some matrix 1~ and vector function F~: [2a] w ~ N  w, such that 

(1) I~  = I .%. I .~_ .  . . . .  I.~ r and 
(2) F~ =F.~ d, where the vector functions Fro: [Pt]W~N~, 1 <~l<~d, are 

defined recursively as follows: 

/ [I.¢ "I~,_- . . . .  l.~,'X (w) Se 1 

+,, l) = / + .  ,(x(w> o ,l, 
x,  

l > l ,  

1=1.  
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The proof of Theorem 4.3 follows a straightforward induction on the 
depth d of the balancing network ~ ' .  

Call the matrix Is~ the steady transfer matrix of  .~. Call the vector 
function F~ the transient transfer function o f  .¢~. Call I ~ and F~e the transfer 
parameters of  8 .  

Theorem 4.3 shows that the output vector of a balancing network is the 
sum of two terms. The first term Is~.X ~ 1"1, d, called the steady output 
term, involves the most significant part X (w) l'p d of the input vector; this 
part is obtained by setting the d least significant P-ary digits of each entry 
of the input vector to zero. The steady output term is a linear transforma- 
tion, defined by the steady transfer matrix I.~, of the most significant part 
of the input vector. 

The second term [I~ .X (w) S e d  + Is~ "F~d - (X (w) Se (d - 1)) - O.~d ], called 
the transient output term, involves the least significant part X (~) S e d  of 
the input vector; this part corresponds to the d least significant P-ary 
digits of each entry of the input vector. The transient output term is the 
image, under the transient transfer function F~ of 6~, of the least 
significant part of the input vector; apparently, the least significant part of 
the input vector undergoes a nonlinear transformation defined by F.~. 

Thus, the steady transfer matrix I.~ is determined by the relative 
incidences in the network and shapes the steady output term, while the 
transient transfer function F~ is determined by both the relative inci- 
dences in the network and the relative order of outputs for each balancer, 
and shapes the transient output term. 

4. 4. COMBINATORIAL CHARACTERIZATIONS 

Busch and Mavronicolas [11] use Theorem 4.3 to obtain precise combi- 
natorial characterizations for counting, K-smoothing, and merging net- 
works. These characterizations are stated as necessary and sufficient 
conditions on the transfer parameters of a network. We start with a 
necessary and sufficient condition for a counting network. 

THEOREM 4.4 ([11]). The network ,~': X (w) ~y(w)  h a counting network if 
and only if: 

(1) I~ =(1/w)l  (w×w), and 
(2) F.~ is step on [ pd]w. 

We continue with a corresponding combinatorial characterization for 
K-smoothing networks. 
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THEOREM 4.5 ([11]). The network ~ :  X(w)~Y (w) is a K-smoothing 
network if and only if: 

(1) I n = ( 1 / w ) l  ('~×~), and 
(2) F~ is K-smooth on [pd]~. 

Theorems 4.4 and 4.5 reveal that a counting (resp., K-smoothing) 
network distributes uniformly on its output wires the part of the inputs 
corresponding to the most significant digits, while the counting (resp., 
K-smoothing) property is inherited down to the network's response to the 
part of the inputs corresponding to the least significant digits. Most 
surprisingly, the next result suggests that this response is insignificant for 
smoothing networks. 

THEOREM 4.6 ([11]). The network .~: X (~) ~Y(~) is a smoothing network 
if and only if I n = (1 /w) l  (wx~). 

Finally, Theorem 4.3 can be used to show a conditional combinatorial 
characterization for merging networks. For each integer k, denote by 
( s t epn (N~) )$ek  the set of all integer v e c t o r s  X(W)E[Pk] w such that 
X (~) =Y(W)$pk for some integer vector Y(W)~stepn(NW); that is, 
( s t epn(N~) )$pk  is the set of the restrictions to their k least significant 
binary digits of input vectors with w entries that a merging network of 
output width w is required to count. We have: 

THEOREM 4.7 ([1 1]). For a network ~.q~: X (~) -~ Y(~), assume In[ j / ]  = 1 / w  
for all i, j E [w ]. Then, ~ is a merging network if and only if the vector 
function F~ is step on (stepli(NW)) ~,p d. 

