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Abstract

In this work, we continue the study of the many facets of the Fully Mized Nash Equi-
librium Conjecture, henceforth abbreviated as the FMNE Conjecture, in selfish routing for
the special case of n identical users over two (identical) parallel links. We introduce a new
measure of Social Cost, defined as the expectation of the square of the maximum conges-
tion on a link; we call it Quadratic Maximum Social Cost. A Nash equilibrium is a stable
state where no user can improve her (expected) latency by switching her mixed strategy;
a worst-case Nash equilibrium is one that maximizes Quadratic Maximum Social Cost. In
the fully mized Nash equilibrium, all mized strategies achieve full support.

Formulated within this framework is yet another facet of the FMNE Conjecture, which
states that the fully mixed Nash equilibrium is the worst-case Nash equilibrium. We present
an extensive proof of the FMNE Congjecture; the proof employs a combination of combina-

torial arguments and analytical estimations.



1 Introduction

1.1 Motivation and Framework

We continue the study of the multi-faceted Fully Mixed Nash Equilibrium Conjecture in selfish
routing, originating from the work of Gairing et al. [7] and henceforth abbreviated as the FMNE
Conjecture. Specifically, we look at a special case of the KP model for selfish routing due to
Koutsoupias and Papadimitriou [14]; here, a collection of n (unweighted) users wish to each
transmit one unit of traffic from source to destination, which are joined through two (identical)
parallel links. The congestion on a link is the total number of users choosing it; each user makes
her choice using a mized strategy, which is a probability distribution over links; the latency on

a link is identified with congestion.

In a Nash equilibrium [20, 21], no user can improve the expected congestion on the link she
chooses by switching to a different (mixed) strategy. Originally considered by Kaplansky back
in 1945 [13], fully mized Nash equilibria have all their involved probabilities strictly positive;
they were recently coined into the context of selfish routing by Mavronicolas and Spirakis [18].
Roughly speaking, the fully mixed Nash equilibrium maximizes the randomization employed in
the mixed strategies of the players; so, it is a natural candidate as a vehicle for the investigation

of the effect of randomization on the quality of Nash equilibria.

We introduce a new measure of Social Cost [14] for the evaluation of Nash equilibria. The
new measure is taken to be the expectation of the square of the maximum congestion on a link;
call it Quadratic Mazimum Social Cost and denote it as QMSC. (The expectatiom is taken over
all random choices of the users.) Note that the Quadratic Maximum Social Cost simultaneously
generalizes the Mazimum Social Cost (expectation of maximum latency) proposed in the seminal
work of Koutsoupias and Papadimitriou [14] and denoted as MSC, and the Quadratic Social
Cost (expectation of the sum of the squares of the latencies) proposed in [15] and denoted as

QSC.

The motivation to consider the square of the latency comes from the application of schedul-
ing transmissions among nodes on the Euclidean plane. The received power at a receiver is
proportional to the power —§ of the (generalized) Euclidean distance from the sender; § is the
path-loss exponent, and it has been empirically assumed that 6 > 2 (cf. [12]). In many natural
cases, the latency is proportional to the (generalized) Euclidean distance;* so, in such cases,
the received power is proportional to the power —J of the latency. So, investigating the power
0 of the expected maximum latency for the initial case where § = 2 is expected to give insights

about the optimization of received power in selfish transmissions.

*The proportionality constant may have to do with external conditions of the medium and the transmission

power.



For any particular definition of Social Cost, a facet of the FMNE Conjecture states that the
fully mixed Nash equilibrium maximizes the Social Cost among all Nash equilibria. The validity
of the corresponding facet of the FMNE Conjecture implies that computing the worst-case Nash
equilibrium (with respect to the particular Social Cost) for a given instance is trivial; it may
also allow an approximation to the Price of Anarchy [14] in case where there is a polynomial
time approximation algorithm for the Social Cost of the fully mixed Nash equilibrium (cf. [6,
Section 7]).

1.2 Contribution

In this proposed framework, we formulate a corresponding facet of the FMNE Conjecture, called
the Quadratic Mazimum Fully Mized Nash Equilibrium Conjecture and abbreviated as the
QMFMNE Congjecture.

Conjecture 1.1 The fully mized Nash equilibrium maximizes the Quadratic Maximum Social
Cost.

As our main result, we present an extensive proof of this FMNE Conjecture using a combination
of combinatorial arguments and analytical estimations (Theorem 4.1). The proof amounts to
a delicate comparison of the Quadratic Maximum Social Cost of an arbitrary Nash equilibrium

to that of the fully mixed Nash equilibrium.

In more detail, the Quadratic Maximum Social Costs of the fully mixed and the arbitrary
Nash equilibrium are calculated in Lemmas 3.2 and 3.4, respectively. A more suitable form
for the latter is established in Lemma 3.5, involving some parameters A, B and C; simpler
expressions and bounds for A, B and C are derived in Claims 3.6, 3.7 and 3.8, respectively.
These simpler forms imply a strict lower bound on the difference between the two Quadratic
Maximum Social Costs, involving some new parameter D. Further on, we establish a strict
lower bound on D by distinguishing the cases where n is even or odd; these give rise to two new
parameters G and H, respectively, which are lower-bounded in Lemmas 4.2 and 4.3, respectively.
Putting these together yields that the difference between the two Quadratic Maximum Social

Costs is strictly positive.

The proof has required some very sharp analytical estimations for various combinatorial
functions that entered the analysis; this provides strong evidence that the established inequal-
ity among the two compared Quadratic Maximum Social Costs is very tight. The employed

analytical estimations may be applicable elsewhere; so, they are interesting on their own right.



H Model assumptions Social Cost ‘ FMNE Congjecture? ‘ Reference H

n = 2, weighted users & identical links MSC vV [6]
unweighted users & related links MSC 33.06 6]
weighted users & identical links MSC 2h(1+¢), fore >0 | [9]
n = 2, unweighted users & related links MSC Vv [16]
m = 2, unweighted users & identical links | MSC Vv [16]
m = 2,n = 2 & unrelated links MSC Vv [16]
m = 2,n = 3 & unrelated links MSC X [16]
unweighted users & identical links QSC Vv [15]
unweighted users & links with

(identical) non-constant and convex ¥,cSC vV [9]
latency functions

unweighted users & identical links PSC Vv [10]
weighted users & player-specific links >,cSC vV [11]
weighted users & player-specific links M,cSC vV [11]
weighted users & identical links MSC X [5]
weighted users with types & identical links | ¥;cSC vV [10]
weighted users with types & identical links | M;cSC vV [10]

Table 1: The status of the studied facets of the FMNE Conjecture. A symbol y/ (resp., x) in the
third column indicates that the facet of the FMNE Conjecture has been proven (resp., refuted) for
the corresponding case. A number p in the third column indicates that an approrimate version
of the FMNE Congjecture has been shown: the Social Cost of an arbitrary Nash equilibrium is
at most p times the one of the fully mixed. The symbol h denotes the factor by which the
largest weight deviates from the average weight (in the case of weighted users). In the case of
related links, latency is a linear function of the congestion on a link; in the (special) case of
identical links, the linear function is identity, while in the (more general) case of player-specific
links, the latency function is specific to each player (cf. [19]). In the (even more general) case
of unrelated links, there is an additive contribution to latency on a link, which is both player-
specific and link-specific. The Polynomial Social Cost, considered in [10] and denoted as PSC,
is the (expectation of the) sum of polynomial functions of the latencies. The Player-Average
Social Cost, considered in [9, 11] and denoted as ¥;cSC, is the sum of Individual Costs of the
players; the Player-Mazimum Social Cost, considered in [9, 10] and denoted as M;cSC, is the

maximum Individual Cost of a player.



1.3 Related Work and Comparison

The FMNE Conjecture was first stated in [7, Section 1]; there it was motivated by some initial
observations in [6, Theorems 4.2 and 6.1]. The fully mixed Nash equilibrium and the (generic)
FMNE Conjecture have attracted recently a lot of interest and attention; they both have been
studied extensively in the last few years for a wide variety of theoretical models for selfish
routing and Social Cost measures - see, e.g., [2, 4, 5, 6, 7, 9, 10, 11, 15, 16, 17]. The status of
the studied facets of the FMNE Conjecture is summarized in Table 1.

