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Abstract

In this work, we embark on a study of the possibility (or impossibility), and
the corresponding costs, of devising concurrent, low-contention implemen-
tations of atomic Read-Modify-Write operations (abbreviated as RMW), in
a distributed system. We consider a natural class of RMW operations which
give rise o a certain class of algebraic groups that we introduce here and
call monotone groups. Our chief combinatorial instrument is a Monotone
Linearizability Lemma, which establishes inherent ordering constraints of
linearizability for a certain class of executions of any distributed system that
implements a monotone RMW operation.

The end results of our study specifically apply to implementations of
(monotone) RMW operations that are based on switching networks, a re-
cently introduced class of concurrent, low-contention data structures that
generalize counting networks. These results are negative and they are shown
through a modular use of the Monotone Linearizability Lemma. In particu-
lar, we derive the first lower bounds on size (the number of switches in the
network) and fatency (the maximum number of switches traversed) for any
(non-trivial) switching network implementing a monotone RMW operation:

e If the network is made up of switches with finite state and it incurs

low contention, then it must contain an infinite number of switches,
even il concurrency (the maximum number ol concurrent processes)
is restricted to remain bounded.
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e If the network is made up of switches with infinite state and it incurs
low contention, then it must still contain an infinite number of switches
if we now allow concurrency to grow unbounded.

e Any switching network induces executions with latency at least [2’%}—] .
where n is the number of concurrent processes and ¢ is the maximum
number of processes that simultaneously access a switch.

A major significance of the above lower bounds (of infinity) is that they
formally explain the observed inability of researchers over the last decade
to extend counting networks, while retaining them finite and low-contention,
in order to perform tasks more complex than just incrementing a counter by
one.
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1 Introduction

Motivation, Framework and Outline. A Read-Modify-Write shared variable
[8, 13], henceforth abbreviated as RMW, is an abstract variable type that allows
reading its old value, and determining (via some specific operator) and writing a
new value back to it in a single, aromic (indivisible) RMW operation (cf. [ 15, Ex-
ample 9.4.2]). A RMW operation is a strong synchronization primitive that allows
for the design of efficient and transparent algorithms in the asynchronous shared
memory model of distributed computation; see, e.g., the folklore algorithm for
mutual exclusion described in [3, Section 4.3.2], or the scalable ordered multicast
protocol of Herlihy er al. [11] that is based on a modular use of the distributed
Swap operation, a special case of RMW. Due to their fundamental importance as
synchronization primitives, it is most desirable to devise suitable distributed data
structures for the construction of concurrent, low-contention implementations of
RMW variables. Intuitively, the contention of an implementation measures the ex-
tent to which concurrent processes access the same memory location simultane-
ously; it has been argued quite convincingly that contention is a critical factor for
the overall efficiency of shared memory algorithms (cf. [6]). The central question
motivating this work is the possibility (or impossibility), and the corresponding
incurred complexities, for concurrent, low-contention implementations of RMW
shared variables.

We focus on a specific class of RMW operations whose associated operators
give rise Lo a certain class of algebraic groups introduced and studied here, which
we call monotone groups. A monotone group has a roral order and a monotone
subdomain associated with it; the latter enjoys a significant monotonicity prop-
erty, which we call monotonicity under composition: applying the operator on an
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element from the monotone subdomain results to another element in the mono-
tone subdomain that strictly dominates the initial one with respect to the total
order. For example, the Fetch&Add operation (over the set of integers) clearly
falls into the context of monotone groups, since adding a positive integer to a pos-
itive integer results in a larger positive integer; here, the monotone subdomain is
the set of positive integers. So also does the Fetch&Multiply operation, and so on.
A monotone RMW operation is one that is associated with a monotone group.

An abstract concept defined in relation to monotone groups is that of n-wise
independence. Roughly speaking, n elements of a monotone group are n-wise in-
dependent if it is not possible to derive the identity clement of the group through
successive (specilically restricted though) applications of the operator on 1 of the
elements or their inverses. A preliminary but significant property of monotone
groups that we prove is that every monotone group is n-wise independent, in the
sense of having n-wise independent clements. As we establish, the existence of
n-wise independent elements in a monotone group is largely responsible for en-
forcing linearizability | 12] for certain suitable executions of a distributed system
that implements the corresponding (monotone) RMW operation; recall that an
execution is linearizable [ 12] if the values returned to operations in it respect the
real-time ordering of the operations.