Theorem 4.7 reveals that in some cases a merging network does actually 
do more than what its formal definition requires; more specifically, if the 
steady transfer matrix of a merging network is a constant matrix, then the 
merging network produces a step output vector on an input vector which is 
not step, has all of its entries no more than 2 d 1 (i.e., each of its entries 
can be represented with d binary digits), but can be extended to a step 
vector by "sticking" most significant binary digits to the left of each of its 
entries. 

Theorems 4.4, 4.5, and 4.6 suggest corresponding methodologies for 
proving correctness of counting, K-smoothing, and smoothing networks, 
respectively. More specifically, to show that a balancing network ~ is a 
counting, K-smoothing, or smoothing network, one computes expressions 
for the transfer parameters I n and F~ and verifies inductively that the 
necessary and sufficient conditions involved in Theorems 4.4, 4.5, and 4.6 
hold. A corresponding methodology for proving correctness of merging 
networks applies to the class of merging networks satisfying the combina- 
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torial condition on the steady transfer matrix assumed in Theorem 4.7. 
Concrete applications of this general methodology on specific examples of 
merging networks appear in [12, 10] (see also Sections 3.1 and 3.2), where 
it is shown that the bitonic merger network and a generalization of it 
actually do something stronger than merging. 

5. IMPOSSIBILITY RESULTS 

Sections 5.1 and 5.2 include impossibility results for constructible widths 
and lower bounds on size, respectively, for various classes of balancing 
networks. 

For a collection 9 =  {Po, Pl . . . . .  P,,-1} of positive integers no less than 
2, a balancing network ,~' is a balancing network over 9 if it uses, for each 
p ~ 9 ,  a p-balancer. Set p o = m a X p ~ p  and P to be the least common 
multiple of Po, Pl . . . .  ,Pm - 1" 

5.1. CONSTRUCTIBLE WIDTHS 

The first impossibility results for balancing networks have been pre- 
sented by Aharonson and Attiya [2]. 

THEOREM 5.1 ([2]). Assume there exists a prime factor f o f  w such that, for 
each p ~ 9 ,  f does not divide p. Then, for any integer K >~ 1, there is no 
K-smoothing network o f  output width w over .~. 

Theorem 5.1 has been shown using a lemma which is a special case of 
the general Theorem 4.3. 

Since for any integer K>~ 1, a counting network is also a K-smoothing 
network, Theorem 5.1 immediately implies: 

COROLLARY 5.2 ([2]). Assume there exists a prime factor f o f  w such that, 
for each p ~ 9 ,  f does not divide p. Then, there is no counting network o f  
output width w over 9 .  

For counting and K-smoothing networks of depth d over 9 ,  Busch and 
Mavronicolas [11] show that the only constructible widths are the divisors 
of pd. 

THEOREM 5.3 ([11]). Assume ,~': X ~w) ~ Y~W) is a counting or K-smooth- 
ing network o f  depth d over 9 .  Then, w divides pd. 

We remark that the proof of Theorem 5.3 [11] relies on a property of 
the steady transfer matrix that is necessary for smoothing networks, but 
not on any property of the transient transfer function. This suggests that 
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width limitations are, in general, consequences of the steady response of a 
balancing network. Notice also that the necessary condition in Theorem 
5.3 does not involve the constant K. 