The FMNE Conjecture has been proved for the Maximum Social Cost for the cases of (i)
two (unweighted) users and non-identical but related links in [16, Theorems 2| and (ii) an
arbitrary number of (unweighted) users and two (identical) links in [16, Theorems 4]. In fact,
our estimation techniques significantly extend those for case (7i); due to the increased complexity
of the Quadratic Maximum Social Cost function (over Maximum Social Cost), far more involved
estimations have been required in the present proof. Counterexamples to the FMNE Conjecture
(for the Maximum Social Cost) appeared (i) for the case of unrelated links in [16, Theorem 7],

and (1) for the case of weighted users in [5, Theorem 4].

1.4 Road Map

The rest of this paper is organized as follows. Section 2 collects together some mathematical
tools. The theoretical framework and some preliminary calculations are articulated in Section
3. Our main result is presented in Section 4. Some auxiliary estimations and technical claims
are deferred to Sections 5 and 6, respectively. We conclude, in Section 7, with a discussion of

our result and some open problems.

2 Mathematical Tools

2.1 Notation and Preliminaries

For any integer n > 2, denote [n] = {1,2,...,n}. For a random variable X following the
probability distribution P, denote as Ep(X) the expectation of X; X ~ P signifies that X
follows the distribution P. For an integer n, the predicates Even(n) and Odd(n) will be 1 if and
only if n is even or odd, respectively. For a number x, denote exp(x) = e*.

In our later proofs, we shall use the following identities between binomial coefficients which
n—1

holds for all integersn > 1 and k < n: (Z) = ( n k:)’ k(%) = n(z: %), (Z) = (n L 1)+(k: _ 1),

n —

(1) = 2 (" ) and () = n=fEL (),



2.2 Two Combinatorial Facts

The first fact is an extension of Stirling’s approximation n! = 27m”+%exp(—n) to n!. The

extension yields a double inequality for n! (cf. [3, Chapter 2, Section 9]).

Lemma 2.1 For all integers n > 1,

/o 1
27m”+%exp (n + < n! < \/27m”+%exp (n + 12) .
n

12n+1)

The second fact is a maximization property of the Bernstein basis polynomial of order k and
degree n by, (z) = (Z) 2F(1 — 2)"~*, which forms a basis of the vector space of polynomials of

degree n [1].

Lemma 2.2 For each pair of integers k and n with 0 < k <mn,

n
b " _ kk -n —k n—k
xrél[%ﬁ} k() (k:) i n =)

occurring at T = %

3 Framework and Preliminaries

Our definitions are based on (and depart from) the standard ones for the KP model [14].

3.1 General

Consider a network with two parallel links 1 and 2 from a source to a destination node.

Fach of n > 2 users 1,2, ...,n wishes to route one unit of traffic from source to destination.

A pure strategy s; for user i € [n] is some specific link; a mized strategy o; is a probability
distribution over pure strategies— so, o; is a probability distribution over links. The support
of user 7 in her mixed strategy o;, denoted as support(o;), is the set of pure strategies to which
o; assigns strictly positive probability. A (pure) profile is a vector s = (s1,...,sy) of pure
strategies, one for each user; a mized profile is a vector o = (01,...,0,) of mixed strategies,
one for each user. Note that all probability distributions in a mixed profile are independent. A

mixed profile o induces a (product) probability measure P, on the space of pure profiles.

A user i is pure in the mixed profile o if |support(c;)| = 1; so, a pure profile is the degenerate

case of a mixed profile where all users are pure; the user ¢ is mixed in the mixed profile o if she



is not pure in . The mixed profile o is fully mized if for each user i € [n] and link j € [2],
0i(7) > 0. The user i is fully mized in the mixed profile o if |support(c;)| = 2; so, a fully

mixed profile is the special case of a mixed profile where all users are fully mixed.

Denote as S the space of all 2" pure profiles. Denote as o_; ¢ o, the mixed profile obtained

by substituting the mixed strategy o; of player i in o with the mixed strategy o).

3.2 Cost Measures and Nash Equilibria

The congestion on link ¢ € [2] in the profile s, denoted as c(4,s), is the number of users
choosing link £ in s; so,

ct,s) = [ieln]:s; =1}
The Individual Cost of user i in the profile s, denoted as 1C;(s), is the congestion on her
chosen link; so, 1C;(s) = c(s;, s).

The expected congestion on the link ¢ € [2] in the mixed profile o, denoted as c(¢, o), is

the expectation (according to o) of the congestion on link /; so,
c(l,o) = Egop,(c(l,s)).

The Ezpected Individual Cost of user i in the mixed profile o, denoted as 1C;(o), is the

expectation (according to o) of her Individual Cost; so,
|CZ(O') = ESNPUUCZ‘(S)).

The Maximum Social Cost [14] of the mixed profile o, denoted as MSC(¢o), is the expectation

of the maximum congestion; so,

MSC(o) = Es-p, (12&?2)]( c(Z,s)) :

The Quadratic Mazimum Social Cost of the mixed profile o, denoted as QMSC(o), is the

expectation of the square of the maximum congestion; so,

QMSC(o) = Eg.p, (<Ieré?2}]{ C(Z’S)y)

= ) Po(s). (I}é?gf c(¢, s))2

seS

> (I 2
= or(sk) .(max c(ﬁ,s)) .

ses \kejn] tel

The mixed profile o is a (mized) Nash equilibrium [20, 21] if for each user ¢ € [n], for each
mixed strategy o/ of player 4, IC;(o) < 1C;(o—_;©0}); so, player i has no incentive to unilaterally

change her mixed strategy.



3.3 The Fully Mixed Nash Equilibrium

We are especially interested in the fully mixed Nash equilibrium ¢ [18], which is known to exist
uniquely in the setting we consider [18, Theorem 4.7]. It is also known that for each pair of
a user i € [n] and a link ¢ € [2], ¢;(¢) = %; so, all 2" pure profiles are equiprobable, each
occurring with probability 2% [18, Lemma 15]. A simple expression for the Maximum Social

Cost of ¢ is given in [16, Lemma 5]:

Lemma 3.1 For the fully mized Nash equilibrium ¢,

MSC(¢) = Z+;<[§]__l 1).

We now calculate the Quadratic Maximum Social Cost of the fully mixed Nash equilibrium ¢.

Lemma 3.2 For the fully mized Nash equilibrium ¢,

n

2 2 -1
QMSC(¢) = Z+Z+2n(ﬁ _1>.

2

Proof. Note that the maximum congestion attains the following values:
2
° %, attained when % users are assigned to each of the links 1 and 2; this occurs in (%)

ways if n is even and cannot occur when n is odd.

e 2, where [%J 4+ 1 < i < n, attained when i users are assigned to one link and the

remaining n — ¢ < ¢ users are assigned to the other link; this occurs in 2 (7) ways; the

factor 2 accounts for exchanging the links where the maximum latency is attained.

By the equiprobability of all 2" pure profiles, it follows that

QMSC(¢)
_ 1 E n? /n 9 ~ o (T
= o ven(n)-z <%> + Z ) (z)
i={2)n
_omn E n{n—1 9 L (n—1
= o ven(n)-2<%_1)+ Z Z<i—1>
={2]n
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D Even(). (;:L({gﬁl) S w1 ~(f3- J)

vout (25 Lt )2

e () ()
sosso (M B () ()

= T Even(n)- ;f(@ 1)+ oddn). ;(@1—1 )

n+n2+n2 n—1
T 4Ty Tom [%1—1’

as needed. [ ]

3.4 The Arbitrary Nash Equilibrium o

Fix now an arbitrary Nash equilibrium o. It is known that MSC(¢) > MSC(o) [16, Theorem

4] (for the case of unweighted users and two identical links). We consider three sets of users:

o Uy ={i | support(c;) = {1}} is the set of (pure) users choosing link 1.
o Uy ={i | support(c;) = {2}} is the set of (pure) users choosing link 2.

o Uy = {i | support(o;) = {1,2}} is the set of (fully) mixed users choosing either link 1 or
link 2.

Set w = min {|U1], |Us|}; clearly, n > 2u. So, there are in total 2u (pure) users each of which
chooses either link 1 or link 2 (with probability 1). The case where n = 2u is trivial since in
that case there are no mixed users, so that QMSC(o) = u?; by Lemma 3.2, QMSC(¢) > %+u2,
which implies that QMSC(¢) > QMSC(o). So, we will henceforth assume that n > 2u.

Denote as & the mixed profile derived from o by eliminating those 2u users; note that & is a
(mixed) Nash equilibrium with n—2u users. Also, denote as $ the fully mixed Nash equilibrium

with n — 2u users.

