
Supporting Increment and Decrement

Operations in Balancing Networks?

William Aiello1, Costas Busch2, Maurice Herlihy2, Marios Mavronicolas3, Nir
Shavit4, and Dan Touitou5

1 AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932, USA.
aiello@research.att.com

2 Department of Computer Science, Brown University, Providence, RI 02912, USA.
fcb, mphg@cs.brown.edu

3 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus,
and Department of Computer Science and Engineering, University of Connecticut,

Storrs, CT 06269, USA.x

mavronic@turing.cs.ucy.ac.cy
4 Department of Computer Science, School of Mathematical Sciences, Tel-Aviv

University, Tel-Aviv 69978, Israel.
shanir@math.tau.ac.il

5 IDC Herzliya, Tel-Aviv, Israel.
danidin@math.tau.ac.il

Abstract. Counting networks are a class of distributed data structures
that support highly concurrent implementations of shared Fetch&Increment
counters. Applications of these counters include shared pools and stacks,
load balancing, and software barriers [4, 12, 13, 18]. A limitation of count-
ing networks is that the resulting shared counters can be incremented,
but not decremented.

A recent result by Shavit and Touitou [18] showed that the subclass of
tree-shaped counting networks can support, in addition, decrement op-
erations. This paper generalizes their result, showing that any counting
network can be extended to support atomic decrements in a simple and
natural way. Moreover, it is shown that decrement operations can be sup-
ported in networks that provide weaker properties, such as K-smoothing.
In general, we identify a broad class of properties, which we call bound-
edness properties, that are preserved by the introduction of decrements:
if a balancing network satis�es a particular boundedness property for
increments alone, then it continues to satisfy that property for both in-
crements and decrements.

Our proofs are purely combinatorial and rely on the novel concept of a
fooling pair of input vectors.

? This paper combines, uni�es, and extends results appearing in preliminary form in [2]
and [6].

x Partially supported by funds for the promotion of research at University of Cyprus.
Part of the work of this author was performed while at AT&T Labs { Research,
Florham Park, NJ, as a visitor to the Special Year on Networks, DIMACS Center
for Discrete Mathematics and Theoretical Computer Science, Piscataway, NJ.



1 Introduction

Counting networks were originally introduced by Aspnes, Herlihy, and Shavit [4]
and subsequently extended [1,10, 11]. They support highly concurrent imple-
mentations of shared Fetch&Increment counters, shared pools and stacks, load
balancing modules, and software barriers [4, 12, 13, 18].

Counting networks are constructed from basic elements called balancers. A
balancer can be thought of as a routing switch for elements called tokens. It has a
collection of input wires and a collection of output wires, respectively called the
balancer's fan-in and fan-out. Tokens arrive asynchronously on arbitrary input
wires, and are routed to successive output wires in a \round-robin" fashion.
If one thinks of a balancer as having a state `toggle" variable tracking which
output wire the next token should exit on, then a token traversal amounts to
a Fetch&Toggle operation, retrieving the value of the output wire and changing
the toggle state to point to the next wire. The distribution of tokens on the
output wires of a balancer thus satis�es the step property [4]: if yi tokens exit
on output wire i, then 0 � yi � yj � 1 for any j > i.

A balancing network is a network of balancers, constructed by connecting
balancers' output wires with other balancers' input wires in an acyclic fashion,
in a way similar to the way comparator networks are constructed from compara-

tors [9, Chapter 28]. The network itself has a number of input and output wires.
A token enters the network on an input wire, traverses a sequence of balancers,
and exits on an output wire. A balancing network is a K-smoothing network [1,
4] if, when all tokens have exited the network, the di�erence between the maxi-
mum and minimum number of tokens that exit on any output wire is bounded
by K, regardless of the distribution of input tokens. Smoothing networks can be
used for distributed load balancing.

A 1-smoothing network is a counting network if it satis�es the same step
property as a balancer: when all tokens have traversed the network, if yi tokens
exit on output wire i, then 0 � yi� yj � 1 for any j > i. Counting networks can
be used to implement Fetch&Increment counters: the l-th token to exit on the
j-th output wire returns the value j + (l � 1)wout, where wout is the network's
fan-out.

A limitation of counting networks is that they support increments but not
decrements. Many synchronization algorithms and tools require the ability to
decrement shared objects.