As a consequence, the main conclusion of our work is that guaranteeing the
inherent lincarizability for these particular executions must incur a high cost in
cfficiency for a certain class of concurrent. low-contention implementations of
(monotone) RMW that are based on switching networks; these are concurrent,
low-contention data structures that were recently introcuded [7] as a gencraliza-
tion of counting networks [2]. Roughly speaking, a switching nenwork is a di-
rected, acyclic graph made up of swirches and output registers; whenever a pro-
cess issues a RMW operation, it shepherds a roken through the network, which
traverses a path of switches till it is eventually returned a value (at an output reg-
ister). Thus, concurrent processes are spatially dispersed in a switching network,
which reduces their simultancous crossings in front of the same memory location;
this offers potential for low contention. The size of a switching network is the total
number of switches in it its latency is the maximum number of switches traversed
by a token shepherding a RMW operation through the network. The concurrency
of a switching network is the maximum number of concurrent processes that may
shepherd a RMW operation through the network.

In order to model the low-contention property for switching networks, we in-
troduce register bottleneck and layer bottleneck; roughly speaking, both register
bottlencck and layer bottleneck measure the minimum number of network ele-
ments (either switches or output registers) that are accessed by processes in any
infinite exccution. (Layer bottleneck assumes partitioning the switches of the net-
work into lavers in the natural way.) Intuitively, if this minimum number is small,
some network element will become a bottleneck (or a “hot-spot” in the pool of
memory locations) in some infinite execution and the network incurs high con-
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tention; hence, a switching network is low-contention if register bottleneck and
layer bottleneck are sufficiently large.

Contribution. Our chief combinatorial instrument is a Monotone Linearizabil-
ity .Lem‘n_/a (Proposition 1), which establishes inherent ordering constraints of Jin-
carizability for a certain class of executions of any distributed system that imple-
ments a monotone RMW operation. Interestingly, in these executions, the argu-
ments of the operations performed by the concurrent processes enjoy together the
group-theoretic property of n-wise independence over the associated monotone
group.

The end results of our study are negative; they are shown through a mod-
ular use of the Monotone Linearizability Lemma. The corresponding general
methodology we propose for showing impossibility results for any given class
of distributed implementations of monotone RMW operations is to devise suit-
able counter-example executions which, on one hand, are inherently linearizable
(courtesy of the Monotone Linearizability Lemma), while, on the other hand, they
are suitably constructed so as to compromise linearizability and thus contradict
the Monotone Linearizability Lemma. Applying this general methodology to im-
plementations based on switching networks yields the first lower bounds on size
and latency for a low-contention switching network that implements a monotone
RMW operation. We obtain the following results for any switching network other
than the trivial single-switch one:

o If the switching network is made up of switches with finite state and it is
low-contention, then it must contain an infinite number of switches, even if
concurrency is restricted to remain bounded (Theorem 1).

e If the switching network is made up of switches with infinite state and it is
low-contention, then it must still contain an infinite number of switches if
concurrency is now allowed to grow unbounded (Theorem 2).

We note that our two lower bounds on the size of any switching network
that implements a monotone RMW operation represent a trade-off bc(yvecn the
strength of the switches (finite or infinite state) and the concurrency of the net-
work (bounded or unbounded). Thus, neither of them is implied by the other. Our

final result deals with latency. We obtain:

e Any switching network (whether made up of switches of finite or infinite
state) that implements a monotone RMW operation induces executions with
a1 ], where n is the number of concurrent processes par-

latency at least [ 2= ren :
ticipating in the execution, and ¢, the network’s capacity, is the maximum

number of processes that simultaneously access a switch in any execution

of the network.
Our impossibility results for switching networks indicate that inherent lin-
carizability, necessitated by our Monotone Linearizability Lemma, is the crucial



Busch et al.: The Cost of Concurrent, Low-Contention Read-Modifv-Write 61

bottleneck that rules out efficiency (with respect to both size and latency) for any
low-contention switching network that implements a monotone RMW operation.
In fact, we believe that inherent linearizability is indeed the crucial efticiency bot-
teneck for any such class of distributed, low-contention implementations, but this
remains to be seen. Finally, we remark that lincarizability has so far been stud-
ied as a required property for a distributed system that best guarantees acceptable
concurrent behavior. To the best ol our knowledge, our work is the first to pro-
vide, through the Monotone Linearizability Lemma, a (non-trivial) instance of a
distributed system where lincarizability is an inherent property.