-~

3.5 From QMSC(¢) — QMSC(o) to QMSC(¢) — QMSC(5)

Clearly, & has simpler form than o since in & there is (at least) one link chosen only by

~

the fully mixed users (and no pure users). Hence, it would be simpler to compare QMSC(¢)

11



and QMSC(a) (instead of comparing QMSC(¢) and QMSC(o) directly). To do so, we estab-
lish a relation between QMSC(o) and QMSC(&), and another relation between QMSC(¢p) and
QMSC(¢). We first compare QMSC(a) and QMSC(eo). Clearly,
QMSC(E) = Es, ((max{c(l,0),c(2,0)} —u)?)
= Ep, ((max{c(1,0),c(2,0)})* — 2umax {c(1,0),c(2,0)} + u?)
= Ep, ((max{c(1,0),c(2,0 }) ) — 2uEp, (max {c(1,0),c(2,0)}) + u?
= QMSC(o) — 2uMSC(o) +

We continue to compare QMSC(¢) and QMSC((,%). By Lemma 3.2,

~

QMSC(¢) — QMSC(9)

n n? n?( n-1 n—2u (n—2u)? (nm-2u?/ n-2u-1

2

— —u2+u(n+;> +Zj %1_—11) - W ([Z;;ﬁ_jg

Hence, by Lemma 3.1,
QMSC(¢) — QMSC(o) —
= —2uMSC(o)+u <n + ;) +

30 (g )

%1111))*“ n+§>+§([§]__11>W<[£zzW_—ll)
1\ n? n—l)(”w("_%_l)
AL e

- ";+(n—2u);<ﬁ_ll>_w<[Z_T§Z1—11>

< fe i (R (g ) e (i )

Now, to prove that QMSC(¢) > QMSC(o), Lemma 6.1 implies that it suffices to prove that
QMSC(¢) > QMSC(&).

vV
|
\)
S
<
wn
a
&
7N
S
+
N —
N——
+
[\)
3|
A/~ 7 N/

3.6 The Nash Equilibrium &

For notational convenience, rename now the parameters so that both & and $ refer henceforth

to an instance with n users. All n users are fully mixed in qZ; assume that in &, r > 1 (pure)

12



users choose link 1 with probability 1 and n — r (fully mixed) users choose both links with

positive probability. (The case r = 0 is trivial since it yields that & = ¢.) We shall recall the

following simple claim shown by Liicking et al. [16]:

Lemma 3.3 For the Nash equilibrium &, for each mized useri € [n], 7;(1) = %— m
Furthermore, r < Ln 5 3J .

Henceforth, we shall denote, for each user i € [n], p = 7;(1) and g = 7;(2), where p+ ¢ = 1.
We now calculate QMSC(o):

Lemma 3.4 For the Nash equilibrium &,

QMSC(5)

2 n n—r
n n-—r n n n—r . . n—r .
= Even(n) . T <n - r)pz_rqz + § 2 (2 B T>p1—7’qn—z + § : i2< i >pn—r—zqz‘

2

Proof. Note that the maximum congestion maxe9 c(¢, o) attains the following values:

2
° ”T, attained when % users are assigned to each of the links 1 and 2. There are (Z:’;)
2

such profiles when n is even, and each one occurs with probability p%”’q%. There are no

such profiles when n is odd.

e 2, where L%J +1 < i <n, attained when i users are assigned to link 1. There are ("))

such profiles, and each one occurs with probability p‘~"¢" .

e 2 when i users are assigned to link 2, where L%J +1<i<n-—r. There are (n?r) such

profiles and each one occurs with probability p” "¢’

Hence,
QMSC(o)
n2/n—r n n—r n—r n—p
= E L T oY 2 - i—r n—i ) - n—r—i 4
ven(n) 4 <721_T>p2 qz + Z 2 <i_r>p q + Z 1 < ; >p q,
=(g)n =lzln
as needed. [ ]

13



We now express QMSC(&) in a different form by adding and subtracting terms. Define the
parameters

A
- n—r i — n—r—1 y
= Z (Z_r)(l_r>pzr1qn+1z+(n_r) Z ( i ) nf’l"*’bql’
i=%]+1 i=|%]+1
= n—r—1\ , , — n—r—2 o
= oo X aren (T e S e (M
i=| % |+1 i=|2]+1
and
C
n n—r o . ) . . . i - 2 i i
= Z (Zr) ((i_r)pz—f—lqn+l—z+(Z_T)sz 2qn+2 i —(Z—T)pZ 2qn+2 —’L2pz q" @).
i=(1]+1

We prove that QMSC(&) enjoys a simple form in terms of A, B and C:

Lemma 3.5 For the Nash equilibrium o,
~ n2 n-—r n_, n
QMSC(o) = A—i—B—C—i—Even(n)-Z n p2 gz,

Proof. Clearly,

A+B-C
n _ . n—r —r_1 o
- S (e eaen 8 (e
i=3]+1 i=[5]+1
- n—r 1 i—r—2 n+2—3
+(n—r) Z (Z_T_1)<i—r—1) q
“lgln
— n—r—2 n—r—i
+(n—r)(n—r—1) Z P
(g
- =T\ i—r—1_ntl—i - 2 M= T\ i 2 nt2—i
- Z (Z_T)<Z—7“> I Z (i=7) (z—r> 1
i=2]+1 i=[3)+1
- . n—r i—r—2 n+2—i S oM —T i—r n—%
+ > (l—r)(i_r)p T Y 22<i_r>p q
i=[3]+1 i=[ 5]+

14



1—r—1
i=%]+1 i=| 2|+
n—r 9 n _
+(7’L _ r)(n S 1) Z <n Zﬁ2 )pn—'f—t i Z (Z _ T)2 (’Z‘ :) i—r—2 n+2—1i
Py pye

- i n-—r i—r—2 n+2—i - o (M —T i—r n—i

+ ) 7’)<i_r)p EEE Y Z<i_r>p ¢
=[50 Sy

We proceed to calculate separately the two groups of underbraced and overbraced terms we
have marked; note first that the three underbraced terms cancel out since for each index 7 with

3] +1<i<n,
w=nti=r=({ 2 T) = () +6-n(i2))
= <n—r><i—r—1)<7f‘_’"_1>—(z‘—r)(z'—r—n(’?"”)

t—r—1

(nr)(irl)@_:_ll) (nr)(irl)(?__:_ll)

= 0.

Note now that for the two overbraced terms, for each index i with L%J +1<i<n-—r,

(nr)(n;jl_l)+(nr)(nr1)<nz__j2_2)

Hence,
= ofm—r\ , — of(n—r o
A+B-C = z‘(,_ >Hn—z+ Z< . )n—r—zz‘
- %H N . %H A VA
The claim follows now from Lemma 3.4. [

We express A and B in different forms (Claims 3.6 and 3.7) and provide a lower bound on
C (Claim 3.8). We first prove:

15



Claim 3.6 It holds that
—r—1 n—1 n—1
A=g(n—-r) <1+Odd(n)- (2_7{ T)p T g2 ) .
nol-

The proof will use the simple fact that for any integer n > 1, n = {%J + VLTHJ ; furthermore,

L%J +1= [TLT—FI—‘ when n is odd, while L%J = VHQ_ lJ when n is even.

Proof. Clearly,

A
q(n—r)
N A £ & W — [(n—r—=1\ ...
- ¥ e $ -
n—r\i—r 1—1
S =Lzl
_ - n—r—1\ ;. 1 — n—r—1\ . i1
= (e 2 ()
=l S
- n—r—1\ ,_ .1 . — n—r—1\ i
= > P Y e
i—r—1 n—r—1
i=|3]+1 i=|g]+1
" n—r—1 (n+1)=(n=r) n—r—1
— - i—r—1 _n—i - n+l—i—(r+1) n—(n+1—1)
, (i—r—l)p DY , <n+1—i—(r+1))p
i:L%J+1 n+lfz:n7L%J
n "_L%J
- n—r 1 i—r—1 n—1i n—r 1 i—r—1 n—1i
- E (i—r—l)p - Z;l (i—r 1>
i=| 241 i=r
n | 5]
_ n—r—1 i—r—1 _n—i n—r—1 i—r—1 _n—i
- B (i—r—l)p - Zﬂ(i—r 1>
i=| 5 |+1 =T
n—(r+1)

n—r—1 i—(r n—(i—(r —(r
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We continue to prove:

Claim 3.7 It holds that

B :1+< n;r_2 )pntgjrlqtgj1+Odd(n).<2_g2>pn23rqn21.
) n—t J—r—l 5 -

cn—r)n—r—1

2

Proof. Clearly,
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n n—r
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as needed. ]