Shavit and Touitou [18] devised the �rst counting network algorithm to sup-
port decrements for the class of networks that have the layout of a binary tree.
They did so by introducing a new type of token for the decrement operation,
which they named the antitoken.1 Unlike a token, which traverses a balancer
by fetching the toggle value and then advancing it, an antitoken sets the toggle
back and then fetches it. Informally, an antitoken \cancels" the e�ect of the
most recent token on the balancer's toggle state, and vice versa. They provide

1 The name was actually suggested by Yehuda Afek (personal communication).



an operational proof that counting trees [19] count correctly when traversed by
tokens and antitokens.

Shavit and Touitou [18] also introduced the notion of elimination. One can
use a balancing network to implement a pool, a kind of concurrent stack. If a
token representing an enqueue operation meets a token representing a dequeue
operation in the network, then they can \cancel" one another immediately, with-
out traversing the rest of the network.

It is natural to ask whether the same properties hold for arbitrary counting
networks. More generally, what properties of balancing networks are preserved
by the introduction of antitokens? In this paper, we give the �rst general answer
to this question. We show the following results.

{ If a balancing network is a counting network for tokens, then it is also a
counting network for both tokens and antitokens. As a result any counting
network can be extended to support a Fetch&Decrement operation.

{ Any counting network, not just elimination trees, permits tokens and anti-
tokens to eliminate one another.

{ If a balancing network is a K-smoothing network when inputs are tokens,
then it remains a K-smoothing network when inputs include both tokens
and antitokens.

{ We identify a broad class of properties, which we call boundedness properties,

that are preserved by the introduction of antitokens: if a balancing network
satis�es a particular boundedness property when inputs are tokens, then
it continues to satisfy that property when inputs include both tokens and
antitokens. The step property and the K-smoothing property are examples
of boundedness properties.

Unlike earlier work [18], our proofs are combinatorial, not operational. They
rely on the novel concept of a fooling pair of input vectors, which, we believe, is
of independent interest.

We assign the value 1 to each token and -1 to each antitoken. We treat a
balancer as an operator carrying an integer input vector to an integer output

vector. The i-th entry in the input vector represents the algebraic sum of the
tokens and antitokens received on the i-th input wire, and similarly for the
output vector. For example, if this value is zero, then the same number of tokens
and antitokens have arrived on that wire. We treat a balancing network in the
same way, as an \operator" on integer vectors.

A boundedness property is a set of possible output vectors satisfying

{ it is a subset of the K-smoothing property, for some K � 1, and
{ it is closed under the addition of any constant vector.

Both the K-smoothing and the step property are examples of boundedness prop-
erties. Our principal result is that any balancing network that satis�es a bound-
edness property for non-negative integer input vectors also satis�es that property
for arbitrary integer input vectors.

The state of a balancer is the \position" of its toggle. Two input vectors
form a fooling pair to a balancer if, starting in the same state, each \drives"



the balancer to the same state. Similarly, a balancing network state is given by
its balancers' states. Two input vectors form a fooling pair for that network if,
starting from the same state, each drives the network to the same state. For a
speci�c initial state of a balancing network, its fooling pairs de�ne equivalence
classes of input vectors.

Roughly speaking, we prove our main equivalence result as follows. Consider
any balancing network with some boundedness property; take any arbitrary in-
teger input vector and the corresponding integer output vector. By adding to
the input vector an appropriate vector that belongs to the equivalence class for
some given initial state, we obtain a new input vector such that all of its en-
tries are non-negative integers. We show that the output vector corresponding
to the new input vector is, in fact, equal to the original output vector plus a
constant vector. Hence, our main equivalence result follows from closure of the
boundedness property under addition with a constant vector.

2 Framework

For any integer g � 2, x(g) denotes the vector hx0; x1; : : : ; xg�1iT, while dx(g)e
denotes the integer vector hdx0e; dx1e; : : : ; dxg�1eiT. For any vector x(g), denote

kxk1 =
Pg�1

i=0 xi. We use 0(g) to denote h0; 0; : : :; 0iT, a vector with g zero entries;
similarly, we use 1(g) to denote h1; 1; : : : ; 1iT, a vector with g unit entries. We
use r(g) to denote the ramp vector h0; 1; : : : ; g � 1iT. A constant vector is any
vector of the form c1(g), for any constant c.

Balancing networks are constructed from acyclically wired elements, called
balancers, that route tokens and antitokens through the network, and wires. For
generality, balancers may have arbitrary fan-in and fan-out, and they handle
both tokens and antitokens.

