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Abstract

We study the cost of using message passing to implement linearizable read�write objects for
shared�memory multiprocessors under various assumptions on the available timing informa�
tion� We take as cost measures the worst�case response times for performing read and write
operations in distributed implementations of virtual shared memory consisting of such objects�
and the sum of these response times� It is assumed that processes have clocks that run at the
same rate as real time and are within � of each other� for some known precision constant � � ��
All messages incur a delay in the range �d�u� d� for some known constants u and d� � � u � d�

For the perfect clocks model� where clocks are perfectly synchronized� i�e�� � � �� and every
message incurs a delay of exactly d� we present a linearizable implementation which achieves
worst�case response times for read and write operations of �d and ��� �	d� respectively
 � is
a trade�o� parameter� � � � � �� which may be tuned to account for the relative frequencies
of read and write operations� This implementation is optimal with respect to the sum of the
worst�case response times for read and write operations�

We next turn to the approximately synchronized clocks model� where clocks are only ap�
proximately synchronized� i�e�� � � �� and message delays can vary� i�e�� u � �� Our �rst major
result is the �rst known linearizable implementation for this model which achieves worst�case
response times of less than �d
 �u
 minf�� ug
 �� and ��� �	d
 �u for read and write op�
erations� respectively� under a mild restriction on the trade�o� parameter �� � � � � �� u�d

� is any arbitrary constant such that � � � � minf�u� d� ug� This implementation employs a
novel use of approximately synchronized clocks in order to utilize the lower bound on message
delay time and achieve bounds on worst�case response times that depend on the message delay
uncertainty u� For a wide range of values of u� these bounds improve upon previously known
ones for implementations that support consistency conditions even weaker than linearizability�

Our next major result is a lower bound of d 
 minf�� ug�� on the sum of the worst�
case response times for read and write operations� for the approximately synchronized clocks
model� This bound applies to linearizable implementations possessing some natural symmetry
properties
 the bound is shown using the technique of �shifting� executions� Corresponding
lower bounds� but with no symmetry assumptions� are shown on the individual worst�case
response times for read and write operations�

Our bounds for the approximately synchronized clocks model extend naturally to the im�
perfect clocks model� where clocks may be arbitrarily far from each other� i�e�� � � ��



� Introduction

The shared�memory model has been proven a useful model of logically shared data in concur�
rent computation� Perhaps this is so because it allows processes to access local and remote
information in a transparent and uniform way� which results in simplifying the programming
of distributed applications� Thus� the shared�memory model is an attractive paradigm of an
interprocessor communication model� as it provides the programmers the illusion of a global
shared memory across distributed processes�

Shared�memory implementations must allow user programs to run �concurrently�� i�e�� to
access shared data by interleaving steps or truly in parallel� Many such implementations have
employed the technique of caching� i�e�� maintaining multiple copies of the same logical piece of
shared data
 the performance of such implementations can be measured in terms of� e�g�� the
worst�case time to access a piece of data� availability of data to processes� or tolerance to process
faults� Even in the simplest cases� however� problems arise since concurrent data accesses
cannot be executed instantaneously� while their interleaving causes additional �correctness�
problems�

Thus� a need arises for a consistency mechanism to support the illusion of atomic operations
on single copies of memory objects� Such a mechanism may allow operations to be executed
concurrently on multiple copies of objects but must still guarantee that the operations will
appear as if executed atomically in some sequential order consistent with the order in which
individual processes �observe� them to occur� If� in addition� this order is required to respect
the order of non�overlapping operations at processes� the consistency mechanism is said to guar�
antee linearizability ����
� otherwise� it is said to guarantee sequential consistency ����� Clearly�
linearizability implies sequential consistency� It has been argued quite convincingly ���� that
linearizability is the correctness condition that best guarantees �acceptable� concurrent behav�
ior
 indeed� linearizability enjoys a number of nice properties such as compositionality
y this
has made it quite attractive for di�erent applications� such as concurrent programming� mul�
tiprocessor operating systems� distributed �le systems� etc�� where concurrency is of primary
interest�

Attiya and Welch ���� initiated a comparative study of the impact of the strength of cor�
rectness guarantees provided by sequential consistency and linearizability on the cost of sup�
porting them� In more detail� they considered caching implementations of read�write objects
in non�bused distributed systems
 they took as cost measures the worst�case response times
for performing read and write operations on such objects� and the sum of these times� in the
best possible implementation supporting each of the consistency conditions� In this paper�
we continue this study and present new lower and upper bounds on these costs for sequen�
tially consistent and linearizable implementations� We attach some particular emphasis on the
costs of supporting linearizability� since our motivation is to further illuminate the advantages

�Also called atomicity in ���� �
� ��� for the case of read�write objects�
yRoughly speaking� a consistency condition is said to be compositional if the system as a whole satis�es the

condition whenever each individual object does�
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of linearizability over other� seemingly �cheaper�� correctness conditions� such as sequential
consistency� In particular� we are interested in understanding the dependence of the relation
between linearizability and sequential consistency on timing assumptions made by di�erent
models of distributed computation�

We follow Attiya and Welch ���� and consider a model consisting of a collection of applica�
tion programs running concurrently and communicating through virtual shared memory� which
consists of a collection of read�write objects� These programs are running in a distributed sys�
tem consisting of a collection of processes located at the nodes of a complete communication
network�z The shared memory abstraction is implemented by a memory consistency system
�MCS	� which uses local memory at each process node� Each MCS process executes a protocol�
which de�nes the actions it takes on operation requests by the application programs� Speci��
cally� each application program may submit requests to access shared data to a corresponding
MCS process
 the MCS process responds to such a request� based� possibly� on information
from messages it receives from other MCS processes� In doing so� the MCS must� throughout
the network� provide the proper read�write semantics with respect to the values returned to
application programs� Figure � �directly adapted from ���� Section ��	 illustrates a node on
which an application program and the corresponding MCS process are running� The model
we consider captures characteristics of existing shared memory multiprocessor architectures�
such as the Re�ective Memory System architecture in the Encore �� Series ����� which provides
e�cient coupling of multiple processor nodes for time�critical applications�

We make the following timing assumptions about the system� At each node� there is a
real�time clock� readable by the MCS process at the node� which runs at the same rate as real
time� It is assumed that the maximum di�erence between local times of any two processes in
the system at the same real time is at most �� for some precision constant � � �
 moreover�
all message delays are in the range �d � u� d�� for some known constants u and d� � � u � d�

zThe assumption of a complete communication network is made only for simplicity and can be removed�
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It turns out that the timing information available in the system has a critical impact on the
e�ciency of implementing sequential consistency and linearizability�

We start with the perfect clocks model� where processes have perfectly synchronized clocks�
i�e�� � � �� and message delays are constant� i�e�� u � �� We present a linearizable implementa�
tion� parameterized by some constant �� � � � � �
 the worst�case response times for read and
write operations are �d and ����	d� respectively� both dependent on the network�s latency d

the parameter � precisely determines these dependencies and may be appropriately chosen in
order to degrade the less frequently occurring operation� Roughly speaking� a read operation
returns after time �d� while a write operation returns after time ����	d� This implementation
naturally generalizes those in ���� Theorems ��� � ����� which are but the special cases with
� � � and � � �� respectively� Lipton and Sandberg ���� show a lower bound of d on the sum
of the worst�case response times for read and write operations in any sequentially consistent
implementation� and for any model assuming an upper bound of d on end�to�end message
delay
 thus� our implementation is optimal with respect to this measure�

We continue to present the �rst known linearizable implementation of read�write objects
for the more realistic approximately synchronized clocks model� where clocks are only approxi�
mately synchronized� i�e�� � � �� and message delays can vary� i�e�� u � �� As for the case of the
perfect clocks model� the worst�case response times achieved by our implementation are param�
eterized by a tunable constant �
 this constant satis�es the mild restriction � � � � �� u�d�
More speci�cally� the worst�case response times for read and write operations are less than
�d
 �u
minf�� ug
 � and ��� �	d
�u� respectively
 the constant � � � is arbitrarily small
and no more than minf�u� d � ug� Roughly speaking� a read operation �rst waits for time
�d
 following this� it returns as soon as a value has resided for time at least u in the local
memory of the corresponding MCS process� For a write operation� a �time�slicing� technique
is used� Once it reaches an appropriate �time slice�� the MCS process broadcasts the value to
be written
 following this� it waits for an additional time ��� �	d before returning� Naturally�
the speci�c details of the �time�slicing� technique directly or indirectly determine the worst�
case response times for both write and read operations� However� a major ingredient of our
implementation is that the value returned in a read operation need not be the one to which
the local memory of the reading process was most recently updated
 instead� the value to be
returned is chosen among values of write operations on the same object performed by processes
within a recent� small time interval� The speci�c choice is based on information shown to be
shared by all MCS processes� This turns out to result not only in preserving the relative order
of values returned by di�erent reading processes� but also in maintaining consistent copies of
local memory throughout the network
 the latter result is shown to imply linearizability�

Our linearizable implementation for the approximately synchronized clocks model relies
heavily on the provided �nite clock precision in order to exploit the known lower bound of
d � u on message delay time and achieve better bounds on worst�case response times which�
unlike previous ones� depend on the message delay uncertainty u� Although we assumed that
this precision is a parameter of our model� in practice� it can be externally controlled by
software protocols �see the many works on clock synchronization� e�g�� ���� ��� ���� or ���� for a
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survey	� It is known that the externally achievable precision depends critically on the timing
uncertainty inherent to the system� For the speci�c system model we consider� Lundelius and
Lynch ���� have shown that �� � ��n	u is the optimal achievable precision and provided a
clock synchronization protocol achieving it� We present a signi�cantly simpler protocol which
achieves a precision of u that is only slightly inferior� This protocol only uses messages of
constant size� in contrast to those in ���� that carry explicit timing information� and is of
independent interest� Plugging in this precision of u� our bounds on the worst�case response
times for read and write operations become �d
�u
� and ����	d
�u� respectively� In case the
message delay uncertainty u is su�ciently small� these last bounds signi�cantly improve those
in ���� that correspond to an even weaker correctness condition� namely sequential consistency�
�For a more detailed description of the results in ����� see Section ��	

Moreover� we support optimality of our implementation for the approximately synchronized
clocks model by presenting corresponding lower bounds under general and mild assumptions
on the pattern of sharing properties of processes� Our main negative result is a lower bound
of d 
 minf�� ug�� on the sum of the worst�case response times for any sequentially con�
sistent implementation in which processes handle operations on each object identically and
independently of operations on other objects� This implies a corresponding lower bound for
linearizable implementations� We also show lower bounds of minf�� ug�� on the individual
worst�case response times for read and write operations� in any linearizable implementation�
For the case where u � �� th lower bound for the read operation improves on a result of Attiya
and Welch ���� showing a lower bound of u��� Our lower bounds are shown using the technique
of shifting executions� introduced in ���� for showing a lower bound on the precision achievable
by clock synchronization algorithms�

The dependence on d of the upper bounds achieved by our implementation for the approx�
imately synchronized clocks model is minimal� the sum of the worst�case response times for
read and write operations contains only a single additive term of d� which� by our lower bound�
is inherent� Furthermore� although the analysis of our implementation is technically challeng�
ing� the implementation itself is fairly simple� it does not use complicated control mechanisms�
and it is message�economical� It can be also considered as a natural generalization of the one
for the perfect clocks model with � � �� since� as u tends to �� it almost �coincides� with it
and achieves almost identical worst�case response times�

Our result for the approximately synchronized clocks model� in particular� the upper bound
of d 
 O�u	 on the sum of the worst�case response times for read and write operations in a
linearizable implementation� along with the lower bound of d 
 O�minf�� ug	 on this sum�
may suggest that sequential consistency and linearizability are actually �closer� than thought
before in the speci�c system models we consider� All of these� even the imperfect clocks model�
assume that all processor clocks move at exactly the same speed and that there is a known
bound on message delays� Given that the primary di�erence between sequential consistency
and linearizability is with respect to timing� it is perhaps not too surprising that the two
concepts would tend to converge in models with strong synchrony� These bounds imply that it
is more cost�e�ective to support linearizability in systems with low message delay uncertainty�
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The rest of the paper is organized as follows� Section � presents our formal de�nitions� and
surveys some preliminary facts and related background� Bounds for the perfect clocks model
are included in Section �� Sections � and � contain our upper and lower bounds� respectively�
for the approximately synchronized clocks model� Bounds for the related imperfect clocks
model are stated in Section �� We conclude� in Section �� with a discussion of our results� a
survey of related work� and some open problems�

� De�nitions� Preliminaries and Background

In this section� we present the formal system model and its various timing aspects
 we also
introduce the memory objects� the consistency conditions� and the costs of their message�
passing implementations� Towards the end� we review the shifting technique� Our de�nitions
are patterned after those in ����� which they somehow re�ne and extend�

For any real vector �s� denote k�sk� and k�sk�� the maximum and minimum� respectively�
entries of �s�

��� System Model

We consider a collection of application programs running concurrently and communicating
through virtual shared memory
 the latter consists of a collection X of read�write objects� or
objects for short� Each object X � X attains values from a domain� a set V of values that
includes a special �unde�ned� value �
 a total order �V is de�ned on V � We assume a system
consisting of a collection N of nodes� connected via a communication network
 take jN j � n�

The shared memory abstraction is implemented by a memory consistency system �MCS��
consisting of a collection of MCS processes� one at each node
 these processes use local memory�
execute some local protocol� and communicate through exchanging messages� drawn from some
message alphabet M� along the network� Each MCS process pi� located at node i� is associated
with an application program Pi
 pi and Pi interact by using call and response events� Formally�
the following external events may occur at the MCS process pi�

� Call events� They represent initiation of operations by the application program Pi
 they
are Readi�X	 and Writei�X� v	� for all objects X � X and values v � V �

� Response events� They represent responses by pi to operations initiated by the application
program Pi
 they are Returni�X� v	 and Acki�X	� for all objects X � X and values v � V �

� Message�send events� They represent sending of a message by pi to any other MCS
process
 they are Sendi�m� j	 for all messages m � M and MCS processes pj � j �� i�

� Message�deliver events� They represent delivery of a message from any other MCS process
to pi
 they are Deli�m� j	� for all messages m � M and MCS processes pj � j �� i�
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For each index i� � � i � n� there is a physical� real�time clock at node i� readable by MCS
process pi but not under its control� that runs at the same rate as real time� Formally� the local
clock of process pi� denoted �i� is a monotonically increasing function from � �real time	 to �
�clock time	 of the form �i�t	 � t
gi
 gi is a real number called the local clock parameter of pi�x

�The local clock parameters are �xed for each �run� of the system� but they are unknown to
the processes�	 The local clocks at various nodes may be initially �out�of�phase�
 this happens
whenever gi �� gj for any process indices i and j� Moreover� the local clocks cannot be modi�ed
by the processes�

Processes do not have access to real time
 instead� each process obtains its only information
about �real	 time from its local clock� The local clock reliably measures how much real time
has elapsed� although its actual value is not equal to real time� Moreover� process pi may use
its local clock for �timing� itself� Formally� this is done through the following internal events�

� Timer�set events� They represent setting of a timer by pi to �go o�� after a speci�ed
amount of local clock time elapses and return a message
 they are TimerSeti�T� m	 for all
real numbers T � � and messages m � M�

� Timer�expire events� They represent a timer expiration returning a message at pi
 they
are TimerExpirei�m	 for all messages m � M�

The call� message�deliver� and timer�expire events are called interrupt events
 the response�
message�send� and timer�set events are called react events�

Each MCS process pi is modeled as a state machine with a �possibly in�nite	 set of states�
including an initial state� and a transition function� Each interrupt event at MCS process pi
causes an application of its transition function
 thus� computations of the system are �interrupt�
driven�� More speci�cally� the transition function is a function from tuples of a state� a local
clock time� and an interrupt event to tuples of a state and sets of react events
 in more detail�
the transition function takes as input the current state� the local clock time� and an interrupt
event� and returns a new state� a set of response events to the corresponding application
program� a set of messages to be sent to other MCS processes� and a set of timer�set events�
Formally� a computation step of process pi is a pair of tuples �hq� �� ii� hq��R�S� T i	� where q

and q� are states� � is a real number� called the local clock time� i is an interrupt event� R is a
set of response events� S is a set of message�send events� and T is a set of timer�set events� so
that q�� R� S� and T result from the application of pi�s transition function on q� � and i�

A history for MCS process pi with clock �i is a mapping hi from � �real time	 to �nite
sequences of computation steps by pi such that�

�� for each real time t� there is only a �nite number of �real	 times t� � t such that the
corresponding sequence of computation steps hi�t

�	 is non�empty
 thus� the concatenation
of all such sequences in real�time order is also a sequence� called the history sequence


xAlthough it is possible to make the local clock of each process a part of its �local� state� which we will soon
introduce� we chose to keep local clocks separate from states so that we would not need to put restrictions on
how those parts of states may be modi�ed�
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�� the old state for the �rst computation step in the history sequence is pi�s initial state


�� the old state for each subsequent computation step is the new state for the previous
computation step in the history sequence


�� for each real time t� the local clock time of every computation step in the sequence hi�t	
is equal to �i�t	


�� for each real time t� there is at most one computation step whose interrupt event is a
timer�set event� and this step is ordered last in the sequence hi�t	


�� there is a one�to�one correspondence between timer�set and timer�expire events appearing
in computation steps of the history sequence
 moreover� each timer�expire event occurs
at local clock time T later than the corresponding timer�set event� where T is the real
number speci�ed in the timer�set event


�� at most one call event at pi is �pending� at a time
�

�� there is a one�to�one correspondence between call and response events appearing in com�
putation steps of the history sequence� For each call event� the corresponding response
event appears later in the history sequence
 moreover� for each call event Readi�X	� the
corresponding response event is an event Returni�X� v	 for some value v � V � while for
each call event Writei�X� v	� the corresponding response event is an event Acki�X	�

Each pair of matching call and response events forms an operation� The call event marks
the start of the operation� while the response event marks its end� An operation op is invoked
when the application program issues the appropriate call event for op
 op terminates when the
MCS process issues the appropriate response for op�

For a given MCS� an execution 	 is a tuple of histories hh�� h�� 
 
 
 � hni� one for each MCS
process pl with a corresponding local clock �l� such that for any pair of MCS processes pi
and pj � there is a one�to�one correspondence between the messages sent by pi to pj � and those
delivered at pj that were sent by pi� Use this message correspondence to de�ne the delay of
any message in the execution 	 to be the real time of delivery minus the real time of sending�
Execution 	 is admissible if every message in 	 incurs a delay in the range �d� u� d�� for some
�xed and known constants d and u� � � u � d
 d is the message delay latency� while u is the
message delay uncertainty�

��� Timing Assumptions and Clock Synchronization

Fix a �known	 constant �� called clock precision� such that � � � � �� Say that an execution 	

is a ��execution if for all pairs of MCS processes pi and pj and all real times t� j�i�t	��j�t	j � �


�This outlaws pipelining or prefetching at the interface between an application program and the corresponding
MCS process�
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notice that� by de�nition of local clocks� this happens if and only if jgi� gj j � �� In particular�
a ��execution will be called an in�phase execution�

The inverse local clock of process pi� denoted ���i � is the inverse function of pi�s local clock�
By de�nition of local clock� the inverse clock is a monotonically increasing function from �
�local clock time	 to � �real time	 of the form ���i �c	 � c � gi
 hence� for any pair of MCS
processes pi and pj � for all real times t and local clock times c� ���i �c	� ���j �c	 � gj � gi �
�t� gi	� �t� gj	 � �i�t	� �j�t	� Hence� it follows�

Proposition ��� Fix any ��execution	 Then� for any pair of MCS processes pi and pj� and
for all local clock times c�

j���i �c	� ���j �c	j � � 


The next simple claim relates the di�erence between local clock times at which message�send
events occur in a ��execution� with the di�erence between real times at which corresponding
message�deliver events occur in the same execution�

Lemma ��� Consider message�send events Sendi��m�� j�	 and Sendi��m�� j�	 in a ��execution
	� occurring at �real� times t� and t�� respectively	 Let Delj��m�� i�	 and Delj��m�� i�	 be the
corresponding message�deliver events occurring at �real� times t�� and t��� respectively� in 		
Assume that �i��t�	� �i��t�	 � ��	 Then� t�� � t�� � �� � � � u	

Proof� Clearly�

�i��t�	� �i��t�	 � t� 
 gi� � �t� 
 gi�	 �by de�nition of local clocks	

� gi� � gi� 
 t� � t�

� � 
 t� � t� �since 	 is a ��execution	 


thus�

t� � t� � �i��t�	� �i��t�	� �

� �� � � �by assumption	 


Since 	 is admissible� t�� � t� 
 d� u and t�� � t� 
 d� so that

t�� � t�� � t� 
 d� u � �t� 
 d	

� t� � t� � u

� �� � � � u �

as needed�

�



Transition Relation�

Pre� �
E�� TimerSeti�d� synch�

Broadcasti�synch�

Pre� TimerExpirei�synch�
E�� Corri ���i

Pre� Deli�synch�
E�� Corri ���i

Figure �� The algorithm Asynch � precondition�e�ect code for process pi

Although we shall treat the clock precision � as a �xed parameter� it is possible to have each
process obtain a logical clock b�i that is �closer� to those of other processes by computing an
additive �software� correction to its local clock time through a clock synchronization algorithm
�CSA�
 see� e�g�� ���� ��� ��� ��� or ���� Section ����� Say that a CSA achieves clock precision
� if the maximum di�erence between the logical clock times of any two processes at any real
time after all processes have terminated executing the algorithm is at most �� There are�
however� known limitations on the best achievable clock precision� as a function of the number
of processes n and the message delay uncertainty u�

Proposition ��� �Lundelius and Lynch ����	 No CSA achieves clock precision less than
��� ��n	u	

We proceed to present a simple clock synchronization algorithm Asynch that achieves clock
precision u� We start with an informal description of Asynch � Each process pi broadcasts a
special synchronization message synch� and sets a timer for time d thereafter� On either the
�rst receipt of some synch message from some other process� or on expiration of its own timer�
whichever happens �rst� pi sets its �logical	 clock time to �� In more detail� if �rst receipt or
expiration occurs at �real	 time t� pi adopts an additive correction of ��i�t	 to its local clock�
which results in vanishing its logical clock time at time t� In all future discussion� we will use
local clock time to refer to logical clock time� Figure � presents the code for process pi in a
precondition�e�ect style that is commonly used to describe I�O automata ����� We show�

Proposition ��� Asynch achieves clock precision u	

Proof� Fix any admissible execution 	� For each process pl� let tl be the minimum among
all �real	 times t such that either TimerExpirel�synch	 or Dell�synch	 occurs at time t� Denote
tmax � maxl��n� tl
 thus� tmax is the time at which the last process completes the execution of

Asynch � Let pi be the last process to complete the execution of Asynch so that tmax � ti� We
start by showing�

Lemma ��
 For any process pl� Broadcastl�synch	 occurs no earlier than time tmax � d	

�



Proof� Assume� by way of contradiction� that for some process pl� Broadcastl�synch	 occurs
at real time less than tmax � d in 	� Since 	 is admissible� Deli�synch	 occurs at real time less
than tmax � d
 d � tmax� Thus� ti � tmax� A contradiction�

We continue to show�

Lemma ��� For any process pl� Dell�synch	 occurs no earlier than time tmax � u	

Proof� Since 	 is admissible� Dell�synch	 occurs at real time which is at least d�u later than
the real time at which a broadcast event occurs� By Lemma ���� it follows that Dell�synch	
occurs no earlier than time tmax � d
 d� u � tmax � u� as needed�

We �nally show�

Lemma ��� For any process pl� TimerExpirel�synch	 occurs no earlier than time tmax	

Proof� By the algorithm� TimerSetl�d� synch	 and Broadcastl�synch	 occur at the same real
time� Thus� by Lemma ���� TimerSetl�d� synch	 occurs no earlier than time tmax�d� It follows
that TimerExpirel�synch	 occurs no earlier than time tmax � d
 d � tmax� as needed�

Consider any process pl� If pl completes the execution of Asynch on Dell�synch	� then� by
Lemma ��� and de�nition of tmax� tmax�u � tl � tmax� If pl completes the execution of Asynch

on TimerExpirel�synch	� then� by Lemma ��� and de�nition of tmax� tmax � tl � tmax� so that
tl � tmax� This implies�

Lemma ��
 For any process pl� tmax � u � tl � tmax	

Consider any real time t � tmax� and any pair of processes pj and pk� j �� k� Clearly�

b�i�t	� b�j�t	 � t � ti � �t� tj	

�by the algorithm	

� tj � ti 


By Lemma ���� tmax� u � ti � tmax and tmax� u � tj � tmax� so that jtj � tij � u� Thus�
jb�i�t	� b�j�t	j � u� It follows that Asynch achieves clock precision u� as needed�

We remark that Lundelius and Lynch ���� have shown that clock precision of ��� ��n	u is
indeed achievable� which is slightly better than u� achieved in Proposition ���� Lundelius and
Lynch ���� Section �� present a clock synchronization algorithm carrying explicit timing infor�
mation� i�e�� local clock values� in all messages exchanged between processes
 by that algorithm�
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each process needs also to �count� the number of messages it receives from other processes�
In contrast� neither timing information is carried in messages sent by our clock synchroniza�
tion algorithm� which are of constant size� nor processes need to �count�� In these respects�
our clock synchronization algorithm is more e�cient in both message size and space overhead
than the one of Lundelius and Lynch� Thus� we choose to use our own clock synchronization
algorithm in some of our later algorithms in order to keep those correspondingly e�cient as
well�

In the perfect clocks model� MCS processes have perfectly synchronized �perfect	 clocks�
i�e�� � � �� This is modeled by assuming that for each MCS process pi� �i�t	 � t� Attiya
and Welch ���� note that the assumption of perfect clocks is equivalent to the assumption of
constant �and known	 message delays� which� in our formal model� can be modeled by assuming
u � �� If clocks are perfect and there is a constant and known upper bound d on message
delay� then constant message delays can be simulated by time�stamping each message with the
local clock time of the sender at sending time� and having each recipient delay any message
that arrives with a delay smaller than d until the delay is exactly d� If the message delay is
constant and known� then a simple clock synchronization algorithm can synchronize the clocks
perfectly
 each message is time�stamped with the local clock time of the sender at sending
time� which allows the recipient to exactly synchronize its local clock to that of the sender�

In the more realistic approximately synchronized clocks model� MCS processes have local
clocks with 
nite clock precision
 that is� � � � � �� Proposition ��� implies that we can
assume a clock precision of minf�� ug for all ��executions in the approximately synchronized
clocks model�

In the imperfect clocks model� clocks may be arbitrarily far from each other� i�e�� � � ��
Proposition ��� implies that we can assume a clock precision of minf�� ug � u for all executions
in the imperfect clocks model�

��� Memory Objects

Each object X has a serial speci
cation ���� which describes its behavior in the absence of
concurrency and failures� Formally� it de�nes�

� A set OP�X	 of operations on X� which are ordered pairs of call and response events�
Each operation op � OP�X	 has a value val�op	 associated with it�

� A set of legal operation sequences for X� which are the allowable sequences of operations
on X �

The set OP�X	 contains a read operation �Readi�X	�Returni�X� v	� on X � and a write
operation �Writei�X� v	�Acki�X	� on X � for each index i � �n� and value v � V 
 v is the value
associated with each of these operations� The set of legal operation sequences for X contains
all sequences of operations on X for which� for any read operation rop in the sequence� either
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val�rop	 � � and there is no preceding write operation in the sequence� or val�rop	 � val�wop	�
where wop is the latest preceding write operation� Thus� each legal operation sequence obeys
the usual read�write semantics� every read operation on X returns the value of the latest
preceding write operation on X � if there is one� or� otherwise� an �unde�ned� value�

Let � be a sequence of operations� Denote by � j i the restriction of � to operations at the
MCS process pi
 similarly� denote by � j X the restriction of � to operations on the object X �
A sequence of operations � for a collection of processes and objects is legal if� for every object
X � X � � j X � is in the set of legal operation sequences for X �

We often speak informally of an operation on an object as in �the read operation on the
object X�� An operation in our formal model is intended to represent a single �execution� of
an operation as used in the informal sense�

��� Correctness Conditions

Correctness conditions are speci�ed at the interface between the application programs �written
by the users	� and the MCS processes �supplied by the system	�

Given an execution 	� let ops�		 be the sequence of call and response events appearing
in 	 in real�time order� breaking ties for each real time t as follows� First� order all response
events whose matching call events occur before time t� using process identi�cation numbers
�id�s	 to break any remaining ties� Then� order all operations whose call and response events
both occur at time t� Preserve the relative ordering of operations for each process� and break
any remaining ties using process id�s� Finally� order all call events whose matching response
events occur after time t� using process id�s to break any remaining ties� For an execution 	�
the de�nitions of � j i and � j X can be extended in the natural way to yield ops�		 j i and
ops�		 j X � respectively�

An execution 	 speci�es a partial order
�
�	 on the operations appearing in 	 as follows�

For any operations op� and op� appearing in 	� op�
�
�	 op� if the response for op� precedes

the call for op� in ops�		
 that is� op�
�
�	 op� if op� completely precedes op� in ops�		�

Given an execution 	� an operation sequence � is a serialization of 	 if it is a permutation of
ops�		� A serialization � of 	 is a linearization of 	 if it extends

�
�	
 that is� if op�

�
�	 op�� then

op�
�
�	 op�� Roughly speaking� the de�nitions for sequential consistency and linearizability

involve� for each execution 	� the existence of a serialization � of 	 that possesses certain
properties� The formal de�nitions for sequential consistency and linearizability follow�

De�nition ��� �Sequential Consistency� Lamport ��
�	 An execution 	 is sequentially
consistent if there exists a legal serialization � of 	 such that for each MCS process pl� ops�		 j
l � � j l	

De�nition ��� �Linearizability� Herlihy and Wing ����	 An execution 	 is linearizable
if there exists a legal linearization � of 	 such that for each MCS process pl� ops�		 j l � � j l	
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Intuitively� 	 is sequentially consistent if the sequence of operations in 	 can be permuted
to yield an operation sequence � that is legal and maintains the order of call and response
events seen at each process
 if� in addition� � preserves the order of any two non�overlapping
operations in 	� 	 is said to be linearizable�k

An MCS is a sequentially consistent implementation of X if every admissible execution of
the MCS is sequentially consistent
 similarly� an MCS is a linearizable implementation of X if
every admissible execution of the MCS is linearizable�

A correctness condition is compositional �or local	 ���� if the combination of memory ob�
jects each of which individually satis�es the condition yields an implementation that satis�es
the condition as well� An important distinction holds between sequential consistency and
linearizability with respect to compositionality�

Proposition ��� �Herlihy and Wing ����	 Linearizability is local� sequential consistency
is not	

Proposition ����ii	 implies that to give a linearizable implementation of X � it su�ces to give
a linearizable implementation of a single object X � X � In contrast� for sequential consistency�
all objects must be implemented together� �This causes development costs to increase and
makes it hard to apply separate optimizations to di�erent objects
 see ���� for an expanded
discussion�	