Related Work, Comparison and Significance. The notion of lincarizability
has been introduced by Herlihy and Wing | 12]. Switching networks (and, in par-
ticular, adding networks) were recently studied in [7], as an extension to counting
networks [2] that accommodates the general Fetch&Add operation (as opposed
to the Fetch&Increment and Fetch&Decrement operations that were supported
before by counting networks [1, 2, 18]); for more on counting networks, sce,
e.g., 14,5, 10,16, 17].

Theorems | and 2 settle (o the negative a far gencralization of a specific open
question articulated in |7, Section 5] about the existence of switching networks
with a finite number of switches that implement the (monotone) Fetch&Add oper-
ation. (Two solutions, called adding networks, with an infinite number of switches
were presented in [7, Section 4].) Indeed, the more general problem of devising
Jinite network-based data structures, as suitable extensions 10 counting networks,
to support synchronization operations other than Fetch&Increment (which was
originally supported by counting networks) was already stated in the seminal work
of Aspnes et al. [2] that introduced counting networks; however, it has remained
essentially open: progress on this problem has been so far limited to discovering
that counting networks themselves can also support Fetch&Decrement (con-
currently with Fetch&Increment)| 1, 18]. The impossibility results established
in Theorems | and 2 provide a mathematical explanation for the apparent lack
of progress on this problem; thus, they are significant since they explain the ob-
served inability of rescarchers in the last decade or so (since the original con-
ference publication of counting networks [2]) to operationally extend counting
networks, while still retaining them finite and low-contention, in order o perform
tasks more complex than just incrementing a counter by one but yet as simple as
adding an arbitrary value to a counter.

The structure of the proofs of Theorems 1 and 2 is inspired by that of the proof
of a result of Herlihy er al. [ 10, Theorem 5.1], showing that any (non-blocking)
counting network [2] (other than the trivial single-balancer one) must have an
infinite number of balancers if all of its executions are to be linearizable. The re-
quirement that all executions be lincarizable allows the proof of [10, Theorem
5.11 to pick the execution of choice and force it to violate linearizability. How-
ever, a switching network for a monotone RMW operation need not guarantee
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linearizability in all executions; thus, the role of the Monotone Linearizability
Lemma is to contribute to the proofs of Theorems | and 2 executions that are
necessarily linearizable. Note also that although a counting network is a special
case of a switching network, the lower bound on size established in [10, Theorem
5.1] for a linearizable counting network does not immediately apply to switch-
ing networks that implement a monotone RMW operation, since the proof of [ 10,
Theorem 5.1] relies on the behavior of counting networks; instead, the proofs of
Theorems | and 2 require far more delicate arguments that are specific (o the
behavior of switching networks.

Theorem 3 is reminiscent of a recent result [7, Theorem 1] that establishes
a lower bound of ﬂ’%” on latency for adding networks, where there are only
two possible arguments for addition, namely a and b such that |a| > |b| > 0;
more specifically, it is shown that each token of weight b traverses at least [’(’%H
switches, while, if also |b| > 1, each token of weight a traverses at least [%1
switches. Theorem 3 significantly extends and improves [7, Theorem 1] in the fol-
lowing ways: First, Theorem 3 applies to switching networks that implement any
monotone RMW operation, while [7, Theorem 1] is specific to adding networks
and the Fetch&Add operation, and second, despite the enhanced generality of
Theorem 3, its proof is far simpler and more natural and succinct than that of [7,
Theorem 1].

2 Monotone Groups

Basic Definitions. We start by reviewing some very basic definitions from Group
Theory. (See [9] for a general background in Group Theory.) A (binary) operator
(also called composition law) on a set I' is a mapping @ : T' X I' = I'. A group
(I, ®) is a set I together with an operator @ such that: (1) Closure Property:
for all pairs of elements a,b € I', a® b € I, (2) Associativity: for all triples of
elements a,b,c €T, (a®b)Dc=ad (bdc), (3) Identity Element: there is an
element ¢ € T, called the identiry element of T, such that for ecach clementa € T,
a®e=e®da=a,and (4) Inverse Element: for each element a € T, there is an
element a=! € I, called the inverse of a, such that aba'=a"'®a=e. An
Abelian group is a group (I',@®) which satisfies in addition the following prop-
erty: (5) Commutativity: for all pairs of elements a,b € I, a®b=bD a.