We finally prove:

Claim 3.8 It holds that

r(0”+zﬁn2——2CM~+2)n—kr)(n-—r-—2>1ﬂgJrrlLgJ2

¢ Adn —r—1)2

r(2n® — (3r +2)n? —r n—r—2 Dl _pll | n|—

Proof. Clearly,
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S
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n
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-

—r
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n

< n—r—2 i—3 n—r—i
((pg —p* = 2rp?)(n —r) — 2r*p?) < : >p Sgrr!
i=| %] +2-r
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3
3
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— n—r—2
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S

n
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T
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3
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Note that

(qQ—pq—erq)(n—r)—+(pq—p2—2rp2+(q2—p2)(n—r—1)) (n—r)——
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—_———
1
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el ngl gl
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Moreover, observe that
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B n—r—1 4(n—r—1)2
_ T(’I“Fl)(n*r)_7‘2(71727‘71)(377,72?"7 3)
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Finally, note that
(pg —p* —2rp* + (¢ —p*)(n—r—1)) (n—7) —r’p°

- (p(q—p)—2rp2+(q—p)(q+p)(n—r—1)) (n—7r)—r’p?
Ry

= (pla—p)=2rp* + (@ =p)(n—7 = 1)) (n—7) —r?p?

r(n—=2r—=1) r(n—2r—1)? . n_r_TQ(n—Qr—l)Q

(2(nr1)2 2(nr1)2+)( T

<—r(n—2r—1)(n—2r—2)+2r(n—r—1)2>(n_ )_7“2(71—27“—1)2

2(n—r—1)2 4in—r—1)2
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B r(2n® — (3r 4+ 2)n? —r)
B dn—r—1)2
Hence,
rn -— n—r—2\ . .
C = ——— Z ] pz—2qn—r—z
n_r_li—\_’;j—%—r( 71— 2 )
r((r—|—4)n2_2(3r+2)n—|—7‘) n—r—2 |2]-r n—|2]-2
+ 4(n —r—1)2 ({gJ—r>p ¢
r(2n® - @Br+2n?—r) [ n—r—2 l2]-r-1 n|2]-1
* 4(n—r—1)2 (L%J—T—l)p 1
r((r+4n*—=2Br+2)n+r) n—r—2 2|—r n-|2|-2
4(n—r—1)2 ( 5 —r)pLJ o4
r(2n3—(3r+2)n2—r) n—r—2 l2]-r—1 n—|2]-1
T o1y ({ngJp 1 '
as needed. ]

4 The QMFMNE Conjecture is Valid

As our main result, we show:

Theorem 4.1 For the fully mized Nash equilibrium $ and the Nash equilibrium &,

~

QMSC(¢) > QMSC(3).

The proof will use some estimations and technical claims which have been deferred to Sections

5 and 6, respectively.
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Proof. Lemma 3.2, 3.5 and Claims 3.6, 3.7 and 3.8 imply that

~ 2 2 -1
QMSC(¢) — QMSC(5) > Z—i—z—i-;n({Z“_1>—q(n—r)_q2(n—r)(n—r—1)—l—D,
where
n—r—2
— —Pn—1rn—1— n—|%|-r-1_|%]-1
D = ¢ 1)(n—L%J—r—1>p ’
r((r+4n? —2Br+2)n+r) (n—1r—2 |2]—r n—|2|-2
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4(n—r—1)2 %J—rfl 1
n—T—l n-1_, n n—T—Q n=3_ .
—0dd(n) - g(n=7) { { p—1 P lgr Aqn—r—=1)(p_3 P g
5 _
—Even(n) O ERE
4 %fr L

e (P A P E e e B

_|_

r((r+4)n?—23r +2)n+r) (n—r—2
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(2’ — (34 2n? 1) ({n—r—Q )ptzj—r—l oLz

An—r— 1) %Jfrfl 1
B m=—1n-r)/n—r—-1 noi_,ono1
Odd(n) 2(n—r—1) n-1_,)P ¢
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_Odd(n).(4)(l)(n_3 )p?“” q _Even(n).4(n )p2 qz.
(n—r—1) \("5=-r 5 =T

We now prove a lower bound on D. We proceed by case analysis on whether n is even or odd.

Case 1: n is even‘ Then,

D
—1)2(n — —r—
_ 7(” 1)*(n T)(Z r 2>pgr1qg1
dn—r—1) \5g-r—1
2— — —_
+r((r+4)n 2(3r +2)n+ 1) nnr 2 i
din—r—1)2 g
+r(2n3—(3r—|—2)n2—r) n—r—2 p%_’“_lq%_l—n—Q n—r Pt
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4(n—r—1)2 %—7’71
n®n—r n—r—1

Z%*7".(71—r—1)—(%—7"—1) (3—7"—1

_ <(n1)2(nr) r((r+4)n?—-2Br+2n+7r) n-—2 P
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N  An—r—1) dn—r—1)2 ‘n—2r  n-1
r(2n3—(3r+2)n2—r)_n(n—r)(n—r—l)_(n—2r—1)(n—1) n—r—2
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2(n—1)(n—2r)(n—r—1)2 <% >p ¢
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p
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It follows that

-~

QMSC(¢) — QMSC(o)

n , n? LQ n\l (n-1mn-r) (n—1)*(n—r)

> |4t T +2n+1(%) Sn—r—1)  4(n—r—1)

_n2(n—2r—1)(n2—(7‘+2)n—|—2) n—r—=2\ a_. a2y
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G

We prove:
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Lemma 4.2 For any pair of an even integer n > 80 and an integer r such that 1 < r <

ket

r(n+1)
dn—r—1)
The proof will use the simple fact that for all numbers x > 0, exp(z) > 1 + z.

Proof. We proceed by case analysis on the range of values of r.

—1. ; ; __n—3 __n—1
Notethat in this casep—2(n_2> andq—Q(n_2).So,
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- () e A () (o) (i)
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- e ()6
)T

Vv
3
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2. 2<r< Ln 5 3J: We shall use the estimations from Lemmas 5.1, 5.3, 6.3, 6.4 and 6.5.
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n 1 1
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2T 12n+1 3n
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P\12(n—r—2) 6n-11 6n—12r—11 12n+1  3n

n3 (n—r—i)Q(n—r—Q)(n—%—l)‘l

©3) /iexp 1 1 1— A
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and the claim follows.

The proof for the case where n is even is now complete.
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’Case 2: nis odd‘ Then,
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(n =10 —1) o

<”""‘2> R
) —1 p q
4n—r—1) n—r—2—(n51—7~)+1 nol_,

(n=1)?%(m-r) r((r+4)n?—23r+2)n+r) T(2n3—(3r—|—2)n2—r).n—2r—1.g

dn—r—1) dn—r—1)2 dn—r—1)2 n—1 P
1
(=D -r) 2(n—r-1) _(n—l)Q(n—r) n—2r—1 ¢ n—r—2\ ni_, ns
2(n—r—1) n—1 e 4n—r—1) n—1 D nT_lfr b e
—_——— ~—_——

1

1
<_ (n—12%mn—r) r(r+4n*=2@Br+2)n+7r) r(2n*— Br+2)n*-r)
dn—r—-1) din —r—1)2 4(n —r —1)2
(m=Dm-r) (n-— 1)2(n—7°)> (n—r—2)pn1 n—3

1 2 —rq 2
2(n—r—1) dn—r—1) LE —r

nin—2r—1)(n* = (r+n—-r) (n—r—2 nel_, a3
- _ 3
2(n —r—1)2 Tn_l—r P 1
7n(n2—(7“+1)n—7“) n—2r—1 (n—r—2\ s, ns
n—r—1 2n—r—1) \ 251 P 1
—_—————
p
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n(m?—(r+hn—r)(n—r—2Y wo_, .
- T n—r—1 n51 e

a0 n(n?—(r+1)n)/n—r-—2 nfl_, s
B n—r—1 nT—l P

2 TL—?”—Q L«H_T n—3
= —nNn n_l p 2 q 2,
o r

It follows that

-~

QMSC() — QMSC(5)

n(n+1)( 11) _(n—l)(n—g) _ (TZ(—TLl_)Q?fTL_—l)T) _n2(2:’£__2>p772“—rq"'23

n ., n
> lats on+1 3 2(n—r—1 5 r
_ r(n+1) n(n+1) n ofm—r—2 nt1 o3
o 4(n77’71)+ on+l1 n—2|—1 " ngl—r P q ‘
H
We prove:

Lemma 4.3 For any pair of an odd integer n > 81 and an integer r such that 1 < r < Lnﬁ_fg’J ,

r(n+1)

i 4n—r—-1)

Proof. We proceed by case analysis on the range of values of r.