��� Cost Measures

In general� the e�ciency of an implementation A of X is measured by the worst�case response
time for any operation on an objectX � X � Given a particular MCS A and a read�write object
X implemented by it� the time jopA�X� 		j��	 taken by an operation op on X in an admissible
��execution 	 of A is the maximum di�erence between the times at which the response and
call events of op occur in 	� where the maximum is taken over all occurrences of op in 	�
In particular� we denote by jRA�X� 		j��	 and jWA�X� 		j��	 the maximum time taken by
a read and a write operation� respectively� on X in 	� where the maximum is taken over all
occurrences of the corresponding operations in 	�

De�ne jRA�X	j��	 �resp�� jWA�X	j��		 as the maximum of jRA�X� 		j �resp�� jWA�X� 		j	
over all ��executions 	 of A� De�ne jRAj��	 �resp�� jWAj��		 as the maximum of jRA�X	j��	
�resp�� jWA�X	j��		� over all read�write objects X implemented by the MCS A� Let also
jRj��	 and jWj��	 denote the minimum� over all implementations A of X � of jRAj��	 and
jWAj��	� respectively�

kLinearizability may be viewed as a special case of strict serializability �see� e�g�� ���� �
��� a basic correctness
condition for concurrent computations on databases� where transactions are restricted to appear to be a single
operation on a single object�
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Finally� let jRj and jWj be the minimum of jRj��	 and jWj��	� respectively� over all
achievable precisions �� It follows from Theorem ��� that jRj � jRj��� � ��n	u	 and jWj �
jRj���� ��n	u	� The sum jRj
 jWj is also considered as a measure of e�ciency�

��� Shifting Executions and Clocks

Our presentation closely follows a corresponding one in �����

In our later proofs of lower bounds �Section �	� we use the technique of shifting� originally
introduced by Lundelius and Lynch ���� to prove lower bounds on the clock precision achievable
by clock synchronization algorithms� Shifting is used to change the timing and the ordering of
events in an execution of the system� while preserving the �local views� of the processes�

Roughly speaking� given an execution� if for each process pi� pi�s history is changed so that
the real times at which the events at pi occur are shifted by some amount� and if pi�s clock
is shifted by the same amount� then the result is another execution in which every process
still �sees� the same events happening at the same local clock time� The intuition is that the
changes in the real times at which events at a process occur cannot be detected by the process
because its clock has changed by a corresponding amount�

More precisely� the view of process pi in execution 	 � fh�� h�� 
 
 
 � hng� denoted view l�		�
is the history sequence de�ned by the history hi in 	� Note that the real times of occurrences
of events at pl are not represented in the view of pl�

Say that executions 	� and 	� are equivalent if� for each MCS process pl� view l�	�	 �
view l�	�	� Intuitively� equivalent executions are indistinguishable to the processes
 only an
�outside observer� with access to real time can tell them apart�

Given a history hi of MCS process pi with clock �i and a real number s� a new history
h�i � shift�hi� s	 is de�ned by h�i�t	 � hi�t 
 s	 for all real times t� That is� all sequences of
computation steps are shifted earlier in h�i by s if s is positive� and later by �s if s is negative�
Given a clock �i for MCS process pi and a real number s� a new clock ��i � shift��i� s	 is de�ned
by ��i�t	 � �i�t	
s for all real times t� That is� the clock is shifted forward by s if s is positive�
and backward by �s if s is negative� The following claim observes that simultaneously shifting
a process�s history and clock by the same amount yields another process history�

Lemma ���� Let hi be a history of MCS process pi with clock �i� and let s be a real number	
Then� shift�hi� s	 is a history of pi with clock shift��i� s		

Given an execution 	 and a real vector �s � hs�� s�� 
 
 
 � sni� a new execution 	� � shift�	��s	
is de�ned by replacing� for each MCS process pi� the history hi of pi in 	 by �the history	
shift�hi� si	� while retaining the same correspondence between sent and delivered messages�
�Technically� the correspondence is rede�ned so that a pairing in 	 that involves a message�
send or message�deliver event for an MCS process pi at time t� it involves� in 	�� the event for
pi occurring at time t � si�	
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Given a tuple of clocks � � f�i j � � i � ng� and a real vector �s � hs�� s�� 
 
 
 � sni
T� a new

tuple of clocks �� � shift��� �s	 is de�ned by replacing� for each MCS process pi� local clock �i
by local clock shift��i� si	�

The following claim observes that shifting each process�s history and clock by the same
amount in an execution yields another execution that is equivalent to the original�

Lemma ���� �Lundelius and Lynch ����	 Let 	 be an execution with clocks �� and con�
sider any real vector �s	 Then� shift�	��s	 is an execution with clocks shift��� �s	 that is equivalent
to 	 with clocks �	

The following claim quanti�es how message delays change when an execution is shifted�

Lemma ���� �Lundelius and Lynch ����	 Let �s be a real vector	 For any pair of MCS
processes pi and pj� if the delay of a message m from pi to pj in the execution 	 with clocks �
is equal to �� then the delay of m in the execution shift�	��s	 is equal to �
 sl � sm	

Lemma ���� implies that the result of shifting an admissible execution is not necessarily
admissible� The next simple claim precisely determines the change in clock precision due to
shifting an execution�

Lemma ���� Assume 	 is a ��execution with clocks �	 Then� for any real vector �s� the
execution shift�	��s	 with clocks �� � shift��� �s	 is a ��
 jk�sk� � k�sk��j	�execution	

Proof� Clearly� for any MCS processes pi and pj and real time t�

j� �i�t	� � �j�t	j � j�i�t	 
 si � ��j�t	 
 sj	j

� j�i�t	� �j�t	j
 j�i � �j j �by triangle inequality	

� �
 jsi � sj j �since 	 is a ��execution	

� �
 jk�sk� � k�sk��j �

which implies that the execution shift�	��s	 with clocks �� � shift��� �s	 is a �� 
 jk�sk� �
k�sk��j	�execution� as needed�

��� Notation

In this section� we introduce some notation that will be used in the sequel� Consider any
execution 	� and let op � �Call�op	�Response�op	� be any operation in 	� We denote by

t
���
c �op	 and t

���
r �op	 the �real	 times at which Call�op	 and Response�op	� respectively� occur

in 	� When 	 is not clear from context� we use val ����op	 to denote the value associated with
the �execution� of operation op in 	�
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For any real numbers x� and x�� x� � � and x� � �� fmod�x�� x�	 denotes the remainder
of the division of x� by x�� i�e�� fmod�x�� x�	 � x� � bx��x�c� For a real interval I � �i�� i���
bIc � i� and dIe � i�
 the length i� � i� of I is denoted by jI j�

For any index i and message m � M� we use Broadcasti�m	 to denote the set of message�send
events fSendi�m� j	 � j � �n�g�

� Perfect Clocks

In this section� we consider the perfect clocks model� where � � � and u � �� We show�

Theorem ��� For the prefect clocks model� there exists a linearizable implementation Aper of
read�write objects such that jRAper j��	 � �d� and jWAper j��	 � ��� �	d� for any constant ��
� � � � �	

By Proposition ����ii	� it su�ces to provide an implementation of a single object X � X �
In Section ���� we describe the implementation Aper� while a correctness proof and complexity
analysis for Aper are presented in Sections ��� and ���� respectively�

��� The Algorithm

We start with an informal description of Aper� Each process pi keeps a local copy Xi of object
X 
 denote val�Xi	 the value currently held by Xi� initially �� Upon a Readi�X	 event� pi
waits for time �d and issues Returni�X� val�Xi		� Upon a Writei�X� v	 event� pi sends update
messages update�X� v	 to all other processes
 after time ����	d passes� pi issues Acki�X	 and
waits for an additional time of �d to set Xi to v� Furthermore� upon receipt of an update
message for X from another process� pi immediately updates Xi to the value being written���

We remark that Aper guarantees that all local memories of processes undergo �identical�
changes with respect to each write operation
 that is� all processes simultaneously update their
local copies to the value being written�

The code for process pi appears in Figure � in the same style as Figure ��

��� Correctness Proof

Fix any admissible ��execution 	 of Aper� We construct a legal linearization � of 	 such that�
for each MCS process pi� ops�		 j i � � j i
 read and write operations are �serialized� to

