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Abstract. Consider a network vulnerable to viral infection. The sys-
tem security software can guarantee safety only to a limited part of the
network. We model this practical network scenario as a non-cooperative
multi-player game on a graph, with two kinds of players, a set of at-

tackers and a protector player, representing the viruses and the system
security software, respectively. Each attacker player chooses a node of
the graph (or a set of them, via a probability distribution) to infect. The
protector player chooses independently, in a basic case of the problem, a
simple path or an edge of the graph (or a set of them, via a probability
distribution) and cleans this part of the network from attackers. Each at-
tacker wishes to maximize the probability of escaping its cleaning by the
protector. In contrast, the protector aims at maximizing the expected
number of cleaned attackers. We call the two games obtained from the
two basic cases considered, as the Path and the Edge model, respectively.

We are interested in the associated Nash equilibria on them, where no
network entity can unilaterally improve its local objective. We obtain
the following results:

– The problem of existence of a pure Nash equilibrium is NP-complete
for the Path model. This opposed to that, no instance of the Edge
model possesses a pure Nash equilibrium, proved in [4].

– We compute, in polynomial time, mixed Nash equilibria on cor-
responding graph instances. These graph families include, regular
graphs, graphs that can be decomposed, in polynomially time, into
vertex disjoint r-regular subgraphs, graphs with perfect matchings
and trees.

– We utilize the notion of social cost [3] for measuring system per-
formance on such scenario; here is defined to be the utility of the
protector. We prove that the corresponding Price of Anarchy in any
mixed Nash equilibria of the game is upper and lower bounded by a
linear function of the number of vertices of the graph.

⋆ This work was partially supported by the IST Programs of the European Union
under contract numbers IST-2001-33116 (FLAGS) and IST-2004-001907 (DELIS).



1 Introduction

Motivation. This work considers a problem of Network Security, related to the
protection of a system from harmful procedures (e.g. viruses, worms). Consider
an information network where the nodes of the network are insecure and vul-
nerable to infection such as, viruses, Trojan horses, the attackers. A protector,
i.e. system security software, is available in the system but it can guarantees
security only to a limited part of the network, such as a simple path or a single
link of it, chosen via a probability distribution. Each harmful entity targets a
location (i.e. a node) of the network via a probability distribution; the node is
damaged unless it is cleaned by the system security software. Apparently, the
harmful entities and the system security software have conflicting objectives.
The security software seeks to protect the network as much as possible, while
the harmful entities wish to avoid being caught by the software so that they be
able to damage the network. Thus, the system security software seeks to maxi-
mize the expected number of viruses it catches, while each harmful entity seeks
to maximize the probability it escapes from the security software.

Naturally, we model this scenario as a non-cooperative multi-player strategic
game played on a graph with two kinds of players: the vertex players representing
the harmful entities, and the edge or the path player representing each one of
the above two cases for the system security software considered; where it chooses
a simple path or a single edge, respectively. The corresponding games are called
the Path and the Edge model, respectively. In both cases, the Individual Cost
of each player is the quantity to be maximized by the corresponding entity. We
are interested in the Nash equilibria [7, 8] associated with these games, where
no player can unilaterally improve its Individual Cost by switching to a more
advantageous probability distribution.

Summary of Results. Our results are summarized as follows:

– We prove that the problem of existence of pure Nash equilibria in the Path
model is NP-complete (Theorem 1). This opposes to that, the simpler case
of this model, i.e. that the Edge model posses no pure Nash equilibrium [4].

– [4] provides a graph-theoretic characterization of mixed Nash Equilibria for
the Edge model. Unfortunately, this characterization only implies an expo-
nential time algorithm for the general case. Here, we utilize the character-
ization in order to compute, in polynomial time, mixed Nash equilibria for
specific graph instances of the game. In particular, we combine the character-
ization with a suitable exploration of some graph-theoretic properties of each
graph family considered to obtain polynomial time mixed Nash equilibria.
These graph families include, regular graphs, graphs that can be partitioned
into vertex disjoint regular subgraphs, graphs with perfect matchings and
trees (Theorem 3, Proposition 2, Theorems 4 and 5, respectively).

– We measure the system performance with respect to the problem considered
utilizing the notion of the social cost [3]. Here, it is defined to be the number
of attackers catch by the protector. We compute upper and lower bounds



of the social cost in any mixed Nash equilibria of the Edge model. Using
these bounds, we show that the corresponding Price of Anarchy is upper
and lower bounded by a linear function of the number of vertices of the
graph (Theorem 6).