: rn+1)  _ a4l e n4l e _
1. 1§r§2.‘Note that n—r=1)  In-=2) if r = 1 and 3(n —3) if r = 2. By

substituting p and ¢ from Lemma 3.3, we get that

P N S L ARt At I e () N
= on+1 TLT‘H nT_lfr 2(n—r—1) 2n—r—1) .

By repeated application of the combinatorial identity (Z) = ]fL i % (Z %), we obtain that

+

_I_
n—r—2\ ﬁngl_r+i n—1
Tn_l—r B rm—r—2+4i Tn+1 '

nn+1)/ n
H- = (nt1
2
nt1 n—3

- () () 62 (w5

Hence,

i=1

9 7+1n21 r+i\ n-— n21 n n—2r—1\7% " n—1 =
- " Hn—r—?—i—z . HTH 2(n—r—1) 2(n—r—1)

i=1
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T . ntl_ . _
_ e ! ﬁn—1—2r+21 n—1( n 1 (n—2r—1\? n—1 \2
N et \ 1 m—r =241 2n n—21—1 ==t \n—r—1 n—r—1

nn+1)/ n
~ T T ontr n—2&—1 :

n—1 ﬁn—l—Qr—i—Qi n-1 \"2/n-2r—1\% " n—1 \ 2z T
n+1\;T n—r—2+i n—r—1 n—r—1 n—r—1 '

1=

It follows that

2
6s nnt+l)/ n oAl r2 n+l . A n—%—lir
> on+1 n—2|—1 (n—r—l)2 1 (n—r—1)4 9
nn+1)/ n
= n+1 n—|—1
2 nyl
1Al 72 n+1 r4 (7n+1_)<n+1 r—l)
- - —-r
(n—r—1)? 2 (n—r—1)1 2

n(n+1)( n )
= “ontl \n+1]-
2 =

<1A(1 r? n—2r+1 N ré (n—2r+1)(n—2r—1))>
)

(n—r—1)>2 2 (n—r—1)* 8
re{1,2y n(n+1 n
E{Z ) 2n+1(n—2|—1>

<1—A)(1 r’ nor-1 rt (n27’+1)(n2r1)>)

C(n—r—1)2 2 (n—r—1)% 8
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B n(n+1)( nl 8(n —2)%’ r=1
= Tontl \ntl)” n? —4n—1 _
2 m—2n_32> "2
4n —
, r=1
(5.2) n ﬁexp L1 . 8(n2—2)2
z 27 12n+1 3n-3 n—4dn—-1_ . _9
(n—2)(n—3)%
in —9
- L =1
exp(z)>1+4x E 1 1 _ 1 S(n - 2)2 '
> n + _ ' n?—dn—1
27 12n+1 3n-3 _nT—4an—21_ ._9
(n—2)(n—3)%
4n —9
, r=1
S n (1 — 1 . 8(112—2)2
2 3n—3 n”—4n —1 =2
(n—2)(n—3)%
4n —9 _
i 8 [ ] 82 T
> 9\ 2x n®>—4n—1 r—9
(n—2)(n—3)%
4n —9 r=1
ny/n 8(n —2)%’
> : 2
3 n“—4n —1 —
(n—2)(n—3)%
n+1 r=1
n>7 nvn | o4(n—2)%
> 6 2(n+1) r—9
(n+1)(n-23) -
n+1 _
n>4 4(’/1—2)7 r=1
z n+ 1 r=2
2(n —3)’ :
2. 3<r< Lnﬁ_fg’J We shall use the estimations from Lemmas 5.2, 5.4, 6.10, 6.11 and 6.12.
Clearly,
H
n(n+1) n ofm—=1r—2\ nt1_ . n-a
= 2n+1 7’L+1 -n ’I’L—l_T,p2 q2
2 2
(5.2) n 1 B 1 9 n—r—2\ nt1_ n-3
= n\/27reXp<12n+1 3n—3) " (L—fl—r b
1 1

(5-4)
>

n
ny/ —ex
2 P

<12n+1_3n—3

n

1 1 1

—r—=2)(n—2r—-1)

2 w

21(n —3)(n —r —1)2 &P

ne
n4 | — ex
27Tp

)

x <12(n—r—2) T6n_17 6n_12r—5

1 1
12n+1 3n—

1 n 1
12n+1 3n—3

(

n —

) (- 2o )

r—2)(n—2r—1)

ngw
2r(n —3)(n—r—1)

(12(n—r—2) C6n—17 6n—12r—5
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_ n 1 1 nn—r—2)(n—2r—1)
- ”\/;GXP<12n+1_3n3> (1_\/ n—3)n—r—172
1 1 1 1 1
eXp(l?(n—r—Q)_6n—17_6n—12r—5+12n+1_3n—3>)
1 n 1 1 nn—r—2)(n—2r—1)
620 n\/;e)(p<12n+1_3n—3> (1_\/ (n—3)(n—r—1)? )
11 n 1 1 nn—r—2)(n—2r—1)
e n\/;<1+12n+13n—3)<1\/ (n—3)(n—r—1)>2 )
n 1 nn—r—2)(n—2r—1)

” n\/;<13n—3> (1\/ (n—3)(n—r—1)2 )

nsa S [T 1_\/n(n—r—2)(n—27’—1)

Z 9V 2r (n—3)(n—r—1)?2

ny/n nn—r—2)(n—-2r—1)
” 3(1_\/ (n—3)(n—r—1)>2 >

_ nyn m=3)n—r—12%-nn—-r—2)(n—-2r—1)
5 V=317 (V-3 —r - 17+ /aln—r—2)(n-2r—1))
(6;1) n\/ﬁ. m=3)n—-r—12-nn—r—-2)(n—2r—1)

5 V=87 (Vi =8 = 7+ = 9 - 1)
nyn- n=3)n—r—12-nn—r—2)(n—2r—1)

6 (n—3)(n—r—1)=2
©12) nvn o 3r(n+1)(n—r—1)

= 6 2vn-(n—3)(n—r—1)>

B nr(n+ 1)
4 =3)(n—-r—-1)
r(n+1)
~ Adln—r—1)
as needed. The proof is now complete. [
The proof for the case where n is odd is complete, and this completes the proof. [

5 Estimations

We collect together all estimations (and their proofs) used in the proof of Theorem 4.1. Some
of these estimations refer to the probabilities p and ¢ introduced in Lemma 3.3. The proofs of

the estimations rely on Lemmas 2.1 and 2.2. We first prove:
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Lemma 5.1 For all even integers n > 2,
n . 1 1 < n? (n
ny | — ex - — — .
2r P\12n+1 3n) 21 \3

Proof. By Lemma 2.1,

5 )!

ng(ﬂ) _ow
2n+1 % 2n+1 ((n)'>2
2 VImntep (—nt i)
2n+1 nt1 2
(x/ﬂ (%) * exp (—% + %))

n 1 1
ny—exp|—————-——1,
2T 12n+1 3n

Y

as needed.

We continue to prove:

Lemma 5.2 For all odd integers n > 3,
n 1 1 < n(n+1) n
n, [ —ex — — .
or P\12n+1 3n-3) — 271 \ngl

n
The proof will use the fact that for all n > 3, (%) > exp(1).

Proof. By Lemma 2.1,

nn+1)/ n _ n(n+1) n!
2n+1 L;l ot (n—l)u(n+1>|
. T
_n n!
2” ((n—:l)' 2
nodh
Lo VEeew(ont )

n 2
n—1\2 n—1 1
(\/ 2 ( 3 ) exp <_ ) + 6 — 6))
n " ne 1 1 1
= —_— X J— —
"\no1 o7 P\ Ton+1  3n-3
n 1 1
1),/ _ 1
~ "eXp()\/2weXp(12n+1 3n—3 >
n leX 1 — 1
o7 P\ Ton+1 3n-3)°

as needed.