Composite Operators. We proceed to define two composite operators by ap-
plying the operator & a number of times. For any integer k, define the unary
operator @, : I — T as follows: @ra=a®...Dak times if k >0, e it k=0,
anda™'®a ' ®...®a" —k times if k < 0. Call @ the power operator. For any
integer n > 2, the operator |, is n-ary; it takes as input a sequence of clements
ap,a,...,a, and it yields the result ¥, (a1,a2,...,a,) = a1 D ax ... & ay, de-
noted as ¥, a;. (By associativity, the result is well defined.) Call ¢ the summa-
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tion operator.

Monotone Groups. Assume now that the set I is totally ordered: thus, a rotal
order < is defined on I'. For any pair of clements a,b € I', write a < b if a < b and
a # b. A monotone subdomain ol T is a subset M C I that satisfies the following
three propertics: (1) Closure: for any two elements a,b € M, ad®b € M, (2)
Identity Lower Bound: for any element a € M, ¢ < «a, and (3) Monotonicity under
Composition: for any pair of elements a,b € M, botha < ad®band b <a D b.
Notice that e ¢ M. Notice also that M is necessarily infinite. A monotone group
is a quadruple (I', M, @, <), where (I, &) is an Abelian group, < is a total order
on I, and M C I' is a monotone subdomain of T

We proceed with some examples of monotone groups that will be used in our
later analysis. Throughout, denote Z, N and Q the sets of integers, natural num-
bers (including zero), and rational numbers, respectively. We will use + and -
o denote the common (binary) operators of addition and multiplication, respec-
tively, on these sets. Denote < the less-than-or-equal relation (total order) on
these sets. The quadruple (Z, N\ {0}, +, <) is a monotone group (integers with
addition). From the definition of the power operator @, for any integer k, we
have that for any integer a € Z, @, a = k-a. From the definition of the summation
operator +f; for any pair of integers k| and k2, we have that for any sequence

of ko — ki + I integers ay, g 41, .-,k €Z, Lﬂf;,\l ap = Zf.‘ikl aj. The quadruple
(Q,N\ {0, 1},-,<) is also a monotone group (integers with multiplication). From
the definition of the power operator @y, for any integer k, we have that for any
rational numbera € Q, @, a = a*. From the definition of the summation operator
[, for any set of n integers ky,ka,. .., k,, we have that for any set of n rational

. k> k2
numbers ag ,dg, 41,-- -5k, € Q, wi:fw 7E— Hi;/q a;.

Independence. Fix any integer n > 2, and consider any n distinct elements
ay,dzy...,ay € U with ay,az,...,a, # ¢. Say that ay,aa, ..., a, are n-wise inde-
pendent in (I, ) if for any sequence of n integers ky,ka, ..., k,. where —1 < k; <
2 for 1 < i <, that are not all simultaneously zero, W, D, ai # e. Say that
the monotone group (I, M, B, <) is n-wise independent if there are n distinet
clements ay,az,. .. ,a, € M, which are n-wise independent in (M, ).

By the definition of n-wise independence, n integers ay,an, ... a, € N\ {0}.
where n > 2, are n-wise independentin (N\ {0}, 4) if for any sequence of n inte-
gers ki, ka, ...k, € {—=1,0,1,2}, that are not all simultancously zero, il kiai #
0. We are able to prove that for any integer n > 2, the monotone group (Z,N\
{0},+, <) is n-wise independent. From the definition of n-wise independence, n
integers ay,az, ..., ay € N\ {0, 1} are n-wise independent in (N '\ {0, 1},-)if for
any sequence of n integers ky,ka,... k, € {-1,0, 1,2}, that are not all simulta-

n ki N, . .
a;' # 1. Consider any n distinct prime numbers ay,as, ..., q,.

=1

neously zero,
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ki - . .
Then, [T, a;" 18 a rational number whose numerator and denominator have no
k; ; o
common factors; so [T/, a;' # 1, and the n integers a;,ax, . .., a, are n-wise inde-
pendent in N\ {0, 1}. This implies that the monotone group (Q,N \{0,1},-,<)
is n-wise independent.