As for K-smoothing networks, Theorem 5.3 strictly strengthens Theo- 
rem 5.1. We argue that Theorem 5.3 is indeed strictly stronger. Let  the 
unique prime factorization of w be w = l-lw['. Since P is the least common 
multiple of integers in 3 '~, the unique prime factorization of P is P =  
I-Ipm~xp t,(p), where the product is taken over all prime factors Pi of 
integers p ~ ,  and l i (p )  is the degree of pi in the unique prime 
factorization of p. Assume first that w divides pa. Then, clearly, each 
prime factor of w is equal to some Pi in the unique prime factorization of 
P; hence, this prime factor divides each p ~  such that Pi is a prime 
factor of p. Assume now that for each prime factor w i of w, there exists 
some p ~ such that w i divides p. Clearly, w i is equal to some Pi in the 
unique prime factorization of P. However, w may not divide pe  if 
l i > d  maXp l~(p). Moreover, Theorem 5.3 is the generalization to an arbi- 
trary set of balancer types of a corresponding impossibility result for 
K-smoothing networks over {2} that has been claimed in [29], namely, that 
w divides 2 a. 

5.2. LOWER BOUNDS 

We start with a general lower bound on the distance between any given 
pair of input and output wires in a balancing network under a condition on 
the corresponding entry of the incidence matrix. 

THE.OREM 5.4 ([11]). For a balancing network 33': X(w)~Y (~') over ~ ,  
assume, for  any indices i , j ~ [ w ] ,  that I ~ [ j i ] = l / w .  Then, dist~s(i,j)>~ 
Iogp, w. 

By Theorems 4.4 and 4.5, for any counting or K-smoothing network, 
C.~[fi] --- 1 / w  for all i , j  ~ [w]. Hencc, Theorem 5.4 implies: 

COROLLARY 5.5 ([11]). Assume .~: X(w)~Y °~~ is a counting or K- 
smoothing network over 9 .  Then, for all i, j ~ [ w ], dist.~ ( i, j)>>- log p,, w. 

Corollary 5.5 implies that, for counting or K-smoothing networks, every 
path from an input wire to an output wire must have length at least 
Iogp0 w. In [6, Corollary 2.5], it is shown that the depth of any counting 
network of width w over {2} is at least log 2 w; i.e., there exists some path 
from an input wire to an output wire of length at least log 2 w. Clearly, 
Corollary 5.5 strictly strengthens and generalizes this to an arbitrary set of 
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balancer types. Moreover, Corollary 5.5 represents a corresponding im- 
provement to an observation in [29, Section 5] that the depth of a 
K-smoothing network over {2} is at least log 2 w. 

6. PERFORMANCE 

In this section, we survey results on evaluating the performance of 
balancing networks by both theoretical and experimental means. 

Given the practical motivations that led to the invention of balancing 
networks, it is quite natural that the work introducing balancing networks 
[6] already provides experimental evidence that balancing networks signifi- 
cantly outperform conventional synchronization techniques under a variety 
of circumstances. More specifically, Aspnes et al. [6] analyze the through- 
put of counting networks for computations in which tokens are eventually 
spread through the network; they compare the performance of several 
implementations of shared counters, producers/consumers buffers, and 
barrier synchronization on a shared-memory multiprocessor. Aspnes et al. 
report that under sufficiently high levels of concurrency, implementations 
based on the bitonic and periodic networks outperform conventional 
implementations based on spin locks, sometimes dramatically. 

Herlihy, Lim, and Shavit [22] take the next step in studying the actual 
performance of balancing networks. Arguing that dynamic load balancing 
can have a dramatic effect on the performance of parallel programs, 
Herlihy et al. investigate the performance of basic techniques for dynamic 
load balancing on large-scale multiprocessors; more specifically, they con- 
sider concurrent data structures based on: (1) spin locks with exponential 
backoff [1], (2) "queue" locks [28], (3) software combining trees [20], and 
(4) the bitonic counting network of Aspnes et al. (Section 3.1). Herlihy et 
al. run a series of simple benchmarks on a simulated 64-processor Alewife 
machine, a distributed-memory multiprocessor currently under develop- 
ment at MIT. This machine supports the shared-memory programming 
model. Although the two locking techniques are known to perform well on 
small-scale, bus-based multiprocessors, Herlihy et al. found that they are 
severely affected by contention as concurrency increases; they report that 
both the bitonic counting networks and combining trees have the same 
scaling behavior: they are more susceptible to variations in the interarrival 
times of increment requests because they hold locks for long durations. 
This is so because two requests arriving at a node must arrive within a 
small time window for combining to occur. Additionally, locks that are 
held for a significant amount of time at the combining tree nodes may 
block progress up the tree. 
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Dwork, Herlihy, and Waarts [18] pursue the first formal study of 
performance for balancing networks. Dwork et al. introduce for the first 
time a formal complexity model for contention in shared-memory multi- 
processors; they consider a more general setting of a multiple 
instruction/multiple data (MIMD) architecture in which n asynchronous 
processes communicate by applying read, write, and read-modify-write oper- 
ations to a shared memory. 3 Asynchrony means that there is no bound on 
processes' relative speeds. In real shared-memory multiprocessors, sources 
of asynchrony include page faults, cache misses, scheduling preemption, 
clock skew, variation in instruction speeds, and perhaps even processor 
failure. 