Due to space limits, some proofs are omitted; we include them in the full version
of the paper [5].

Related Work and Significance. This work is a step further in the development
of the new born area of Algorithmic Game Theory. It is also one of the only few
works to model network security problems as a strategic game. Such a research
line is that of Interdependent Security games, e.g. [2]. However, we remark that
none of these works, with an exception of [2], study Nash equilibria on the
games considered. This work is also one of the only few works that study games
exploiting heavily Graph-Theoretic tools. In [2], the authors study a security
problem and establish connections with variants of the Graph Partition problem.
In [1], the authors study a two-players game on a graph, establish connections
with the k-server problem. In a recent work of ours [4], we consider the simpler
of the two games considered here, the Edge model. We provide a non-existence
result for pure Nash equilibria of the model and a polynomial time algorithm for
mixed Nash equilibria for bipartite graphs. Finally, our results contribute toward
answering the general question of Papadimitriou [10] about the complexity of
Nash equilibria for our special game.

2 Framework

Throughout, we consider an undirected graph G(V,E), with |V (G)| = n and
|E(G)| = m. Given a set of vertices X ⊆ V , the graph G\X is obtained by
removing from G all vertices of X and their incident edges. For any vertex
v ∈ V (G), denote ∆(v) the degree of vertex v in G. Denote ∆(G) the maximum
degree of the graph G. A simple path, P , of G is a path of G with no repeated
vertices, i.e. P = {v1, · · · , vi · · · vk}, where 1 ≤ i ≤ k ≤ n, vi ∈ V , (vi, vi+1) ∈
E(G) and each vi ∈ V appears at most once in P . Denote P(G) the set of all
possible simple paths in G. For a tree graph T denote root ∈ V , the root of the
tree and leaves(T ) the leaves of the tree T . For any v ∈ V (T ), denote parent(v),
the parent of v in the tree and children(v) its children in the tree T . For any
A ⊆ V , let parents(A) := {u ∈ V : u = father(v), v ∈ A}.

2.1 Protector-Attacker models

Definition 1. An information network is represented as an undirected graph
G(V,E). The vertices represent the network hosts and the edges represent the
communication links. For M = {P,E}, we define a non-cooperative game ΠM =
〈N , {Si}i∈N , {IC}i∈N 〉 as follows:



– The set of players is N = Nvp ∪ Np, where Nvp is a finite set of vertex
players vpi, i ≥ 1, p = {pp, ep} and Np is a singleton set of a player p which
is either (i) a path player and p = pp or (ii) an edge player and p = ep,
in the case where M = P or M = E, respectively.

– The strategy set Si of each player vpi, i ∈ Nvp, is V ; the strategy set Sp of
the player p is either (i) the set of paths of G, P(G) or (i) E, when M = P or

M = E, respectively. Thus, the strategy set S of the game is
(

×
i ∈ Nvp

Si

)

×Sp

and equals to |V ||Nvp| × |P(G)| or |V ||Nvp| × |E|, when M = P or M = E,
respectively.

– Take any strategy profile s = 〈s1, . . . , s|Nvp|, sp〉 ∈ S, called a configuration.

• The Individual Cost of vertex player vpi is a function ICi : S → {0, 1}
such that ICi(s) =

{

0, si ∈ sp

1, si 6∈ sp
; intuitively, vpi receives 1 if it is not

caught by the player p, and 0 otherwise.

• The Individual Cost of the player p is a function ICp : S → N such that
ICp(s) = |{si : si ∈ sp}|.

We call the games obtained as the Path or the Edge model, for the case where
M = P or M = E, respectively.

The configuration s is a pure Nash equilibrium [7, 8] (abbreviated as pure NE) if
for each player i ∈ N , it minimizes ICi over all configurations t that differ from s
only with respect to the strategy of player i. We consider mixed strategies for the
Edge model. In the rest of the paper, unless explicitly mentioned, when referring
to mixed strategies, these apply on the Edge model. A mixed strategy for a vertex
player (resp., edge player) is a probability distribution over vertices (resp., over
edges) of G. A mixed strategy profile s is a collection of mixed strategies, one for
each player. Denote Ps(ep, e) the probability that edge player ep chooses edge
e ∈ E(G) in s; denote Ps(vpi, v) the probability that player vpi chooses vertex
v ∈ V in s. Denote Ps(vp, v) =

∑

i∈Nvp
Ps(vpi, v) the probability that vertex

v is chosen by some vertex player in s. The support of a player i ∈ N in the
configuration s, denoted Ds(i), is the set of pure strategies in its strategy set to
which i assigns strictly positive probability in s. Denote Ds(vp) =

⋃

i∈Nvp
Ds(i).

