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A Network Security Problem

Information network with
• nodes insecure and vulnerable to infection by attackers

e.g.,  viruses, Trojan horses, eavesdroppers, and
• a system security software or a defender of limited 

power, e.g. able to clean a part of the network.

In particular, we consider
• a graph G with

• ν attackers each of them locating on a node of G and
• a defender, able to clean a single edge of the graph.
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A Network Security Game:  Edge Model

We modeled the problem as a Game

• on a graph G(V, E) with two kinds of players (set     ):
• ν attackers (set       ) or vertex players (vps) vpi, each of them 

with action set, Svpi = V,
• a defender or the edge player ep, with action set, Sep = E,

and Individual Profits in a profile , 
• vertex player vpi:    

i.e., 1 if it is not caught by the edge player, and 0 otherwise.

• Edge player ep: , 
i.e. gains the number of vps incident to its selected edge sep.
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Nash Equilibria in the Edge Model

We consider pure and mixed strategy profiles.
Study associated Nash equilibria (NE), where no player 
can unilaterally improve its Individual Cost by switching 
to another configuration.
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Notation

Ps(ep, e): probability ep chooses edge e in s
Ps(vpi, υ): probability vpi chooses vertex υ in s
Ps(vp, υ) = ∑i 2 Nvp Ps(vpi,v): # vps located on vertex υ in s
Ds(i): the support (actions assigned positive probability) of 
player i2 in s.
ENeighs(υ) =
Ps(Hit(υ)) = : the hitting probability of υ
ms(v) =  : expected # of vps choosing υ
ms(e) = ms(u)+ms(v) 
NeighG(X) =  
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Expected Individual Costs

vertex players vpi:
(1)

edge player ep:
(2)
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Previous Work for the Edge Model 

No instance of the model contains a pure NE  (ISAAC 05)

A graph-theoretic characterization of mixed NE (ISAAC 05)
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Summary of Results

Polynomial time computable mixed NE on various graph instances:
• regular graphs, 
• graphs with, polynomial time computable, r-regular factors
• graphs with perfect matchings.

Define the Social Cost of the game to be 
• the expected number of attackers catch by the protector

The Price of Anarchy in any mixed NE is 
• upper and lower bounded by a linear function of the number of 

vertices of the graph.
Consider the generalized variation of the problem considered, the 
Path model
• The existence problem of a pure NE is NP-complete
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Significance

The first work (with an exception of ACY04)  to model 
network security problems as strategic game and study  
its associated Nash equilibria.
One of the few works highlighting a fruitful interaction 
between Game Theory and Graph Theory.
Our results contribute towards answering the general 
question of Papadimitriou about the complexity of Nash 
equilibria for our special game.
We believe Matching Nash equilibria (and/or extensions 
of them) will find further applications in other network
games.
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Pure and Mixed Nash Equilibria

Theorem 1. [ISAAC05] If G contains more than one edges, 
then Π(G) has no pure Nash Equilibrium.

Theorem 2. [ISAAC05] (characterization of mixed NE)
A mixed configuration s  is a Nash equilibrium for any Π(G) if

and only if:
1. Ds(ep) is an edge cover of G and
2. Ds(vp) is a vertex cover of the graph obtained by Ds(ep).
3. (a) P(Hit(v)) = Ps(Hit(u)) = minv Ps (Hit(v)), 8 u,v 2 Ds(vp), 

(b) ∑e 2 Ds(ep) Ps(ep,e) = 1 
4. (a) ms(e1)=ms(e2)=maxe ms(e), 8 e1, e2 2 Ds(ep) and

(b) ∑v 2 V(Ds(ep)) ms(v)=ν.
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Background

Definition 1. A graph G is polynomially computable r-factor graph if
its vertices can be partitioned, in polynomial time, into a sequence
Gr1, L, Grk of k r-regular vertex disjoint subgraphs, for an integer k,
1·k· n, Gr' = {Gr1 U L U Grk } the graph obtained by the sequence.

A  two-factor graph is can be recognized and decomposed into a 
sequence  C1, L, Ck, 1· k · n, in polynomial time (via Tutte's
reduction).
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Polynomial time NE : Regular Graphs

Theorem 1. For any Π(G) for which G is an r-regular graph, a 
mixed NE can be computed in constant time O(1).