Independence of Monotone Groups. We are able to show that every monotone
group is n-wise independent. The proof uses a reduction to the (alrcady proven)
n-wise independence of the monotone group (Q,N\ {0, },+,<). (Thus, this es-
tablishes some kind of completeness of the monotone group (Q,N\ {0}, +,<)
for the class of all n-wise independent monotone groups.)

3 System Model

Systems that Implement Monotone Groups. Our model of a distributed sys-
tem is patterned after the one in [12, Section 2], adjusted o incorporate the issue
of implementing a monotone group (I', M, &, <). We consider a distributed sys-
tem P consisting of a collection of sequential threads of control, called processes.
Processes are sequential, and each process applies a sequence of operations to
a distributed data structure, called the object, alternately issuing an invocation
and then receiving the associated response. Each invocation at process p; has
the form Invoke;(a) for some value a € M; each response at process p; has
the form Response;(b) for some value b € MU {e}. Formally, an execution of
system P is a (possibly infinite) sequence o of invocation and response events.
We assume that for each invocation at process p; in execution o, there is a later
response in o that matches it and no invocation at p; that precedes the match-
ing response in o. An operation al process p; in execution o is a matching pair
op; = [Invoke;(u),Response;(b)] of an invocation and response at p;; for such
an operation, we will write a = In(op;) and b = Out(op;), and we will sometimes
say that op; is of type a.

An execution a induces a partial order 5 on the set of operations in o
as follows: For any two operations op; = [Invoke; (a|),Response; (b1)] and
op;, = [Invoke;, (a2),Response;, (b2)] at processes p;, and pj,, respectively, say
that op;, precedes op;, in execution o, denoted op;, . op;,» if the response
Response; (b)) precedes the invocation Invokej,(a2). In particular, execution
o induces, for each process p; a total order 24 on the set of operations at p; in o
as follows: For any two operations ()p,m and op,(z), opfl) 2 01)[(2) if and only if
npgl) p 01)52). If, in execution o, operation op;, does not precede operation op;, ,
then we write op; 7&> op;,- If simultancously op;, £ op;, and opj, 7AX—> opj,»
then we say that op;, and op;, are parallel in execution o, denoted as op;, ||(x op;, -

For any execution o of system P, a serialization S(o) of execution o is a se-
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quence whose elements are the operations of o, and each operation of o appears
s A . . . S(a
exactly once in S(ar). Thus, a serialization (o) is a total order —(—2 on the set
of operations in o. Notice that there may be, in general, many possible serializa-
tions of the execution . Say that a serialization S(a) is valid for the monotone
group (', M, <) il the following two conditions hold: (1) Valid Start: if op; =
[Invoke;(«),Response; ()] is the first operation in (o), then b = e, and (2) Valid
~ I . . . . |
Composition: for any pair of operations ()pfl) = [Invoke; (a1),Response; (b))]

and ()/)53) = [Invoke;,(a2),Response; (h2)] that are consecutive in S(at), by =
by ay. Say that P implements the monotone group (', M, D, <) if every exe-
cution of o has a valid serialization. We prove the Unigue Serialization Lemma,
asserting that for any execution o of P implementing a monotone group, there is a
unique valid serialization S(ot). Sometimes, we will write Iny(op) and Outy(op)
in order to emphasize reference to execution o

Linearizable Executions. We consider a system P that implements a mono-

tone group (I, M, &, <). Say that execution o is linearizable | 12] if the (unique)

valid serialization S(at) extends —5; that is, for any pair of operations op!!)
S(a ; ;

and op@ such that op 5 op@, opth) —<—; op®)_ Since P implements the

"

monotone group (7, M, ®, <), for any two operations op!) and op*) such that

opt" el | op'®), Out(op!") < Out(op?). Thus, it follows that for any pair of
operations op!) and op® such that op!") 5 0p) | Out(opt") < Out(opt?).
Say that operation op{!) in execution o is non-linearizable in execution o if
there is another operation opt? in exceution o such that op? 25 op'V while
Out(op") < Out(op'). Say that operation op in execution o is linearizable in
execution o if it is not non-lincarizable in exccution o. Clearly, execution o is
lincarizable if every operation in execution o is linearizable in it.