Let also ENeighs(v) = {(u, v) ∈ E : (u, v) ∈ Ds(ep)}. Given a mixed strategy
profile s, we denote (s−x, [y]) a configuration obtained by s, where all but player
x play as in s and player x plays the pure strategy y.

A mixed strategic profile s induces an Expected Individual Cost ICi for each
player i ∈ N , which is the expectation, according to s, of its corresponding Indi-
vidual Cost (defined previously for pure strategy profiles). The mixed strategy
profile, denoted as s∗, is a mixed Nash equilibrium [7, 8] (abbreviated as mixed
NE) if for each player i ∈ N , it maximizes ICi over all configurations t that
differ from s only with respect to the mixed strategy of player i. Denote BRs(x)
the set of best response (pure) strategies of player x in a mixed strategy profile
s, that is, ICx(s−x, y) ≥ ICx(s−x, y′), ∀ y ∈ BRs(x) and y′ 6∈ BRs(x), y′ ∈ Sx,
where Sx is the strategy set of player x (see also [9, chapter 3]). A fully mixed



strategy profile is one in which each player plays with positive probability all
strategies of its strategy set.

For the rest of this section, fix a mixed strategy profile s. For each ver-
tex v ∈ V , denote Hit(v) the event that the edge player hits vertex v. So,
Ps(Hit(v)) =

∑

e∈ENeigh(v) Ps(ep, e). Define the minimum hitting probability

Ps as minv Ps(Hit(v)). For each vertex v ∈ V , denote ms(v) the expected num-
ber of vertex players choosing v (according to s). For each edge e = (u, v) ∈ E,
denote ms(e) the expected number of vertex players choosing either u or v;
so, ms(e) = ms(u) + ms(v). It is easy to see that for each vertex v ∈ V ,
ms(v) =

∑

i∈Nvp
Ps(vpi, v). Define the maximum expected number of vertex

players choosing e in s as maxe ms(e). We proceed to calculate the Expected
Individual Costs for any vertex player vpi ∈ Nvp and for the edge player.

ICi(s) =
∑

v∈V (G)

Ps(vpi, v) · (1 − Ps(Hit(v)) (1)

ICep(s)=
∑

e=(u,v)∈E(G)

Ps(ep, e) · ms(e) =
∑

e=(u,v)∈E(G)

Ps(ep, e) · (
∑

i∈Nvp

Ps(vpi, u) + Ps(vi, v)) (2)

Social Cost and Price of Anarchy. We utilize the notion of social cost [3] for
evaluating the system performance.

Definition 2. For model M, M = {P,E}, we define the social cost of configu-
ration s on instance ΠM(G), SC(ΠM, s), to be the sum of vertex players of ΠM

arrested in s. That is, SC(ΠM, s) = ICp(s) (p = {pp, vp}, when M = P and
M = E, respectively). The system wishes to maximize the social cost.

Definition 3. For model M, M = {P,E}, the price of anarchy, r(M) is

r(M) = max
ΠM(G),s∗

maxs∈S SC(ΠM(G), s)

SC(ΠM(G), s∗)

2.2 Background from Graph Theory

Throughout this work, we consider the (undirected) graph G = G(V,E).

Definition 4. A graph G is polynomially computable r-factor graph if its ver-
tices can be partitioned, in polynomial time, into a sequence Gr1

· · ·Grk
of k r-

regular disjoint subgraphs, for an integer k, 1 ≤ k ≤ n. That is,
⋃

1≤i≤k V (Gri
) =

V (G), V (Gri
)
⋂

V (Grj
) = ∅ and ∆Gri

(v) = r, ∀ ≤ i, j ≤ k ≤ n, ∀v ∈ V . De-
note G′

r = {Gr1

⋃ · · ·⋃ Grk
} the graph obtained by the sequence.

A graph G is r-regular if ∆(v) = r, ∀v ∈ V . A hamiltonian path of a graph G
is a simple path containing all vertices of G. A set M ⊆ E is a matching of G
if no two edges in M share a vertex. A vertex cover of G is a set V ′ ⊆ V such
that for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An edge cover of G is
a set E′ ⊆ E such that for every vertex v ∈ V , there is an edge (v, u) ∈ E′.