Proof.
Construct profile sr on Π(G) :

⇒ 8 v 2 V, Ps(Hit(v)) = | ENeigh(v) | / m

⇒ 8 v2 V and vpi,   ICi ( sr-i , [v] ) = 1- r/m
Also, 8 e 2 E,   m(v) = ν¢(1/n). Thus, 8 e 2 E,  ICep( sr-ep,[e] ) = 2¢ν/n

⇒ sr is a NE. �
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Polynomial time NE : r-factor Graphs

Corollary 1. For any Π(G), such that G is a polynomial 
time computable r- factor graph, a mixed NE can be 
computed in polynomial time O(T(G)), where O(T(G)) is 
the time needed for the computation of Gr´ from G.

�
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Polynomial time NE : 
Graphs with Perfect Matchings

Theorem 2. For any Π(G) for which G has a perfect 
matching, a mixed NE can be computed in polynomial  
time, O(n1/2¢m).

Proof.
Compute a perfect matching of G, M using time O(n1/2¢m).

Construct the following profile sf on Π(G):

8 v 2 V, Ps(Hit(v)) = 1/ |M|

⇒ 8 v2 V and vpi,   ICi ( sr-i , [v] ) = 1- 1/|M| = 1- 2/n
Also, 8 e 2 E,   m(v) = ν¢(1/n). Thus, 8 e 2 E,  ICep( sr-ep,[e] ) = 
2¢ν/n

⇒ sf is a NE. �
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Polynomial time NE : Trees

Algorithm Trees(Π(T))
Input: Π(T)
Output: a NE on Π(T)
1. Initialization: VC:=;, EC:=;, r:=1, Tr := T.
2. Repeat until Tr==;

a) Find the leaves of the tree Tr, leaves(Tr) and add leaves(Tr) in 
VC.

b) For each v 2 leaves(Tr), add (v,parentTr(v) in EC
c) Update tree: Tr= Tr \ leaves(Tr) \ parents(leaves(Tr))

3. Set st: 

and apply the uniform distribution on support of each player.  
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Analysis of the Tree Algorithm

Lemma 1. Set VC, computed by Algorithm Trees(Π(G), is an
independent set of T.

Lemma 2. Set EC  is an edge cover of T and VC is a vertex cover of
the graph obtained by EC.

Lemma 3. For all v2 Ds(vp), ms(v)= ν /|Ds(vp)|. Also, for all v' not in 
Ds(vp), ms(v')=0.

Lemma 4. Each vertex of IS is incident to exactly one edge of EC.
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Analysis of the Algorithm (Cont.)

By Lemmas 2 and 4, we get, 
Lemma 5.

�
Thus,

Theorem 3. For any Π(T), where T is a tree graph, algorithm 
Trees(Π(T)) computes  a mixed NE in polynomial time 
O(n).

�
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Price of Anarchy

Lemma 7. For  any Π(G) and an associated mixed NE s*, the 
social cost SC (Π(G),s*) is upper and lower bounded as follows:

These bounds are tight.

�
Thus, we can show,

Theorem 4. The Price of Anarchy r(Π) for the Edge model 
is

�
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Path Model

If we let the protector to be able to select a single path of G 
instead of an edge, called the path player (pp) 
⇒ The Path Model

Theorem. For any graph G, Π(G) has a pure NE if and only if G 
contains a hamiltonian path.

Proof.
Assume in contrary: Π(G) contains a pure NE s but G is not hamiltonian.
There exists a set of nodes U of G not contained in pp´s action, spp.

⇒ for all players vpi, i 2 Nvp, it holds si 2 U
⇒ Path player gains nothing, while he could gain more.

⇒ s is NOT a pure NE of Π(G), contradiction. �
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Path Model

Corollary. The existence problem of pure NE for the Path 
model is NP-complete. 
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Current and Future Work

Develop other structured Polynomial time NE 
• for specific graph families, 
• exploiting their special properties

Existence and Complexity of Matching equilibria for 
general graphs 

Generalizations of the Edge model
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for your Attention !