4 Switching Networks

Basic Definitions. A switching network |7] is a directed acyclic graph in which
the nodes are called switches and the edges are called wires. An (fiy, fou)-switch
is a routing element with fi, input wires, f,, output wires, and an internal stute.
A (Win, Wour)-switching network has wy, input wires and w,,,, output wires, and
it is formed by connecting together switches; thus, we connect output wires of
switches to input wires of other switches. Some switches have input wires (resp.,
output wires) not connected (o other switches in the network, and these wires are
called the input wires (resp., output wires) of the network. The size of a switch-
ing network is the number of its switches. A path in a switching network is a
sequence of switches, each connected to the next. The depth d(b) of a switch b in
a swilching network is defined to be O if one of its input wires is an input wire of
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the network, and max ;d(b;) 4+ 1, where the maximum is taken over all switches
b that are connected fo switch b. The depth d of the network is defined as the
maximum depth of any switch. The switching network can naturally be divided
into d layers, so that layer ¢ contains all switches of depth ¢, where 0 < £ < d.

Tokens. Processes access the switching network by issuing tokens. In contrast
to counting networks [2], each token has a srate (a set of variables) which can
change as the token traverses the network. In particular, a token enters the switch-
ing network from one of the network’s input wires; then, the token is forwarded to
the switch to which the wire belongs, the switch then routes the token to one of its
output wires from which the token enters the next switch in the network, and so
on. The token continues traversing the network in the same fashion until it reaches
an output wire of the network. Then, the token exits the network and returns to
the process that issued it. When a token traverses a switch, the states of the token
and the switch change atomically before the token is routed to an output wire of
the switch. Note that the token and the switch have different transition functions
for their states. A switching network may be accessed by many tokens simulta-
neously which traverse the network asynchronously; however, each process has
at most one token traversing the network each time. The latency of the switching
network is the maximum number of switches traversed by any token (thus, it does
not exceed the depth of the network). The concurrency of a switching network is
the maximum number of processes (hence, tokens) allowed to access the network
simultaneously.

Configurations. A network configuration of a switching network is the con-
catenation of the current states of the network’s switches. A fotal configuration
of a switching network is the concatenation of the current states of the networks’
swilches and the states of all tokens that are currently traversing the network. Say
that a switching network is in a quiescent total configuration if there are no to-
kens traversing the network (that is, all tokens that have entered the network have
exited it). Denote x; the total number of tokens that have ever entered from input
wire i of the network, where 1 <i < w;,, and denote y; the total number of tokens
that have left from output wire j of the network, where 1 < j < w,,,. The net-
work must satisfy the following two properties: (1) Safety property: in any total
configuration, it must be 3, x; > X2 vj; thus, no new tokens are created in
the network, and (2) Liveness Property: given any finite number of input tokens
that traverse the network, the network will eventually reach a quiescent total con-
figuration. In any quiescent configuration it must be that 3}, x; = 372} v;. The
safety and liveness properties must also be satisfied by every individual switch in
the network.
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Executions. We model executions of switching networks in the style of Herlihy
et al. [10]. For any switch b and token 1, we denote by e = (¢, b) the transition in
which the token passes (in one atomic step) from an input wire to an output wire
ol switch b. An execution of a switching network is a finite or infinite sequence
50,€1,51,€2,... of alternating total configurations and switch transitions such that
for cach triple (s;,ei+1,5i+1), the switch transition ¢4y carrics the total configu-
ration s; to total configuration ;4. A finite execution is complete if it results to a
quiescent total configuration. An execution o is sequential if for any two transi-
tions e; = (t;,b;) and e; = (1;,b;), where r; and t; correspond to the same token, all
transitions (if any) between them also involve that token. In other words, tokens
traverse the network one completely after the other in a sequential execution. In an
exccution of a switching network, we say that concurrency is bounded if the num-
ber of concurrent processes accessing the network in the execution is bounded.
In an (infinite) exceution, we say that concurrency is unbounded if the number
of concurrent processes accessing the network in the execution is unbounded (in
which case it is either finite or infinite).