A matching M of G that is also an edge cover of the graph is called perfect
matching. Say that an edge (u, v) ∈ E (resp., a vertex v ∈ V ) is covered by the
vertex cover V ′ (resp., the edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if
there is an edge (u, v) ∈ E′). A set IS ⊆ V is an independent set of G if for all
vertices u, v ∈ IS, (u, v) /∈ E.

A two-factor graph is a polynomially computable r-factor graph with r = 2.
It can be easily seen that there exist exponential many such graph instances.
Moreover, these graphs can be recognized in polynomial time and decomposed
into a sequence C1, . . . , Ck, k ≤ n, in polynomial time via Tutte’s reduction
[11]. Thus, the class of polynomially computable r-factor graphs contains an
exponential number of graph instances. The problem of finding a maximum
matching of any graph can be solved in polynomial time [6].

3 Nash Equilibria in the Path Model

We characterize pure Nash Equilibria of the Path model.

Theorem 1. For any graph G, ΠP(G) has a pure NE if and only if G contains
a hamiltonian path.

Proof. Assume that G contains a hamiltonian path. Then, consider any configu-
ration s of ΠP(G) in which the path player pp selects such a path. Observe that
path’s player selection includes all vertices of G, that the player is satisfied in s.
Moreover, any player vpi, i ∈ Nvp cannot increase its individual cost since, for
all v ∈ V (G), v is caught by pp and, consequently, ICi(s−i, [v]) = 0. Thus, s is a
pure NE for ΠP(G).

For the contrary, assume that ΠP(G), contains a pure NE, s∗, but the graph
G does not contain a hamiltonian path. Then, the strategy of the path player,
s∗pp, is not a hamiltonian path of G. Thus, there must exist a set of vertices
U ⊆ V such that, for any u ∈ U , u 6∈ s∗pp. Since s∗ is a NE, for all players vpi,
i ∈ Nvp, it must be that s∗i ∈ U . Therefore, there is no vertex player located
on path s∗pp which implies that pp is not satisfied in s∗; it could increase its
individual cost by selecting any path containing at least one vertex player. Thus
s∗ is not a NE, which gives a contradiction. ⊓⊔

Corollary 1. The problem of deciding whether there exists a pure NE for any
ΠP(G) is NP-complete.

4 Nash Equilibria in the Edge Model

We proceed to study Nash equilibria in the Edge model. In [4, Theorem 1] it was
proved that if G contains more than one edges, then ΠE(G) has no pure Nash
Equilibrium. For mixed NE, it was proved that:

Theorem 2 (Characterization of Mixed NE). [4] A mixed strategy profile
s is a Nash equilibrium for any Π(G) if and only if:



1. Ds(ep) is an edge cover of G and Ds(vp) is a vertex cover of the graph
obtained by Ds(ep).

2. (a) Ps(Hit(v)) = Ps(Hit(u)) = minv Ps(Hit(v)), ∀ u, v ∈ Ds(vp) and (b)
∑

e∈Ds(ep) Ps(ep, e) = 1.

3. (a) ms(e1) = ms(e2) = maxe ms(e), ∀ e1 = (u1, v1), e2 = (u2, v2) ∈ Ds(ep)
and (b)

∑

v∈V (Ds(ep)) ms(v) = ν.

Here, we provide a estimation on the payoffs of the vertex players in any Nash
equilibrium.

Lemma 1. For any ΠE(G), a mixed NE, s∗, satisfies ICi(s
∗) = ICj(s

∗) and
1 − 2

|D
s
∗ (vp)| ≤ ICi(s

∗) ≤ 1 − 1
|D

s
∗ (vp)| , ∀i, j ∈ Nvp.

4.1 Mixed Nash Equilibria in Various Graphs

Regular, Polynomially Computable r-factor and Two-factor graphs

Theorem 3. For any ΠE(G) for which G is an r-regular graph, a mixed NE can
be computed in constant time O(1).

Proof. Construct the following configuration sr on ΠE(G):

For any i ∈ Nvp, Ps
r (vpi, v) := 1

n
, ∀v ∈ V (G) and then set, sr

j := sr
i ,

∀j 6= i, j ∈ Nvp . Set Ps
r (ep, e) := 1

m
, ∀e ∈ E.