In the model of Dwork et al., simultaneous accesses to a single memory 
location are serialized: only one operation succeeds at a time, and other 
pending operations must stall. The measure of contention introduced by 
Dwork et al. is the worst-case number of stalls that can be induced by an 
adversary scheduler. This model (like all complexity models) is an abstrac- 
tion of how real machines actually behave. Nevertheless, it is believed to 
be accurate enough to make useful comparisons, and simple enough to be 
tractable. In particular, this model is well-suited for comparing alternative 
algorithms, and for deriving lower and upper bounds. 

Dwork et al. use their model to derive tight or, in some cases, nearly 
tight asymptotic bounds on the contention produced by several classes of 
counting networks studied in the literature. In each case, they show that 
the contention in the counting network is substantially lower than the 
contention incurred by the conventional single-variable implementation of 
a shared counter. Experiments discussed earlier have provided evidence 
that certain counting networks outperform conventional single-variable 
counters at high levels of concurrency. The results of Dwork et al. [18] 
formally explain this phenomenon.  

On a MIMD shared-memory multiprocessor machine, a balancing net- 
work is implemented as a shared-data structure, where balancers are 
records and wires are pointers from one record to another. Each of the 
machine's n asynchronous processors runs a program that repeatedly 
traverses the data structure from some input pointer to some output 

3Recall that a read-modify-write operation atomically reads a value v from a 
memory location, writes back f(v), where f is a predefincd function, and returns v back 
to the caller. Nearly all modern processor architectures support some form of read- 
modify-write for interprocess synchronization. Common read-modify-write instructions 
include test-and-set, memory-to-register swap, fetch-and-add, compare-and-swap, and 
load-linked~store-conditional instructions. 
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pointer, each time shepherding a new token through the network. Tokens 
generated by processor p enter  the network on input wire p mod t. The 
limitation on the number of concurrent processors implies a limitation on 
the number of tokens concurrently traversing the network at any given 
time: E t -1 Ew-1 i= o xi - i= o Yj <~ n. Consider an execution of a balancing network 
.~  entering a quiescent state "after m tokens pass through it. Each time a 
token passes through a balancer, all tokens pending at this balancer incur 
a stall step, modeling their delay due to contention with each other. The 
number of  stall steps has been introduced in [18] as a measure of 
contention. The contention incurred by the traversal of  m tokens through the 
network ~ at concurrency n, denoted cont (m,n , ,~) ,  is the maximum 
number of stalls, over all possible executions, induced by an adversary 
scheduler. The amortized contention of the network ,~ at concurrency n, 
denoted cont(n, ~ ) ,  is the limit of cont(m, n, S~) divided by m, as m goes 
to infinity. 

Dwork et al. [18] use rather ad hoc operational arguments, relying on 
execution pat tems of the bitonic counting network, to show: 

THEOREM 6.1 ([18]). 

cont(n,  oj(w)) ~ ®(n log 2 w / w ) .  

Dwork et al. [18] also claim: 

THEOREM 6.2 ([18]). 

cont( n, .~ (2~)) ~ O( nk3 / 2  k ). 