For any pair of positive integers fin and fout, an (fin; fout)-balancer, or bal-

ancer for short, is a routing element receiving tokens and antitokens on fin input
wires, numbered 0; 1; : : :; fin � 1, and sending out tokens and antitokens to fout
output wires, numbered 0; 1; : : : ; fout � 1; fin and fout are called the balancer's
fan-in and fan-out, respectively. Tokens and antitokens arrive on the balancer's
input wires at arbitrary times, and they are output on its output wires. Roughly
speaking, a balancer acts like a \generalized" toggle, which, on a stream of input
tokens and antitokens, alternately forwards them to its output wires, going ei-
ther down or up on each input token and antitoken, respectively. For clarity, we
assume that all tokens and antitokens are distinct. Figure 1 depicts a balancer
with three input wires and �ve output wires, stretched horizontally; the balancer
is stretched vertically. In the left part, tokens and antitokens are denoted with
full and empty circles, respectively; the numbering re
ects the real-time order
of tokens and antitokens in an execution where they traverse the balancer one
by one (called a sequential execution).

For each input index i, 0 � i � fin � 1, we denote by xi the balancer input

state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire i; that is, xi is the number of tokens



t

t

t

t

t

d

t

ddt

d t

t d

d t d

d t d

d

t

t

t

t

tdd

1

234

7

6

8

9

1 2

3 4 5

6 7

9

8

x0

x1

x2

y0

y1

y2

y3

y4

-2

0

0

0

-1

-1

-1

-15

Fig. 1. A balancer

that have entered on input wire i minus the number of antitokens that have
entered on input wire i. Denote x(fin) = hx0; x1; : : : ; xfin�1i

T; call x(win) an input

vector. For each output index j, 0 � j � fout � 1, we denote by yj the balancer

output state variable that stands for the algebraic sum of the numbers of tokens
and antitokens that have exited on output wire j; that is, yj is the number of
tokens that have exited on output wire j minus the number of antitokens that
have exited on output wire j. The right part of Fig. 1 shows the corresponding
input and output state variables. Denote y(fout) = hy0; y1; : : : ; yfout�1i

T; call
y(fout) an output vector.

The con�guration of a balancer at any given time is the tuple hx(fin);y(fout)i;
roughly speaking, the con�guration is the collection of its input and output state
variables. In the initial con�guration, all input and output wires are empty;
that is, in the initial con�guration, x(fin) = 0(fin), and y(fout) = 0(fout). A
con�guration of a balancer is quiescent if there are no tokens or antitokens in
the balancer. Note that the initial con�guration is a quiescent one. The following
formal properties are required for an (fin; fout)-balancer.

1. Safety property: in any con�guration, a balancer never creates either tokens
or antitokens spontaneously.

2. Liveness property: for any �nite number t of tokens and a of antitokens that
enter the balancer, the balancer reaches within a �nite amount of time a
quiescent con�guration where t� e tokens and a� e antitokens have exited
the network, where e, 0 � e � minft; ag, is the number of tokens and
antitokens that are \eliminated" in the balancer.

3. Step property: in any quiescent con�guration, for any pair of output indices
j and k such that 0 � j < k � fout � 1, 0 � yj � yk � 1.

From the safety and liveness properties it follows, for any quiescent con�g-
uration hx(fin);y(fout)i of a balancer, that kx(fin)k1 = ky(fout)k1; that is, in a
quiescent con�guration, the algebraic sum of tokens and antitokens that exited
the balancer is equal to the algebraic sum of tokens and antitokens that en-
tered it. The equality of sums holds also for the case where some the tokens and
antitokens are \eliminated" in the balancer.



For any input vector x(fin), denote y(fout) = b(x(fin)) the output vector in the
quiescent con�guration that b will reach after all kx(fin)k1 tokens and antitokens
that entered b have exited; write also b : x(fin) ! y(fout) to denote the balancer
b. The output vector can also be written [1, 4, 8] as

y(fout) =

�
kx(fin)k1 1

(fout) � r(fout)

fout

�
:

For any quiescent con�guration hx(fin);y(fout)i of a balancer b : x(fin) !
y(fout), the state of the balancer b, denoted stateb(hx(fin);y(fout)i), is de�ned to
be

stateb(hx
(fin);y(fout)i) = kx(fin)k1 mod fout ;

since the con�guration is quiescent, it follows that

stateb(hx
(fin);y(fout)i) = ky(fout)k1 mod fout :

Thus, for the sake of simplicity, we will denote

stateb(x
(fin)) = stateb(hx

(fin);y(fout)i) :

We remark that the state of an (fin; fout)-balancer is some integer in the
set f0; 1; : : :; fout � 1g, which captures the \position" to which it is set as a
toggle mechanism. This integer is determined by either the balancer input state
variables or the balancer output state variables in the quiescent con�guration.
Note that the state of the balancer in the initial con�guration is 0. Moreover, the
linearity of the modulus operation immediately implies linearity for the balancer
state.