(3)

Obviously, sr is a valid (fully) mixed strategy profile of ΠE(G). We prove that sr

is a mixed NE for ΠE(G). Recall that in any r-regular graph, m = r ·n/2. By eq.
(1) and the construction of sr, we get, for any v, u ∈ V (= Ds

r (vpi)), i ∈ NV P

ICi(s
r
−i, [v])=1 − Ps(Hit(v)) = 1 − |ENeigh(v)|

m
= 1 − |ENeigh(u)|

m

= ICi(s
r
−i, [u]) = 1 − r

m
= 1 − 2

n
. (4)

The above result combined with the fact that Ds
r (vpi) = V = Si, concludes that

any vpi is satisfied in sr. Now consider the edge player; for any e = (u, v), e′ =
(u′, v′) ∈ E, by eq. (2) and the construction of sr, we get

ICep(s
r
−ep, [e]) =

∑

i∈NV P

(Ps
r (vpi, v) + Ps

r (vpi, u)) =
∑

i∈NV P

(Ps
r (vpi, v

′) + Ps
r (vpi, u

′))

= ICep(s
r
−ep, [e

′]) =
∑

i∈NV P

2 · 1

n
=

2ν

n
(5)

The above result combined with the fact that Ds
r (ep) = E = Sep, concludes

that ep is also satisfied in sr and henceforth sr is a mixed NE of ΠE(G). It can
be easily seen that the time complexity of the assignment O(1). ⊓⊔



Corollary 2. For any ΠE(G) for which G is contains an r-regular factor sub-
graph, a mixed NE can be computed in polynomial time O(T (G)), where O(T (G))
is the time needed for the computation of Gr from G.

Proof. Compute an r-regular factor of G, Gr in polynomial time, denoted as
O(T (G)). Then apply the mixed strategy profile sr described in Theorem 3 on
the graph Gr. See [5] for a full proof. ⊓⊔

Proposition 1. For any ΠE(G) for which G is a two-factor graph, a mixed NE
can be computed in polynomial time, O(T (G)), where O(T (G)) is the (polyno-
mial) time needed for the decomposition of G into vertex disjoint cycles.

Perfect Graphs

Theorem 4. For any ΠE(G) for which G has a perfect matching, a mixed NE
can be computed in polynomial time, O(

√
n · m).

Proof. Compute a perfect matching M of G using a known such algorithm (e.g.
[6] and requiring time O(

√
n · m)). Construct the following configuration sp on

ΠE(G):

For any i ∈ Nvp, Ps
p(vpi, v) := 1

n
, ∀v ∈ V (G) and set sp

j := sp
i ,

∀j 6= i, j ∈ Nvp . Set Ps
p(ep, e) := 1

|M | , ∀e ∈ E.
(6)

Obviously, sp is a valid mixed strategy profile of ΠE. Note that |M | = n/2. We
first prove that any i ∈ Nvp is satisfied in sp. Note that each vertex of G is hit
by exactly one edge of Ds

p(ep). Thus, by eq. (1), for any i ∈ Nvp, v, u ∈ V ,

ICi(s
p
−i, [v]) = 1 − Ps

p(Hit(v)) = 1 − Ps
p(Hit(u)) = ICi(s

p
−i, [u])

= 1 − 1

|M | = 1 − 2

|n|

The above result combined with the fact that Ds
p(vpi) = V = Si concludes

that any vpi is satisfied in sp. Now, as it concerns the edge player, note that
ICep(s

p
−ep, [e]) depends only on the strategies of the vertex players in sp. Fur-

thermore, these strategies are the same as the strategies of the vertex players
on configuration sr of Theorem 3. Henceforth, using the same arguments as in
the theorem we conclude that the edge player is satisfied in sp. Since both kinds
of players are satisfied in sp, the profile is a mixed NE for ΠE. For the time
complexity of the assignment, see [5]. ⊓⊔

Trees In Figure 1 we present in pseudocode an algorithm, called Trees(ΠE(T )),
for computing mixed NE for trees graph instances. Note that in [4], a polynomial
time algorithm for finding NE in bipartite graphs is presented. Thus, the same
algorithm can apply for trees, since trees are bipartite graphs. However, that
algorithm computes a NE of ΠE(T ) in time O(n2.5/

√
log n), while the algorithm

presented here computes a NE in linear time O(n).