��If pi receives several such update messages simultaneously� it updates Xi to the minimal �with respect to
V� of the corresponding values�
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Local State�

Xi� The local copy of object X� initially �

Transition Relation�

�Readi�X��Returni�X� v���
Readi�X� Pre� Readi�X�

E�� TimerSeti��d� read�X��

Returni�X� v� Pre� TimerExpirei�read�X��
E�� Returni�X� val�Xi��

�Writei�X� v��Acki�X���
Writei�X� v� Pre� Writei�X� v�

E�� Broadcasti�update�X� v���
TimerSeti��d� write�X���
TimerSeti�d� update�X� v���

Acki�X� Pre� TimerExpirei�write�X��
E�� Acki�X�

Xi � v Pre� TimerExpirei�update�X� v��
E�� Xi � v

Update of Xi�
Pre� Deli�update�X� v�� j�
E�� Xi � v

Figure �� The algorithm Aper � precondition�e�ect code for process pi
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occur at their times of call and response in 	� respectively� breaking ties by ordering all write
operations before read ones that are �serialized� together and then using �V �

Formally� we assign a time T �op	 to each operation op � �Call�op	�Response�op	� in 	 as
follows� De�ne T �op	 to be either tc��op	 if op is a read operation� or tr��op	 if op is a write
operation� We construct � as follows�

�� for any pair of operations op� and op� in 	 such that T �op�	 � T �op�	� op�
�
�	 op�


�� for any pair of operations op� and op� in 	 such that T �op�	 � T �op�	�

�a	 if op� is a write operation and op� is a read operation� then op�
�
�	 op�


�b	 if op� and op� are either both read operations or both write operations� then� if
val�op�	 �V val�op�	� then op�

�
�	 op�� else �val�op�	 � val�op�		 op� and op� are

ordered arbitrarily in � �

We start by showing�

Lemma ��� � is a linearization of 		

Proof� Let op� and op� be any operations in 	 such that op�
�
�	 op�� By de�nition of

�
�	� tr��op�	 � tc��op�	� By de�nition of T � T �op�	 � tr��op�	� and T �op�	 � tc��op�	� It
follows that T �op�	 � T �op�	� By construction of � � the only non�trivial case occurs when
T �op�	 � T �op�	� This happens if and only if T �op�	 � tr��op�	 and T �op�	 � tc��op�	�
Then� by de�nition of T � op� is a write operation� while op� is a read operation� Hence� by
construction of � � op�

�
�	 op�� as needed�

We continue to prove�

Lemma ��� For each MCS process pi� ops�		 j i � � j i	

Proof� Fix any MCS process pi� For any operations op� and op�� say op�
� ji
�	 op� �resp��

op�
�ji
�	 op�	 if op� precedes op� in � j i �resp�� 	 j i	� To show that � j i � 	 j i� it su�ces to

show that the order of any two operations in � j i is the same to their order in 	 j i�

Consider any pair of operations op� and op� such that op�
�ji
�	 op�� Clearly� op�

�
�	 op��

Lemma ��� implies that op�
�
�	 op�� It follows that op�

� ji
�	 op�� as needed�

We continue to show that � is a legal operation sequence� We de�ne a relation
�
�	 between

the set of write operations in 	 and the set of read operations in 	� as follows� For any pair of

write and read operations wop and rop� respectively� in 	� wop
�
�	 rop if val�wop	 � val�rop	
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and the most recent update �in 		 of the local copy ofX by the reading process� before it returns
on rop� is to val�wop	 as a result of either receipt of an update message update�X� val�wop		
from the writing process� or a timer expiration event TimerExpirei�update�X� v		� Roughly

speaking�
�
�	 captures causality and relates each read operation in 	 to the most �recent�

write operation in 	 writing the returned value� We start with a simple claim�

Lemma ��� Consider any pair wop � �Writei�X� v	�Acki�X	� and rop � �Readk�X	�Returnk�X� v	�
of write and read operations� respectively� in 	� for some value v � V and indices i� k � �n��

such that wop
�
�	 rop	 Then� wop

�
�	 rop	

Proof� Since all message delays are exactly d and� by the algorithm� each local update is
performed time d later than the invocation of the corresponding write operation� it follows
that tr��rop	 � tc��wop	 
 d� Since T �rop	 � tc��rop	 � tr��rop	� �d� and T �wop	 � tr��wop	 �
tc��wop	
����	d� it follows that T �rop	 � T �wop	� We proceed by case analysis� If T �rop	 �
T �wop	� then� by de�nition of � �case �	� wop

�
�	 rop
 furthermore� if T �rop	 � T �wop	� then�

by de�nition of � �case �	� wop
�
�	 rop� Thus� in every case� wop

�
�	 rop� as needed�

Note that Lemma ��� implies that whenever a read operation in � would return a value �out
of order�� that is� a value other than that of the immediately preceding it write operation in

� � such a read operation were to be related through
�
�	 to a write operation that still precedes

it in � � Thus� Lemma ��� �restricts� in a sense the way in which � may violate legality� We
�nally show�

Lemma ��
 � is a legal operation sequence	

Proof� An informal outline of our proof follows� We assume that some read operation re�
turns a value other than that of the immediately preceding it write operation
 we derive a
contradiction by showing that the superseded written value is �known� to the reading process
before the read operation returns� We now present the details of the formal proof�

Assume� by way of contradiction� that � is not legal� It follows� by Lemma ���� that
there exist operations wop� � �Writei�X� v�	�Acki�X	�� wop� � �Writej�X� v�	�Ackj�X	� and
rop � �Readk�X	�Returnk�X� v�	�� for some indices i� j and k � �n�� and values v�� v� � V �
such that wop�

�
�	 wop�� wop�

�
�	 rop�� and there is no write operation wop in � such that

wop�
�
�	 wop

�
�	 rop
 that is� wop� is the most �recent� write operation in � that precedes

rop�

By construction of � � T �wop�	 � T �wop�	 � T �rop�	
 thus� tr��wop�	 � tr��wop�	 �
tc��rop�	� In fact� we prove�

Claim ��� T �wop�	 � T �wop�	
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Proof� Assume� by way of contradiction� that T �wop�	 � T �wop�	� By construction of � �
v� �V v�� Moreover� by de�nition of T � tr��wop�	 � tr��wop�	� which implies that tc��wop�	 �
tc��wop�	� Since all message delays equal d� pk receives update messages simultaneously from pi
and pj 
 since it later returns v� it must have set Xk to v�� Hence� by the algorithm� v� �V v��
A contradiction�

Note that Claim ��� implies that tc��wop�	 � tc��wop�	� Since all message delays equal d�
and� by the algorithm� a writing process waits for time d to update its local copy to the value
being written� it follows that each process sets its local copy of X to v� strictly before it sets
it to v�� Moreover�

tr��rop	 � tc��rop	 
 �d

� tr��wop�	 
 �d

� tc��wop�	 
 ��� �	d
 �d

� tc��wop�	 
 d 


thus� pk updates Xk to v� no later than time tr��rop�	� It follows that rop returns v�� A
contradiction�

By Lemmas ���� ���� and ���� it follows that � is a legal linearization of 	 such that� for
each MCS process pi� � j i � 	 j i� Since 	 was chosen arbitrarily� this implies that Aper is a
linearizable implementation� as needed�

��� Complexity Analysis

Clearly� in any admissible ��execution of Aper � the response time for every read operation is
�d� and the response time for every write operation is ��� �	d� implying that jRAper j��	 � �d
and jWAper j��	 � ��� �	d� as needed�

� Approximately Synchronized Clocks� Upper Bound

In this section� we present our upper bound for the approximately synchronized clocks model�

Fix throughout any arbitrary constant � subject to the constraint � � � � minf�u� d� ug�
We show�

Theorem ��� For the approximately synchronized clocks model� there exists a linearizable
implementation Aas of read�write objects such that jRAas j��	 � �d
 �u
 minf�� ug
 �� and
jWAasj��	 � ��� �	d
 �u� for any constant � such that � � � � �� u�d	