Hardavellas et al. [21] introduce the so-called recurrence relation method 
for analyzing the contention of constructions of balancing networks. 
Roughly speaking, this method amounts to exploiting recursiveness in the 
construction of balancing networks in order  to derive and solve a recur- 
rence relation for contention. Hardavellas et al. apply their method on 
their periodic, kp-smoothing network and show: 

THEOREM 6.3 ([21]). 

cont( n, ~(P~)) ~ O ( n k 2 / 2  k ). 
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Notice that for p = 2, Theorem 6.3 improves Theorem 6.2. 
For other instances where the recurrence relation method has been 

used, we quote: 

TIIEOREM 6.4 ([10]). For any k >1 1, 

c°nt(n' ~tPP2'))<~ 2~-~--f-l (1 (  2 +k) +k) k(k+3)2 

~ O R E M  6.5 ([13D. 

cont(n,~tt,~ ) ~ ®(n log t(1/t + log t/w)). 

Kapidakis and Mavronicolas [24], and, independently, Aiello et al. [3], 
generalize balancing networks to load balancing networks that accommo- 
date jobs of varying completion times; they formalize criteria for the 
performance of load balancing networks and present and check two 
constructions against these criteria. Experimental results are also pre- 
sent ed in [24], where load balancing networks are compared against a 
modification of the "queue" lock algorithm, studied in [22]. 

Finally, Shavit and Zemach [32] introduce diffracting trees as a new 
counting structure, consisting of a binary tree shown to be a counting 
network and a collection of "prisms," one in front of each balancer, 
serving to combine tokens in a randomized way in order to reduce memory 
contention. Since the construction is trivial, the only contribution of Shavit 
and Zemach lies in the idea of using "prisms". Nevertheless, this idea has 
not been exploited in full and no theoretical analysis has been provided for 
the expected behavior of prisms, even though Shavit and Zcmach [32], and, 
more recently, Shavit and Touitou [31], present several astonishing experi- 
mental results on the actual performance of diffracting trees. 

7. DISCUSSION AND FURTHER RESEARCH 

Balancing networks deserve further study. We believe that they repre- 
sent just a start toward a theory of low-contention data structures suitable 
for solving load balancing problems. 

Work is still needed to derive lower and upper bounds, to develop other 
primitives, and to define new performance measures. Work is also needed 
in experimental directions, comparing balancing networks to other tech- 
niques for load balancing, for example, those based on exponential backoff 
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[1], and for understanding their behavior in architectures other than the 
single-bus architecture provided by Encore. (The results in [22] discussed 
in Section 6 that use the ASIM simulator of  the M I T  Alewife machine 
display a substantial gain in performance due to parallelism on such 
distr ibuted-memory machines.) 

Finally, potential  applications of balancing networks in problems not 
seemingly of the balancing kind need to be explored. Attiya et al. [7] take 
the first step in this direction by showing how to use counting networks in 
devising asynchronous algorithms for the lattice agreement decision prob- 
lem. We believe that further applications should be possible. 

I am indebted to Costas Busch for sharing with me his int;aluable insights into balancing 
networks during our collaboration. I am particularly thankful to Maurice Herlihy for his 
encouragement during all states of my research on balancing networl¢~. Moreover, 1 hat'e 
enjoyed many helpful and inspiring discussions on balancing networks with Hagit Attiya, 
Cynthia Dwork, Sarantos Kapidakis, Christos Nikolau, Gadi Taubenfeld, Nit ShaL'it, and 
Orli Waarts. This work has been supported by ESPRIT 111 Basic Research Project #8144 
(LYDIA--Load Balancing on High-Performance Parallel and Distributed Systems). The 
author was partia#y supported by funds for the promotion of research at University of  Cyprus 
(research project "Load Balancing Problems in Shared Memory Multiprocessor Architec- 
tures"). Part of  this work was performed while the author was t;isiting Institute of  Computer 
Science, Foundation for Research and Technology-Hellas. 
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