We now prove:
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Lemma 5.3 For all pairs of even integers n > 4 and integers r such that 1 < r < [ 5

n—T—Q n_ . n—2
n_2_r p2 q2

(n—r—2)(n—2r—1)>2 1

1

n—3

1

J

= \/27(n—2)(n—2r—2)(n—r—1)2

Proof. By Lemma 2.2,

max
= Do<z1 b”Tﬂ—r,n—r—Q(x)

Hence, by Lemma 2.1,

n—r—2 n_y n=2

1

o n—r—2+1 _ o
V2r(n—r—2) zexp( (n—r 2)+712(n—r—2)

< p

ﬁ,r+l
/27T(7152_r) 2 2exp<_(n22_7a)+
n—2

n—2
—92 2 7" _9 p)
<n2 —r) (n—r—2)" "t (n2 )

12(”7*2—r)+1

1

j

T exp

() (52 )

2
2 n—2
n—2
2

1 (n—r—2)nr"3 (12( 1

-7 ’ ﬂﬂ(nfrf?)*””+2 L_Q -
2
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)
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1 (’I’L —r— 2)n—r—%—n+7‘+2

n

PN === =l
( 2 ) ( 2 ‘T)

. 1 1 1
y _ _
P\T2(n—r—2) 6n-11 6n—12r—11

- n—r—2 o 1 B 1 7 1
- F or (252 (252 ) P\12(n—r—2)  6n—11 6n—12r—11

. on—2r—1 n—r—2 . 1 1 1
T 2n—r—1) 2W(n52)(n52_r> P \T2(n—r—2) 6n-11 6n—12r — 11

B (n—r—2)(n—2r—1)>2 . 1 1 1
TN 22— —r 12 P\ 12(n—r-2) 6n—11 6n—12r —11)°
as needed. [

We continue to prove:

Lemma 5.4 For all pairs of odd integers n and integers r such that 1 <r < Ln > 3J ,

n—r-—2 ntl ., n—=3
n_l p2 q2
By =

(n—r—2)(n—2r—1) 1 1 1
exp - — .
2rt(n —3)(n —r —1)2 12(n—r—2) 6n-—17 6n—12r—>5
Proof. By Lemma 2.2,

n—r—2 nt+l . n—3
n—l_ p 2 Tq 2
o

r

—r—2 n=— n—
< poén£§1 (,Z_q > x 2177~(1_$)n—r—2_( 21)_7"
= — r

—rn—r—2 (JI)

9 1\ 1 nor=2= ()
- p(Z_; )<n2 —7") (n—r—2)_("_r_2)<n—r—2—<n2 —r))
T —7"

n—3

_ p(nggn)!—(rn—fi!_r)! (n;l _T> e P (n;i&) 3

max
= P o<e<1 bn;l
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Hence, by Lemma 2.1,

/271. (TL —r— 2)n7r72+% exp (—(TL —Tr — 2) + 12(’17,—17“—2))
< p
\/Q—(nf?,)"f*% n—3 1
s exp ( )—i—
2 2 12(”53)+1
1
—T+

m(n51_> 2exp _(n—l

1 (n—r—2)n7r3 1 1 1
= P ) n . SXP - -
V2T (= 3\ T (n—1 5T 12(n—r—2) 6n—17 6n—12r—>5
(%) " (=*-7)
1 Byt 3\ 7
(n; —7") (n—r—2)""trt2 (n; )
1 (n—r—2)n-r=3—ntr+2
R N N S )
(=) " 7 ()
1 1 1
exp - -
12(n—r—2) 6n—17 6n—12r—5
B n—r— o 1 1 1
- ( 23)( ) Pll2tn—r—2) 6n-17 6n—12r—5
n—2r—1 n—r—2 1 1 1
exp — -
2(n—r—1) ( n—l_r) 12(n—r—2) 6n—17 6n—12r—>5
(n—r—2)(n—2r—1) . 1 1 1
x _ _
2m(n—3)(n—r—1)2 P\12(n—r—2) 6n-17 6n—12r—5)°
as needed.

6 Technical Claims

We collect together the simple technical claims (together with their proofs) that were used
before. We first prove:
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Lemma 6.1 For each pair of integers n > 2 and u such that n > 2u,
n n—1 n—2u—1
W(Pﬂ - 1) - 2u)<{”—22ﬂ - 1) - v

Proof. We consider separately the two cases where n is even or odd. Assume first that n is
even. Then,

n n—1 n (n—1
2%([3]_1) - W(%—l)

n—2u+1)(n —2u) (n—2u—1)!

2em gg u+1) ég 1) (5-u) (5 -u) (5 -u-1)
(

n — 2u+1)(n — 2u) (n—2u—1>

2o (3 u+1) Bo1)(B-u) \Eount
oo n22nh-Dn-3)-...-(n—2u+3)(n—2u+1) <n2u1)
2% nn—2)-...-(n—2u+4)(n —2u+2) %—u—l
> (n—2u+1) (7%__23__ 11>

> (n—2u) (’7;1_25— 11) = (n—2u) ({Zégﬁ_l 1).

n n—1
~ (i)
_on (n—1)!
I T CE =]
_n n=1)n-=2)-...-(n—2u+1)(n—2u) (n —2u—1)!
B (v () o () B (o)
_n (n—1)n—-2)-...-(n—2u+1)(n —2u) (n—12u—1 )
2 (g d) e (gt —urn) (R 1) (B ) A e
n 2%%(n—2)(n—4)- (n—2u+2)(n—2u) n—2u—1
T 2u(n—1)(n-3)... (n—2u+3)(n—2u+1)(”+1 u—l)
- n(n — 2u) n2u1)
n—1 n_%_l—u—l
> (n72u) (n%12fu_1 1) — (nQU)<[Z:gZ"__11)



This completes the proof. [

We now prove:

Lemma 6.2 For all even integers n > 4, it holds that

(-ot) < () ()

21
Proof. Consider the binomial expansion of (1 - (n—12)Q> . Note that if % —11is odd, the

last term in the binomial expansion is negative; so, consider the binomial expansion without
any such last term. Consider any pair of consecutive terms

i i+1
B 1 51 and 1 51
(n —2)? i (n —2)? i+1)’
n_q
where 3 <1 < % — 1 and 7 is odd, in the binomial expansion of (1 — (7112)2) . Clearly,
7 1+1
B 1 5 -1 N 1 5 -2
(n—2)2 i (n—2)2 i+1
L (-, L (51
i (n—2)2\i+1

" <n—1 2)? (”2&1’52" (g 0 1) )

+

M
i (n—2)2 8

n=27) (
= ?;1>(_1+8(n1_2))

It follows that

as needed. [ ]

We continue to prove:

Lemma 6.3 For all pairs of integersn > 4 and r > 1,

1 1 1 1 n 1 < 0
12(n—r—2) 6n-11 6n—12r—11 12n+1 3n '
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Proof. Clearly,

1 1 1 1 1
2n—r—2) 6n-11 6n-12r—11 12n+1  3n
B 1 1 1 1 1
- 12(n—r—2)_Gn—ll_6(n—r—2)—6r+1_12n+1+%
r>1 L _ 1 — 1 — 1 —|—i
S 12(n—r—-2) 6n-11 6(n—r—2) 12n+1 3n
B 1 1 1 1
B _12(n—7‘—2)_6n—11_12n+1+%
SR S S S §
s 12n—-36 6n—11 12n+1  3n
B —474n2 + 11190 + 132
~ 3n(4n —9)(6n — 11)(12n + 1)
—474n (n - 12 + 132
~ 3n(4n —9)(6n —11)(12n + 1)
n§4 0,

as needed.