By Proposition ����ii	� it su�ces to provide a linearizable implementation of a single object
X � X � In Section ���� we describe one such implementation Aas� while some of its preliminary
timing properties are shown in Section ���� A correctness proof and complexity analysis for
Aas are presented in Sections ��� and ���� respectively�
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��� The Algorithm

We start with an informal description of Aas� Each process pi keeps a local copy Xi of object
X 
 denote val�Xi	 the value currently held by Xi� initially �� In addition� pi keeps a register
LCT i�X	 holding the local clock time at the most recent update of Xi� or � if this time
is at least u earlier than the current local clock time
 �nally� pi maintains a set Pend i�X	 of
�pending� update messages for object X � Each update message has the form �update�X� v	� c	
for some value v � V and a real number c� which represents the local time of some process�

We now describe the �timings� of Aas�

� Upon a Readi�X	 event� pi �rst sets a timer to expire at time �d thereafter� where
� � � � �� u�d
 then� pi waits to return until time u has passed without any update of
Xi


� a �time�slicing� technique is used for handling writes
 roughly speaking� pi �slices� each
time interval of length �u 
 � into a �write�prohibited� interval of length �u� in which
actions on a write request may not be initiated by a writing process� followed by an
interval of length � in which they may� Upon a Writei�X� v	 event� and when outside a
�write�prohibited� time interval� pi broadcasts an �update�X� v	� c	 message� where c is
the local time of pi at the time of broadcasting� Then� pi waits for an additional time of
��� �	d to set Xi to v and issue Acki�X	�

� On receipt of �update�X� v	� c	 from a di�erent �writing	 process� pi immediately sets Xi

to v�

We now describe the mechanism by which pi �selects� the value to be returned in a read
operation
 candidate values are found in the set Pend i�X	� More speci�cally� pi considers
only values to which it previously set Xi� whose local broadcasting time �accomponying the
update message	 is within �u of that of the update message with the currently maximal local
broadcasting time� �As we will show� the most recently received value is one of the values
considered�	 The set Pend i�X	 is maintained by pi as follows� Whenever pi updates Xi to v�
on receipt of �update�X� v	� t	 as a result of a write operation by another process or by itself�
it adds �v� t	 to Pend i�X	� yy At the time of return� pi returns the maximal �with respect to
�V	 of the value components of elements of Pend i�X	�

The code for process pi appears in Figure �� pi uses the messages waitread�X	 and
read�X	� and write�X	 for implementing the timers needed for the read and write operations�
respectively�

For the rest of this section� �x any admissible ��execution 	 of Aas� For any write operation
wop � �Writei�X� v	�Acki�X� v	� in 	� denote by tbr� �wop	 and tdel� �wop	 the �real	 times at which
the writing process pi broadcasts a message update�X� v	 �together with its local broadcasting
time	 and the message update�X� v	 is delivered at a process� respectively�

yyTo keep the size of Pend�X� small� at each update pi removes from Pend�X� all elements �v�� t�� such that
t� is not within �u of the currently maximum time component of elements of Pendi�X��
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Local State�

�i� The local clock component
Xi� The local copy of object X� initially �
LCTi�X�� The local clock time at the most recent change of Xi�

or �� if this time is � u
Pend i�X�� A set of �pending	 update messages �v�� t�� for object X
tmaxi�X�� maxft� � �v�� t�� � Pend i�X�g

Transition Relation�

�Readi�X��Returni�X� v���
Readi�X� Pre� Readi�X�

E�� TimerSeti��d� waitread�X��

Pre� TimerExpirei�waitread�X�� 
 LCT i�X� �� � 

�i � LCTi�X� � u

E�� TimerSeti�u� �i � LCT i� read�X��

Returni�X� v� Pre� �TimerExpirei�waitread�X�� 
 LCT i�X� � �� or
TimerExpirei�read�X��

E�� Xi � max�Vfv � �v� t� � Pendi�X�g�
Returni�X� val�Xi��

�Writei�X� v��Acki�X���
Writei�X� v� Pre� Writei�X� v� 
 fmod��i� 
u� �� � 
u

E�� TimerSeti�
u� fmod��i� 
u� ��� write�X� v��

Pre� �Writei�X� v� 
 fmod��i� 
u� �� � 
u� or
TimerExpirei�write�X� v��

E�� Broadcasti�update�X� v���
TimerSeti���� ��d� update�X� v��

Acki�X� Pre� TimerExpirei�update�X� v��
E�� Xi � v�

Pend i�X� � Pend i�X� � f�v� �i � ��� ��d�g�
Pend i�X� � f�v�� t�� � tmaxi � t� � �ug�
Acki�X�

Update of Xi� Pre� Deli��update�X� v�� t��
E�� Pend i�X� � Pend i�X� � f�v� t�g�

Pend i�X� � f�v�� t�� � tmaxi � t� � �ug�
LCT i�X� � �i

Figure �� The Algorithm Aas� precondition�e�ect code for process pi
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��� Timing Properties

We start by showing that every process �hears� about a value currently being written no later
than time �d after the corresponding write operation acknowledges�

Proposition ��� For any write operation wop in 	� tr��wop	 � tdel� �wop	� �d	

Proof� Clearly�

tr��wop	 � tbr� �wop	 
 ��� �	d �by the algorithm for writes	

� tdel� �wop	� d
 ��� �	d

� tdel� �wop	� �d �

as needed�

We de�ne a relation
�
�	 between write and read operations in 	 as follows� For any write

and read operations wop and rop� respectively� in 	� wop
�
�	 rop if val�wop	 � val�rop	 and

the latest update �in 		 of the local copy of X by the reading process� before it returns on rop�
is to val�wop	� as a result of either receipt of an update message update�X� val�wop		 from the
writing process� or a result of a timer expiration event TimerExpirei�update�X� v		� Roughly

speaking�
�
�	 captures causality and relates each read operation in 	 to the most �recent� write

operation in 	 writing the returned value� We show that each write operation in 	 returns no
later than a related read operation in 	�

Proposition ��� Assume wop
�
�	 rop	 Then� tr��rop	 � tr��wop		

Proof� If wop and rop occur at the same process� the claim follows trivially from de�nition
of history sequence� So assume that wop and rop occur at di�erent processes� Clearly�

tr��rop	 � tdel� �wop	 
 u

�by the algorithm for reads	

� tbr� 
 d� u
 u

�since 	 is admissible	

� tr��wop	� ��� �	d
 d

�by the algorithm for writes	

� tr��wop	 
 �d

� tr��wop	 �

as needed�
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We continue with timing properties of the slicing technique� We show that for each process
pi� there exists a sequence of �quiet� �update�free	 time intervals quiet i�k	� one for each integer
k � �� with the following properties�

� pi receives no update messages in quiet i�k	


� jquiet i�k	j � �u�minf�� ug


� any two consecutive intervals� quiet i�k	 and quiet i�k
�	� are separated by a time interval
of length at most �u
 ��

These properties are shown formally in the next two claims�

Proposition ��� For each process pi� there exists� for each integer k � �� a time interval
quiet i�k	 in which pi receives no update messages	 Furthermore� jquiet i�k	j � u	