Implementations. A swilching network A’ can be used to implement a mono-
tone group (I, M, ®, <). Each token ¢ issued by process p; corresponds to an
operation op; = [Invoke;(a),Response,(1)] invoked by process p;, where « € M
and v € MU {e}. We say that a is the input value of the token r, and v is the
output value of the token r. The input value of the token is part of the token's
initial state. In any exccution o, the invocation ol operation op corresponds (0
the first transition e; = (1;,b;) where t; =t and b; is an input switch of the net-
work (this transition occurs when the token enters the network); the response of
op corresponds (o the latest transition ¢; = (1;,b;) in execution o such that 1, =1
(this transition occurs when the token exits the network). When token 7 exits the
network, it carries encapsulated in its state the output value v that operation op;
responds with. Use execution o to define its subsequence o that contains only
transitions that correspond to invocations and responses of the operations corre-
sponding to tokens. The sequence o induces an execution of a distributed system
in the natural way. Denote P the distributed system that is determined by all such
induced excecutions (one for cach execution of the switching network A(). Say
now that switching network N implements the monotone group (I, M, b, <) if
the system P implements the monotone group (17, M, d, <).

Finite and Infinite Switches. We examine two kinds of switching networks,
corresponding to switches with finite or infinite state.

o Switching networks with finite switches: Each switch of the network has a
Sinite number of states. For this kind of network, we include an additional
component on the output wires of the switching network: the output regis-
ters. There is an output register associated with each output wire of the
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swilching network. Unlike switches, each output register has an infinite
number of states. The output value for a token’s operation is computed on
the output register residing on the network’s output wire from which the to-
ken exits. At the exit, the following happen atomically: the token computes
its output value according to the register’s current state and the state of the
register changes according to its previous state and the state of the token
(which includes its input value). Notice that the input value of a token does
not affect its output value, but only the output value of the next token that
will access the same output register.

We remark that this kind of switching networks corresponds more to tradi-
tional counting networks [2], where a token fetching the counter’s value and
incrementing the counter by one obtains the value from the register attached
to the output wire it will arrive at. We also remark that output registers are
necessary for this kind of switching networks, since they provide an infinite
number of different output values to tokens, while finite switches, used only
for routing, are unable to do so.

o Switching networks with infinite switches: Each switch has an infinite num-
ber of states. For this kind of networks, there are no attached output registers
and the output value of a token is determined according to the state of the
token when it exits the network.

Contention Measures. In a switching network, contention represents the extent
to which concurrent processes access the same switch or output register simulta-
neously. We use the following complexity-theoretic measures to model contention
in switching networks, the last of which was originally introduced by Dwork et
al. [6] for the case of counting networks.

o The register bottleneck of a switching network A’ is the minimum number
of output registers, the minimum being taken over all infinite executions,
accessed by tokens in an infinite suffix of an infinite execution of A’. (This
definition applies only to switching networks with finite switches.) Intu-
itively, a switching network is low-contention if its register bottleneck is
large; a register bottleneck of 1 is the worst, since then many tokens (as
many as processes) may eventually accumulate in front of the same output
register, which becomes a “hot-spot”.

e Similarly, we define the layer bottleneck of a switching network Al to be
the minimum number of switches in the same layer, the minimum being
taken over all layers and infinite executions, accessed by tokens in an infi-
nite suffix of an infinite execution of AL. (This definition will be useful for
switching networks with infinite switches.) Intuitively, a switching network
is low-contention if its layer bottleneck is large; a layer bottleneck of | is
the worst, since then many tokens (as many as processes) may eventually
accumulate in front of the same switch, which becomes a “hot-spot”.
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o The capacity ¢ of a switching network A is the maximum number of pro-
cesses that simultancously access a particular switch in any execution of

AL

S The Monotone Linearizability Lemma

In this section, we state and prove the Monotone Linearizability Lemma, which

establishes ordering constraints of lincarizability on a system P that implements a

monotone group (I", ML, &, <). Since the monotone group (I', M, &b, <) is n-wise

independent, there exist n distinct elements ay,aa, ..., a, € M, withay,aa, ... ,a, #
e, which are n-wise independent in (M, @). The proof of the Monotone Lineariz-

ability Lemma amounts to establishing a contradiction to n-wise independence for

a hypothetical non-linearizable execution, in which the arguments of the RMW

operations issued by the processes are a,aa,. .. ,a,. We show:

Proposition 1 (Monotone Linearizability Lemma) Consider any execution o
of system P in which each process pi, | <i < n, issues only operations of tvpe
di. Then, o is linearizable.