Lemma 1. Consider a balancer b : x(fin) ! y(fout). Then, for any input vectors

x
(fin)
1 and x

(fin)
2 ,

stateb(x
(fin)
1 + x

(fin)
2 ) = (stateb(x

(fin)
1 ) + stateb(x

(fin)
2 )) mod fout :

A (win; wout)-balancing network B is a collection of interwired balancers,
where output wires are connected to input wires, having win designated input
wires, numbered 0; 1; : : : ; win � 1, which are not connected to output wires of
balancers, having wout designated output wires, numbered 0; 1; : : : ; wout � 1,
similarly not connected to input wires of balancers, and containing no cycles.
Tokens and antitokens arrive on the network's input wires at arbitrary times,
and they traverse a sequence of balancers in the network in a completely asyn-
chronous way till they exit on the output wires of the network.

For each input index i, 0 � i � win � 1, we denote by xi the network input

state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire i; that is, xi is the di�erence of the
number of tokens that have entered on input wire i minus the number of anti-
tokens that have entered on input wire i. Denote x(win) = hx0; x1; : : : ; xwin�1i

T;



call x(win) an input vector. For each output index j, 0 � j � wout� 1, we denote
by yj the network output state variable that stands for the algebraic sum of the
numbers of tokens and antitokens that have exited on output wire j; that is, yj is
the number of tokens that have exited on output wire j minus the number of anti-
tokens that have exited on output wire i. Denote y(wout) = hy0; y1; : : : ; ywin�1i

T;
call y(wout) an output vector.

The con�guration of a network at any given time is the tuple of con�gurations
of its individual balancers. In the initial con�guration, all input and output
wires of balancers are empty. The safety and liveness property for a balancing
network follow naturally from those of its balancers. Thus, a balancing network
eventually reaches a quiescent con�guration in which all tokens and antitokens
that entered the network have exited. In any quiescent con�guration of B we
have kx(win)k1 = ky(wout)k1; that is, in a quiescent con�guration, the algebraic
sum of tokens and antitokens that exited the network is equal to the algebraic
sum of tokens and antitokens that entered it.

Naturally, we are interested in quiescent con�gurations of a network. For any
quiescent con�guration of a network B with corresponding input and output
vectors x(win) and y(wout), respectively, the state of B, denoted stateB(x(win)),
is de�ned to be the collection of the states of its individual balancers. We re-
mark that we have speci�ed x(win) as the single argument of stateB, since x(win)

uniquely determines all input and output vectors of balancers of B, which are
used for de�ning the states of the individual balancers. Note that the state of
the network in its initial con�guration is a collection of 0's. For any input vector
x(win), denote y(wout) = B(x(win)) the output vector in the quiescent con�gura-
tion that B will reach after all kx(win)k1 tokens and antitokens that entered B
have exited; write also B : x(win) ! y(wout) to denote the network B.

Not all balancing networks satisfy the step property. A (win; wout)-counting
network is a (win; wout)-balancing network for which, in any quiescent con�g-
uration, for any pair of indices j and k such that 0 � j < k � wout � 1,
0 � yj �yk � 1; that is, the output of a counting network has the step property.

The de�nition of a counting network can be weakened as follows [1, 4]. For
any integer K � 1, a (win; wout)-K-smoothing network is a (win; wout)-balancing
network for which, in any quiescent con�guration, for any pair of indices j and
k such that 0 � j; k � wout � 1, 0 � jyj � ykj � K; that is, the output vector
of a K-smoothing network has the K-smoothing property : all outputs are within
K to each other.

For a balancing network B, the depth of B, denoted depth(B), is de�ned to
be the maximumdistance from any of its input wires to any of its output wires.
In case depth(B) = 1, B will be called a layer. If depth(B) = d is greater than
one, then B can be uniquely partitioned into layers B1;B2; : : : ;Bd from left to
right in the obvious way.