We now prove:

Lemma 6.4 For all pairs of integers n > 80 and r such that 2 <r < VL > 3J ,

2
n?’(n—r—g) n—r—2)(n—-2r—1)" < (n—=1>%*n-2)(n—2r—-2)(n—2r)°mn—-r—-1)%4

Proof. Sincen —r — % < n —r —1, it suffices to prove that

ndn—r—2)(n—-2r—1D* < (n—132%n-2)(n—2r—2)(n—2r)2n—r—1)>2

Define the polynomial f,(n) (with parameter r) with

fr(n) = (n—=12n—-2)n—2r—=2)(n—2r)2n—-r—-1>%-n*n—r—2)(n—2r — DL
Then,
fr(n) = (r—2n" — (7r* — 14r — 12)n8 +2(9r® — 21r% — 461 — 14)n°
N ——
A B
—(20r* — 7213 — 273r% — 1987 — 32)n* + (8r° — 72r* — 38213 — 488r? — 1971 — 18)n®
C D
+4(87° + 59r* +123r% 4+ 94r% 4 23r 4+ 1)n? — 8(5r° + 22r* + 3173 + 1612 + 2r)n
E F

+1672(r + 1),
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Note that for n = 80, 2 < r < 38. We shall prove that f.(n) > 0. To do so, we calculate the

first seven derivatives of f,(n):

fOm) = 7(r—2)n® — 6An® + 10Bn* — 4Cn® + 3Dn® + 8En — SF,
fPn) = 42(r —2)n° — 30An* + 40Bn® — 12Cn? + 6Dn + SE,
f3(m) = 210(r — 2)n* — 120An® + 120Bn? — 24Cn + 6D,
F®(n) = 840(r — 2)n3 — 360An? + 240Bn — 24C,
B (n) = 2520(r — 2)n? — 720An + 240B,
F9(n) = 5040(r — 2)n — T20A,

(n)

= 5040(r — 2).

e Since r > 2, frm(n) > 0; hence, f©(n) is non-decreasing in n for n > 80.

o Note that for n = 80 £ (80) = —5040r2 + 4132807 — 797760; since the discriminant of

(6)(80) is 413280% — 4 - 5040 - 797760 > 0, there are two distinct roots 71 < ro; 1 < 2

and ry > 38. Since the quadratic power coefficient -5040 of f (80) is negative, it follows

that fr(6)(80) > 0 for 2 < r < 38. Thus, fr(6)(n) > 0; hence, f,£5) (n) is increasing in n for
n > 80.

o It is verified that f\* (80) = 2520802 - (r — 2) — 57600A + 240B > 0 for 2 < r < 38. Thus,
,@ (n) > 0; hence, fr(4) (n) is increasing in n for n > 80.

o It is verified that £\ (80) = 840 - 80% - (r — 2) — 360 - 802 - A + 19200B — 24C > 0 for
2 < r < 38. Thus, f,§4) (n) > 0; hence, f7§3) (n) is increasing in n for n > 80.

o It is verified that £\*)(80) = 210 80% - (r — 2) — 120 - 803 - A + 768000B — 1920C + 6D > 0
for 2 < r < 38. Thus, fqg?’) (n) > 0; hence, fqu) (n) is increasing in n for n > 80.

o It is verified that £{%(80) = 42-80°- (r—2) —30-80%-A+40-803-B—76800C +480D+8E > 0
for 2 < r < 38. Thus, fqu) (n) > 0; hence, fqgl)(n) is increasing in n for n > 80.

o It is verified that f")(80) = 7-806- (r —2) — 6-80°-A+10-80%- B —4-80%- C + 19200D +
640E — 8F > 0 for 2 < r < 38. Thus, f,gl)(n) > 0; hence, f,(n) is increasing in n for
n > 80.

e Since f,(80) = 807-(r—2)—80%-A+2-805-B—80*.C+803-D+25600E —640F 41672 (r+1)3 > 0
for 2 < r < 38, the claim follows. [}

We continue to prove:
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Lemma 6.5 For all pairs of integers n > 80 and r such that 2 < r < [n > 3J ,

3r(n+1)(n—1)7>%*n—2r—2)(n—2r*n—r—1)>*
3

< 2vn((n—1>2n-2)(n—2r—2)(n—2r)*(n—r—1)* —n? (n—r—2) (n—r—2)(n—2r—1)4>.

Proof. We proceed by case analysis on the range of values of r. Define the function f,(n)
(with parameter r) with

fr(n)
2 2 3\ 4
= 2\/ﬁ<(n—1) (n—2)(n—2r—2)(n—2r*n—r—-1*-n? (n—r—2> (n—r—=2)(n—2r—1) >
—3r(n+1)(n—1)2%*n-2r—2)(n—-2r)*(n—r—1)>
= 2(r—1)n% —3rn? — <18r2 —12r — 325) n +9r(3r +2)n® + (66r3 — 3012 — 342‘% - 65) n’z

—3r(33r% + 47r + 13)n” — (126r* — 64r® — 740r2 — 658 — 133)n> + 3r(63r® + 1461 + 861 + 10)n°
+(132r% — 156r* — 1792r% — 26247% — 1263r — 162)n> — 3r(66r* + 2277 + 212r% + 46r — 5)n°

9

235
- (72r6 — 256r° — 2546r* — 5272r% — 430212 — 13661 — 2) nz
+3r(36r° + 182r* + 233r% + 46r% — 51r — 14)n*
1671
+ (16r7 —208r% — 20207° — 5576r* — 674613 — 375472 — TT — 47) n

—3r(8r% 4 685 + 98r* — 63r® — 17772 — 85r — 9)n® + 8(r + 1)3(8r* + T1r® + 12472 + 30r + 1)n3
+6r(r 4+ 1)2(4r* — 10r° — 51r2 — 207 — 1)n® — 16r(r 4+ 1)*(5r% + 167 + 2)n?
+127% (r + 1)2(27% + 1lr + 2)n + 32 (r + 1)°v/n — 24r% (r + 1)4.

First, we consider the case where r € {2,3,4}. For r = 2,

fa(n)
61 ;
= % —6n® — 3n%7 4 144n8 — 1434n7 + 290503 + 7620n° — 25792n3 — 22842n°
213107 :
+ n? + 35976n% — 235822n% — 1719003 + 27064813 — 28188n2 — 13996802

+41472n + 31104y/n — 15552
1
= (Vn—-6)n°+ <n - 62) n? + (144n — 1434)n7 + (29050 — 25792)n 2 + (7620n — 22842)n°

3
2

213107
+ ( n— 235822) n? + (35976n — 17190)n® + (270648n — 28188+/n — 139968)n

+41472n + 31104+/n — 15552
> 0,

since all parenthesized coeflicients are positive for n > 80.
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For r = 3,

f3(n)
1 5

= 3 (&ﬁ —18n° — 217TnT + 594n® + 18650 — 8118n” + 5780 + 59094n5 — 113022n %
—243288n° + 802447n2 + 540504n* — 255527507 — 481248n3 + 386252812 — 268416n2
—2334720n% + 732672n + 589824\/11 — 331776)
1

= 3 ((3\/77 —18)n? + (5n — 217)n> + (594n — 8118)n” + (18650 — 113022)n> + 578n %
+(59094n — 243288)n° + (802447n — 2555275) n? + (540404n — 481248)n’

+(3862528n — 268416+/n — 2334720)n 2 + 732672n + 589824+/n — 331766)
> 0,

since all parenthesized coefficients are positive for n > 80.

For r =4,
fa(n)
44
— 6n% —12n° — 7571* 1 50408 4+ 299302 — 8748n7 — 1355512 + 80664n° — 66654n 2
2061659 o

—419940n° + n? + 1186632n* — 4580957n3 — 14433001 + 8697000n> — 307800n>

—5840000n2 + 1872000n + 1600000+/n — 960000
17 3

445 .
= (2vn—12)n° + <4n — 2) n + (504n — 8748)n" + (2993n — 13555)n %

2061659

T
2

+(74664+/n — 66654)n2 + (6000n — 419940)n° + ( n— 4580957) n

+(1186632n — 1443300)n> + (8697000n — 307800+/n — 5840000)71% + 1872000n + 1600000/n
—960000
> 0,

since all parenthesized coeflicients are positive for n > 80.

We continue to prove the claim for 5 < r < LnT_?’J Since n —r — % < n-—r—1, it suffices

to prove that
2vn((n —1)%(n—=2)(n—2r = 2)(n —r —1)* =n3(n —r — 2)(n — 2r — 1)?)
> 3r(n+1)(n—1)>%*n—-2r—2)(n—r—1).
This is equivalent to
(2(7~ — 4)n® = 3rn® — 6(r% — 4r — T)n2 + 3r(3r + 4)n? + 2(2r® — 1492 — 577 — 42)n
—3r(202 4+ Tr + A)v/n + 2(8r° + 49r% + 82r + 41)) n? + (3r(2r2 +r—2)nk
—20(r® + 4r% 4+ 57 + 2)n) V/n + 3r(2r* + 7r + 5)n + 8(r + 1)>y/n — 6r(r + 1)°
> 0.
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It suffices to prove that

(2(7“ —4)n? — 3rn3 — 6(r% — 4r — 7)n? + 3r(3r + 4)n% +2(2r® — 1472 — 57r — 42)n

=3r(2r® 4+ Tr + 4)v/n + 2(8r° + 49r” + 82r + 41)) n?

+ <3r(2r2 +r—2)n? —20(r® + 4r% + 5r + 2)n — 6r(r + 1)2) vn
> 0.