Algorithm Trees(ΠE(T ))

1. Initialization: V C := ∅, EC := ∅, r := 1, Tr := T .
2. Repeat until Tr == ∅

(a) Find the leaves of the tree Tr, leaves(Tr).
(b) Set V C := V C ∪ leaves(Tr).
(c) For each v ∈ leaves(Tr) do:

If parentTr (v) 6= ∅, then EC := EC ∪ {(v, parentTr (v)))},
else EC := EC ∪ {(v, u)}, for any u ∈ childrenT (v).

(d) Update tree: Tr+1 := Tr\leaves(Tr)\parents(leaves(Tr)). Set r := r + 1.
3. Define a configuration st with the following support:

For any i ∈ NV P , set D
s
t(vpi) := V C and D

s
t(ep) := EC. Then set D

s
t(vpj) :=

D
s
t(vpi), ∀ j 6= i, j ∈ NV P .

4. Determine the probabilities distributions of players in st as follows:
ep : ∀ e ∈ D

s
t(ep), set P

s
t(ep, e) := 1/|EC|. Also, ∀ e′ ∈ E(T ), e′ /∈ D

s
t(ep), set

P
s
t(ep, e′) := 0.

For any vpi, i ∈ NV P : ∀ v ∈ D
s
t(vpi), set P

s
t(vpi, v) := 1

|V C|
. Also, ∀ u /∈

D
s
t(vpi), set P

s
t(vpi, u) := 0. Then set st

j = st
i , ∀ j 6= i, j ∈ NV P .

Fig. 1. Algorithm Trees(ΠE(T )).

Lemma 2. Set V C, computed by Algorithm Trees(ΠE(T )), is an independent
set of T .

Lemma 3. Set EC is an edge cover of T and V C is a vertex cover of the graph
obtained by EC.

Lemma 4. For all v ∈ D
s

t(vp), m
s

t(v) = ν
|D

s
t (vp)| . Also, for all v′ /∈ D

s
t(vp),

m
s

t(v′) = 0.

Lemma 5. Each vertex of IS is incident to exactly one edge of EC.

Proof. By Lemma 3, for each v ∈ IS there exists at least one edge e ∈ EC
such that e = (v, u). Assume by contradiction that there exists another edge,
(v, u′) ∈ EC. But since by step 2 of the algorithm for each vertex added in IS
we add only one edge incident to it in EC, we get that it must be that u′ ∈ IS.
However, this contradicts to that IS is an independent set, proved in Lemma
2. ⊓⊔

By Lemmas 3(EC is an edge cover of G) and 5, we can show that:

Lemma 6. For all v ∈ D
s

t(vp), Ps(Hit(v)) = 1
|D

s
t (ep)| . Also, for all v′ /∈

D
s

t(vp), Ps(Hit(v′)) ≥ 1
|D

s
t (ep)| .

Theorem 5. For any ΠE(T ), where T is a tree graph, algorithm Trees(ΠE(T ))
computes a mixed NE in polynomial time O(n).



Proof. Correctness: We prove the computed profile st satisfies all conditions
of Theorem 2, thus it is a mixed NE. 1.: By Lemma 3 . 2.: By Lemma 6. 3.(a):
Note that, D

s
t(vp) is an independent set of G and also a vertex cover of D

s
t(vp),

by Lemmas 2, 3, respectively. Thus, by Lemma 4, for any e = (u, v) ∈ D
s

t(ep),
we have m

s
t(e) = m

s
t(v) + m

s
t(u) = ν

|D
s
t (vp)| + 0.

3.(b): Since V C is an independent set of G, for any e = (u, v) ∈ E, e /∈ D
s

t(ep),
m

s
t(e) = m

s
t(v) + m

s
t(u) ≤ ν

|D
s
t (vp)| = m

s
t(e′), where e′ ∈ EC.

Time Complexity: See [5]. ⊓⊔

4.2 The Price of Anarchy

Lemma 7. For any ΠE(G) and an associated mixed NE s∗, the social cost
SC(ΠE(G), s∗) is upper and lower bounded as follows:

max

{

ν

|Ds
∗(ep)| ,

ν

|V (Ds
∗(vp))|

}

≤ SC(ΠE(G), s∗) ≤ ∆(Ds
∗(ep)) · ν

|Ds
∗(ep)| (7)

These bounds are tight.

Theorem 6. The Price of Anarchy for the Edge model is n
2 ≤ r(E) ≤ n.
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