Fix any integer g � 2. For any integer K � 1, the K-smoothing property [1]
is de�ned to be the set of all vectors y(g) such that for any entries yj and yk of
y(g), where 0 � j; k � g�1, jyj�yk j � K. A boundedness property is any subset
of some K-smoothing property, for any integer K � 1, that is closed under



addition with a constant vector. Clearly, the K-smoothing property is trivially
a boundedness property; moreover, the set of all vectors y(g) that have the step

property [4] is a boundedness property, since any step vector is 1-smooth (but not
vice versa). We remark that there are in�nitely many boundedness properties.

A boundedness property captures precisely the two properties possessed by
both K-smooth and step vectors upon which our later proofs will rely. Although
we are unaware of any interesting property, other than the K-smoothing and
step, that is a boundedness one, we chose to state our results for any general
boundedness property in order to make explicit the two critical properties that
are common to the classes of K-smooth vectors and step vectors; moreover,
arguing in terms of a boundedness property will allow for a single proof of all
claims found to hold for both the K-smoothing property and the step property.

Say that a vector y has the boundedness property � if y 2 �. Say that a

balancing network B : x(win) ! y(wout) has the boundedness property � if for
every input vector x(win), B(x(win)) 2�.

3 Results

Input vectors x(fin)1 and x(fin)2 are a fooling pair to balancer b : x(fin) ! y(fout) if

stateb(x
(fin)
1 ) = stateb(x

(fin)
2 ) ;

roughly speaking, inputs in a fooling pair drive the balancer to identical states.

Proposition 1. Consider a balancer b : x(fin) ! y(fout). Take any input vectors

x
(fin)
1 and x

(fin)
2 that are a fooling pair to balancer b. Then, for any input vector

x(fin),

(1) the input vectors x
(fin)
1 +x(fin) and x

(fin)
2 +x(fin) are a fooling pair to balancer

b;

(2) b(x
(fin)
1 + x(fin))� b(x

(fin)
1 ) = b(x

(fin)
2 + x(fin))� b(x

(fin)
2 ).

Input vectors x
(win)
1 and x

(win)
2 are a fooling pair to network B : x(win) !

y(wout) if for each balancer b of B, the input vectors of b in quiescent con�gu-

rations corresponding to x(win)
1 and x

(win)
2 , respectively, are a fooling pair to b;

roughly speaking, a fooling pair \drives" all balancers of the network to identical
states in the two corresponding quiescent con�gurations.

Proposition 2. Consider a balancing network B : x(win) ! y(wout). Take any

input vectors x
(win)
1 and x

(win)
2 that are a fooling pair to network B. Then, for

any input vector x(win),

(1) the input vectors x
(win)
1 + x(win) and x

(win)
2 + x(win) are a fooling pair to

network B;

(2) B(x
(win)
1 + x(win)) � B(x

(win)
1 ) = B(x(win)

2 + x(win)) � B(x
(win)
2 ).



Say that x(win) is a null vector to network B : x(win) ! y(wout) if the vectors
x(win) and 0(win) are a fooling pair to B. Intuitively, a null vector \hides" itself
in the sense that it does not alter the state of B by traversing it.

Proposition 3. Consider a balancing network B : x(win) ! y(wout). Take any

input vectors x
(win)
1 and x

(win)
2 that are a fooling pair to network B. If x(win)

2 is

a null vector to network B, then, x
(win)
1 is also a null vector to network B.

Proposition 4. Consider a balancing network B : x(win) ! y(wout). Take any

input vector x(win) that is null to B. Then, for any integer k � 0,

(1) B(kx(win)) = kB(x(win));
(2) kx(win) is a null vector to B.

For any balancing network B, let Wout(B) denote the product of the fan-outs
of balancers of B. For positive integer Æ, say that Æ divides x(g) if Æ divides each
entry of x(g).

Proposition 5. Consider a balancing network B : x(win) ! y(wout). If Wout(B)
divides x(win), then, x(win) is a null vector to B.

Proposition 6. Consider any balancing network B : x(win) ! y(wout) that has

a boundedness property �. If Wout(B) divides x(win), then, y(wout) is a constant

vector.

Here is our main result:

Theorem 1. Fix any boundedness property �. Consider any balancing network

B : x(win) ! y(wout) such that y(wout) has the boundedness property � whenever

x(win) is a non-negative vector. Then, B has the boundedness property �.