Define the function f,(n) (with parameter r) restricted to the overbraced terms as

fr(n)

2r — An® — 3rn3 — 6(r% — 4r — T)n? + 3r(3r + 4)n? + 2(2r® — 141> — 57r — 42)n
—3r(2r? + Tr + 4)v/n + 2(8r% 4+ 49r% 4+ 82r + 41).

Define also the function g,(n) (with parameter r) restricted to the underbraced terms as
gr(n) = 3r(2r’+r— Q)n% —20(r3 + 472 + 51 + 2)n — 6r(r + 1)°.

We shall prove that both f,.(n) > 0 and g,(n) > 0 in the ranges of n and r. We first prove:

Claim 6.6 For all pairs of integers n > 80 and v such that 5 <r < [n > 3J , fr(n) >0.

Proof. The first and second derivatives of f(n) are

157 : 9
) = 6(r—4)n?— ;n% —12(r% —4r —T)n + ?T(Sr 4+ 4)v/n 4 2(2r® — 1472 — 5Tr — 42)

3r
- (2r4+Tr 44
2\/5(7“ +7r+4),
45T 9r 37a 3
(2) = 12(r —4)n— ——\/n—12(r% — 4r — 2 1)+ 2T (9,2 =%
17 m) (r=4)n — —=vn—12(r" —4r 7)+4\/ﬁ(3r+ )+ (2% + T+ d)n 3

> 12(r —4)n —12ryn — 12(r? —4r — 7)

= 12| (r—4)n—ryn—r>4+4r+7
h.(n)

Note that for the first derivative hﬁl)(n), it holds that

M) = r—4-— 2:/5
n>2r r—4— ﬁ
> 2v/2
o2nV2-8V2—
= Wi
VN
= e
r§5 0
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Hence, h,(n) is increasing in n. Note that h(80) = —r? + (84 — +/80)r — 313. Note that the
discriminant of h(80) is positive; hence, there are two distinct roots r1 < ra, and it is verified
that that r; < 5 and r > 38. Since the quadratic power coefficient of h,(80) is negative,
it follows that h(80) > 0 for 5 < r < 38. Hence f7£2) (n) > 0, which implies that fﬁl)(n) is
increasing in n. It is verified that f,gl)(80) > 0; hence, fﬁl)(n) > 0 for n > 80. This implies that
fr(n) is non-decreasing in n for n > 80. It is verified that f,.(80) > 0 for 5 > r > 38. Hence,
fr(n) >0 for n > 80, as needed. [

We now prove:

Claim 6.7 For all pairs of integers n > 80 and r such that 5 <r < {n 5 SJ , gr(n) > 0.

Proof. The first and second derivatives of g,(n) are

¢ Mn) = 9—;(2r2+r—2)ﬂ—QO(r3+4r2+5T+2)
and
D) = (224 2).
4+/n

(2) (1)

Since 7 > 5, gr ' (n) > 0; hence, g '(n) is non-decreasing in n. It is verified that gﬁl)(SO) > 0;
hence, gﬁl)(n) > 0 for all n > 80. It follows that g,(n) is non-decreasing in n. Since g,(80) > 0,
the claim follows. ]
The claim follows now from Claims 6.6 and 6.7. [ |

We continue to prove:

Lemma 6.8 For all odd integers n > 5 and r € {1,2}, it holds that

2 ol 2 n+1 4 n+1
1" c 1" 7 — T +T7 2 ")
(n—r—1)32 (n—r—1)2 1 (n—r—1)* 2

n+1
2

Proof. Consider the binomial expansion of <1 — (”7;21)2> . Note that if _2'— L s

odd, the last term in the binomial expansion is negative; so, consider the binomial expansion

without any such last term. Consider any pair of consecutive terms

(o) (5 ) e () (L),
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n+t1
=z

with 3 < i < & L and iis odd, in the binomial expansion of {1 - —"1——=
2 (n—r—1)°

Clearly,

s 0 N
ANV NS AV I
ot - @
[\v}
—

It follows that

(o) = () e ()
! ZT(”Z = 1>2>1 <n§1 )

as needed.

We now prove:

Lemma 6.9 Forn >4 and r € {1,2}, it holds that
(n—r—172 > (n—2r+1)(n—2r—1).

Proof. The claim is equivalent to
(n—r—1)2-m-2r+1)(n—2r—1) > 0.

Clearly,

(n—r—172%=m-2r+1)(n—2r—1) = 2rn — 2n — 3r? + 2r + 2
2n(r —1) —3r% +2r + 2
"2t 8(r—1) = 3rf +2r 42

r€{>1,2} 0.

\1

The claim follows.

We continue to prove:
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Lemma 6.10 For all pairs of integers n > 5 and r > 2,

1 1 1 1 1

— - — + < 0.
12(n—r—2) 6n-—17 6n—12r—5 12n+1 3n—3
Proof. Clearly,
1 1 1 L
12n—r—2) 6n-17 6n—12r—5 12n+1 3n—3
B 1 1 1 Lo, 1
- 12(n—r—-2) 6n—-17 6(n—7r—-2)—6r+7 12n+1 3n-3
- 1 1 1 1 1
2 - - - +
< 12(n—-r—-2) 6n-17 6(n—-7-2) 12n+1 3n-—3
B 1 1 1 N 1
B 12(n—r—2) 6n—17 12n+1 3n-3
- 1 S S S
< (12n —48) 6n—17 12n+1 3n-—3
B —402n2 4 1095n + 1023
 (4n—16)(6n —17)(12n 4+ 1)(3n — 3)
—402n (n - %1(%?—25) +1023
T (4n—16)(6n—17)(12n+ 1)(3n — 3)
n>5 0
< k)
as needed. [

We now prove:

Lemma 6.11 For all pairs of integers n > 1 and r such that 3 <r < Ln > 3J,

nin—r—2)(n—-2r—1) < (n—3)(n—r—1)>

Proof. Since n—r—2 < n—r—1, it suffices to prove that n(n —2r —1) < (n—3)(n—r —1),
or equivalently that

(n=3)(n—r—1)—nn—-2r—1) > 0.

Clearly,
n—=3)Yn—-r—1)—-nn-2r—1) = n*—rm—4n+3r+3—-n’>+2rm+n
= (r—=3n+3r+3
%3 0,
as needed. [ ]

We finally prove:
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Lemma 6.12 For all pairs of integers n > 81 and r such that 3 < r < VL 5 3J ,

3r(n+1)(n—r—1) < 2yn((n-3)(n—r—1>%—nn—r—-2)(n—2r—1)).

Proof. Define the function f.(n) (with parameter ) with

fr(n) = 2v/n((n=3)(n—r—1>%-nn—r—2)(n—2r—1)) =3r(n+1)(n—r—1)
= 2(r—2)n? —3rn® —2(r2 = 3r — 5)n% + 3r?n — 6(r + 1)2v/n + 3r(r + 1).

We shall prove that f,(n) > 0. Write

fr(n) = ((r—=2)vn—3rn>+((r —2)n—2r? +6r + 10)n% +3(r2vn = 2(r + 1)*)vn + 3r(r +1).
Note that
frn) > ((r=2)vn=3r)n*+ ((r —2)n — 2r* + 6r + 10)n% +3(r*vn — 2(r + 1)*)v/n.
A B C

Sincen > 8l andr >3, A > 9(r—2)—3r > 0. Sincen > 2r and r > 3, B> (r—2)n—2r2+4r =
(n—2r)(r—2) > 0. Sincen >8l andr >3, C> 9% —2(r+1)?2 = 7r? — 4r — 2 > 0. Since
fr(n) > An? + Bns + 3Cy/n, the claim follows. ]

7 Conclusions

We have presented an extensive proof for the validity of the FMNE Conjecture for a special case
of the selfish routing model of Koutsoupias and Papadimitriou [14] where users are unweighted
and there are only two identical (related) links. We adopted a new, well-motivated kind of Social
Cost, called Quadratic Maximum Social Cost. The proof required a variety of combinatorial
arguments and analytical estimations.

We believe that our work contributes significantly, both conceptually and technically, to
enriching our knowledge about the many facets of the FMNE Conjecture. Based on this improved
understanding, we have extended the QMFMNE Conjecture formulated and proven in this work
to an FExtended QMFMNE Conjecture for the more general case with an arbitrary number
of unweighted users, an arbitrary number of identical (related) links and Social Cost as the
expectation of a polynomial with non-negative coefficients of the maximum congestion on a

link. Settling this EFrtended QMFMNE Conjecture remains a major challenge.

Acknowledgements. We thank Chryssis Georgiou and Burkhard Monien for helpful discus-

sions.
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