6 Impossibility Results and Lower Bounds

Lower Bounds on Size. We first consider switching networks with finite switches.
We show:

Theorem 1 (Switching Networks with Finite Switches) There is no non-trivial
switching network with finite switches that has finite size, incurs register bottle-
neck at least 2 and implements a monotone group (I, M, &, <), when the con-
currency is bounded.

We remark that the concurrency assumed in the proof of Theorem | is no more
than the number of tokens involved in the proof, which is a bounded quantity de-
pending only on parameters of the network AL, Thus, the impossibility result in
Theorem | holds even for networks with bounded concurrency. Finally, we argue
that the assumption ol a non-trivial switching network is essential for Theorem |
to hold: since each token can atomically invoke a computation on an output regis-
ter, we can implement a monotone RMW operation by a trivial switching network
consisting of a single switch that outputs tokens along one output wire, which has
an associated register that maintains the state of the RMW variable to be imple-
mented. The switch sequences the operations (that correspond to the tokens) so
that they can be atomically invoked (by the tokens) on the register.

We now turn to switching networks with infinite switches. Clearly, the proof
of Theorem 1 is not applicable to switching networks with infinite switches, since
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the number of their possible network configurations is no longer finite. Thus, we
need to develop new techniques to handle them. We show:*

Theorem 2 (Switching Networks with Infinite Switches) There is no non-trivial
switching network with infinite switches that has finite size, incurs layer bottleneck
at least 2 and implements a monotone group (', M, &, <), assuming concurrency
is unbounded.

We remark that the proof of Theorem 2 requires unbounded (finite or infi-
nite) concurrency. So, Theorem 2 does not imply Theorem 1 which assumes
bounded concurrency, and the two results are incomparable and represent a trade-
oft. Finally, we remark that the assumption of a non-trivial switching network
is essential for Theorem 2 to hold: A switching network consisting of a single
infinite-state switch with n input wires and n output wires (where n is the number
of concurrent processes) can implement any RMW variable as follows. The state
of the variable is encoded by the state of the switch. To invoke an operation on
the variable, a process issues a token with a state encoding the argument of the
operation. Such a token, when atomically processed by the switch, will cause the
natural changes to its state and to the state of the switch, so that the new state of
the switch is the new state of the variable, and the new state of the token is the
response of the variable to the operation invoked by the token.

Lower Bound on Time. We start with a definition that we will use in our proof.
For any quiescent total configuration s of a switching network A, we say that
token 1; has preferred path m if t; follows the path m and runs in isolation into
the network, which is initially in the total configuration s, until token ¢; exits the
network and responds with an output value v which is its preferred value. We
show:

Theorem 3 For any switching network N that implements a monotone group
(I, M, ®, =), there is a sequential execution with n tokens such that each token
n—1

traverses at least [ﬁ] switches.

7 Conclusion and Open Problems

We have studied the possibility, and the corresponding costs, of implementing a
monotone RMW operation in a concurrent and low-contention manner. Our end

*The proof of Theorem 2 will consider (without loss of generality) so called normalized switching
networks, in which any switch b at layer ¢ has its input wires connected to switches of layer £ — |
(assuming ¢ > 2) and its output wires connected to switches of layer £+ 1 (assuming £ is less than
the depth of the network). Thus, in a normalized switching network, there are no wires connecting
switches in non-consecutive layers. Note that any switching network can be easily cast as a normalized
one, if we intercept wires that connect non-consecutive layers with dummy switches with input and
output width 1, which simply forward tokens (without routing them).
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results are lower bounds on size and latency for any non-trivial, low-contention
switching network that implements a monotone RMW operation; these are shown
by using the Monotone Lincarizability Lemma, which may be of independent
interest. It would be interesting to ask whether timing conditions may suffice
to overcome the limitations we have shown; recall that timing conditions have
been exploited in the work of Lynch er al. [16] for devising finite-size lincarizable
counting networks, while Herlihy et al. | 10] establish that no finite-size (non-
trivial) asynchronous lincarizable counting network exists. For future work, we
are also interested in establishing further limitations on various kinds of dis-
tributed systems (other than switching networks) that implement a monotone
RMW operation. A natural candidate to consider is the message-passing system
adopted in the work by Wattenhofer and Widmayer [19]: that work showed a
lower bound on the message complexity of implementing the Fetch&Increment
operation in that system; we feel that similar limitations hold for implementations
ol any monotone RMW operation.
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