4 Conclusion

We have shown that any balancing network that satis�es any boundedness prop-
erty on all non-negative input vectors, continues to do so for any arbitrary input
vector. Interesting examples of such properties are the step property and the
K-smoothing property. A signi�cant consequence of our result is that all known
(deterministic) constructions of counting and smoothing networks [1, 3{5,8, 10,
11,14, 15, 19] will correctly handle both tokens and antitokens, and therefore sup-
port both increment and decrement operations. Another signi�cant consequence
is that the suÆcient timing conditions for linearizability in counting networks
established in [16,17] immediately carry over to antitokens.

Aiello et al. [3] present a randomized counting network based on randomized

balancers that toggle tokens according to some random permutation. We do not
know whether such randomized networks can support antitokens.

A balancing network has the threshold property [4,7] if y0 = dkx(win)k1=woute,
and the weak threshold property [7] if there is some output index j, possibly
j 6= 0, such that yj = dkx(win)k1=woute. Since we have not established that either
of these properties is a boundedness property, our result does not necessarily
apply, and it remains unknown whether these properties are preserved by the
introduction of antitokens.



References

1. E. Aharonson and H. Attiya. Counting networks with arbitrary fan-out. Distributed
Computing, 8(4):163{169, 1995.

2. W. Aiello, M. Herlihy, N. Shavit, and D. Touitou. Inc/dec counting networks.
Manuscript, Dec. 1995.

3. W. Aiello, R. Venkatesan, and M. Yung. Coins, weights and contention in balancing
networks. In Proceedings of the 13th Annual ACM Symposium on Principles of
Distributed Computing (PODC'94), pages 193{205, Los Angeles, Aug. 1994.

4. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM,
41(5):1020{1048, Sept. 1994.

5. C. Busch, N. Hardavellas, and M. Mavronicolas. Contention in counting networks
(abstract). In Proceedings of the 13th annual ACM Symposium on Principles of
Distributed Computing (PODC'94), page 404, Los Angeles, Aug. 1994.

6. C. Busch and M. Mavronicolas. The strength of counting networks (abstract).
In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed
Computing (PODC'96), page 311, Philadelphia, May 1996.

7. C. Busch and M. Mavronicolas. Impossibility results for weak threshold networks.
Information Processing Letters, 63(2):85{90, July 1997.

8. C. Busch and M. Mavronicolas. An eÆcient counting network. In Proceedings of
the 1st Merged International Parallel Processing Symposium and Symposium on
Parallel and Distributed Processing (IPPS/SPDP'98), pages 380{385, Mar. 1998.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press and McGraw-Hill Book Company, Cambridge, MA, 1992.

10. E. W. Felten, A. LaMarca, and R. Ladner. Building counting networks from larger
balancers. Technical Report TR 93-04-09, University of Washington, Apr. 1993.

11. N. Hardavellas, D. Karakos, and M. Mavronicolas. Notes on sorting and count-
ing networks. In Proceedings of the 7th International Workshop on Distributed
Algorithms (WDAG'93), volume 725 of Lecture Notes in Computer Science, pages
234{248, Lausanne, Switzerland, Sept. 1993. Springer-Verlag.

12. M. Herlihy, B.-H. Lim, and N. Shavit. Scalable concurrent counting. ACM Trans-
actions on Computer Systems, 13(4):343{364, Nov. 1995.

13. S. Kapidakis and M. Mavronicolas. Distributed, low contention task allocation.
In Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing
(SPDP'96), pages 358{365, Washington, Oct. 1996.

14. M. Klugerman. Small-Depth Counting Networks and Related Topics. PhD thesis,
Department of Mathematics, Massachusetts Institute of Technology, Sept. 1994.

15. M. Klugerman and C. G. Plaxton. Small-depth counting networks. In Proceedings
of the 24th Annual ACM Symposium on the Theory of Computing (STOC'92),
pages 417{428, Victoria, B.C., Canada, May 1992.

16. N. Lynch, N. Shavit, A. Shvartsman, and D. Touitou. Counting networks are
practically linearizable. In Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC'96), pages 280{289, New York, May
1996.

17. M. Mavronicolas, M. Papatrianta�lou, and P. Tsigas. The impact of timing on lin-
earizability in counting networks. In Proceedings of the 11th International Parallel
Processing Symposium (IPPS'97), pages 684{688, Los Alamitos, Apr. 1997.

18. N. Shavit and D. Touitou. Elimination trees and the construction of pools and
stacks. Theory of Computing Systems, 30(6):545{570, Nov./Dec. 1997.

19. N. Shavit and A. Zemach. Di�racting trees. ACM Transactions on Computer
Systems, 14(4):385{428, Nov. 1996.