Proof� Consider any writing process pj � For any integer k � �� any �update	 message
sent from pj to pi while �j � k��u 
 �	 is delivered to pi while �j � k��u 
 �	 
 d
 on the
other hand� any message sent from pj to pi while �j � k��u
 �	 
 �u is delivered to pi while
�j � k��u
�	
�u
d�u � k��u
�	
d
�u� �Recall that� by the algorithm� pj cannot send any
update messages while k��u
�	 � �j � k��u
�	
�u�	 Thus� no message from pj is delivered
to pi while k��u
 �	 
 d � �j � k��u
 �	 
 d
 �u� It follows that for each j � �n�� no update
message from pj is delivered to pi in the time interval ����j �k��u
�		
d� ���j �k��u
�		
d
�u��
Hence� no message from any process is delivered to pi in the time interval quiet i�k	� where

quiet i�k	 �
�

j��n�

����j �k��u
 �		 
 d� ���j �k��u
 �		 
 d
 �u�

� �max
j��n�

���j �k��u
 �		 
 d�min
j��n�

���j �k��u
 �		 
 d
 �u� 


Hence�

jquiet i�k	j � min
j��n�

���j �k��u
 �		 
 d
 �u�max
j��n�

���j �k��u
 �		� d

� �u
 min
j��n�

���j �k��u
 �		�max
j��n�

���j �k��u
 �		

� �u� max
j�j���n�

����j �k��u
 �		� ���j� �k��u
 �			

� �u�minf�� ug

�by Proposition ���� with minf�� ug for �	

� �u� u � u �

as needed�
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We continue to show an upper bound on the �gap� between consecutive quiet intervals�
For each integer k � �� de�ne gapi�k	 � �dquiet i�k	e� bquieti�k 
 �	c�� Note that gapi�k	 �� 
�
We show�

Proposition ��
 For each integer k � �� jgapi�k	j � minf�� ug
 u
 �	

Proof� Clearly�

jgapi�k	j � bquieti�k 
 �	c � dquieti�k	e

� max
j��n�

���j ��k
 �	��u
 �		 
 d� min
j��n�

���j �k��u
 �		� d� �u

� max
j��n�

���j �k��u
 �		 
 �u
 �� min
j��n�

���j �k��u
 �		� �u

� max
j��n�

���j �k��u
 �		� min
j��n�

���j �k��u
 �		 
 u
 �

� minf�� ug
 u
 �

�by Proposition ���� with minf�� ug for �	

as needed�

We continue with a crucial property of the �slicing� intervals� Roughly speaking� we prove
that local broadcasting times that are within �u fall within the �same� time slice� Formally�
we show�

Proposition ��� Consider write operations wop� and wop� at processes pi and pj� respec�
tively� such that

��u
 �	k� � � � �i�t
br
� �wop�		 � ��u
 �	k� �

and

��u
 �	k� � � � �j�t
br
� �wop�		 � ��u
 �	k� �

for some positive integers k� and k�	 Then�

j�i�t
br
� �wop�		� �j�t

br
� �wop�		j � �u

if and only if k� � k�	

Proof� By assumption�

��u
 �	k� � �� ��u
 �	k� � �i�t
br
� �wop�		� �j�t

br
� �wop�		

� ��u
 �	k� � ���u
 �	k� � �	 �

so that

��



Claim ��� j�i�t
br
� �wop�		� �j�t

br
� �wop�		� ��u
 �	�k� � k�	j � 


Assume �rst that k� �� k�
 without loss of generality� take k� � k� 
 �� Clearly�

�i�t
br
� �wop�		� �j�t

br
� br�wop�		 � ��u
 �	�k� � k�	� �

�by Claim ���	

� ��u
 �	� �

�since k� � k� 
 �	

� �u � � 


Hence�

j�i�t
br
� �wop�		� �j�t

br
� �wop�		j � �i�tbr�wop�		� �j�tbr�wop�		

� �u � �u

as needed� Assume now that k� � k�� By Claim ����

j�i�tbr�wop�		� �j�tbr�wop�		j � �

� minf�u� d� ug

�by assumption on �	

� �u �

as needed�

��� Correctness Proof

We construct a legal linearization � of 	 such that� for each MCS process pi� ops�		 j i � � j i�
We start with an informal outline of the construction of � and the main ideas used in proving
its properties�

The construction proceeds in two phases� In the �rst phase� each read or write operation
in 	 is �serialized� to occur at the time of its response in 	� breaking ties by ordering all
write operations before read ones that are �serialized� together and then using �V � Call � �

the resulting operation sequence� Clearly� by construction� � � preserves both the order of
operations at each MCS process and the order of non�overlapping operations� However� � �

might not be legal�

In the second phase� we trace all legality violations in � �� and inductively �x each of them�
The �x still guarantees that � � is a linearization of 	 which preserves the order of operations
at each process� Roughly speaking� we scan � � and �x each violation of legality by �locally�
permuting operations� We show that the index of the �rst operation �witnessing� a legality
violation strictly grows after each �x� as we proceed
 thus� inductively� this results in a legal

��



linearization � of 	 which preserves the order of operations at each process� We now present
the details of the formal proof�

Formally� we construct � � as follows� For any operations op� and op� in 	 if tr��op�	 �

tr��op�	� then op�
� �

�	 op�
 if tr��op�	 � tr��op�	� then� if op� and op� are write and read

operations� respectively� then op�
� �

�	 op�� else �op� and op� are either both reads or both

writes	� if val�op�	 �V val�op�	� then op�
� �

�	 op��

We now elaborate on the second phase of the construction� We scan � � till a read operation

rop is reached such that wop�
� �

�	 wop�
� �

�	 rop for some write operations wop� and wop� in
� � such that val�wop�	 � val�rop	� val�wop�	 �� val�rop	� and there is no write operation wop

in � � such that wop�
� �

�	 wop
� �

�	 rop
 call it a non�admissible triple� Let iviol��
�	 be the index

of rop� in � �� We permute wop� to immediately precede wop� in � �� Let �� be the resulting
sequence�

Our proof proceeds in two steps� First� we show that a non�admissible triple is the only
cause of a legality violation
 we next prove that iviol���	 � iviol��

�	� by showing that the pre�x
of �� ending with rop� is a legal sequence of operations
 induction implies� then� the correctness
of our construction�

Our �rst simple claim characterizes a legality violation
 and it implies that legality may
only be violated because of a non�admissible triple� In all of our discussion� wop i and ropi will
denote write and read operations on object X such that vi is the associated value with each
of them� Since� by construction� write operations precede in � � read operations that occur at
the same time� Proposition ��� implies that wop i precedes ropi in � �� It follows that that a
non�admissible triple is� indeed� the only possible form of a legality violation� We show that
the values of the involved write operations must have been broadcast �very close� in time�

Lemma ��
 Assume that wop�
� �

�	 wop
� �

�	 rop�	 Then�

j�i�t
br
� �wop�		� �j�t

br
� �wop		j � �u 


Proof� Assume� by way of contradiction� that

j�i�t
br
� �wop�		� �j�t

br
� �wop		j � �u 


We proceed by case analysis on the sign of �i�tbr� �wop�		� �j�tbr� �wop		�

�� Assume �rst that �i�tbr� �wop�		 � �j�tbr� �wop		 � �
 It follows that �i�tbr� �wop�		 �
�j�t

br
� �wop		 � �u� By Lemma ���� it folllows that tbr� �wop�	 � tbr� �wop�	 � �u �

minf�� ug � �u � u � u � �� By the algorithm for writes� for each i � f�� �g�
tr��wop i	 � tbr� �wopi	 
 �� � �	d� It follows that tr��wop�	 � tr��wop�	� By construc�

tion of � �� wop�
� �

�	 wop�� A contradiction�
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�� Assume now that �j�t
br
� �wop�		 � �i�t

br
� �wop�		 � �u� By the algorithm and the way

� � was constructed� tbr�wop�	 � tr�wop�	 � tr�wop�	� Proposition ��� implies that
tdel�wop�	 � tr�wop�	� Thus� at time tr�rop�	� both v� and v� reside in the memory of
the reading process� It follows� however� that tmaxi��i�tbr�wop�		 � �i�tbr�wop�		 � �u�
This contradicts the fact that rop� returns v��

We continue to show a simple property of � ��

Proposition ��� Consider read operations rop and rop � such that wop�
� �

�	 rop
� �

�	 wop��

and wop�
� �

�	 rop�
� �

�	 wop�	 Assume there is no write operation wop in � � such that wop�
� �

�	

wop
� �
�	 wop�	 Then� val�rop	 � val�rop�		

Proof� By construction� tr�rop	� tr�rop �	 � tr�wop�	� Hence� it follows by Proposition ��� that
val�rop	� val�rop�	 �� val�wop �	� By Claim ���� every process receives val�wop	 and all values of
preceding write operations in � � by time tr�wop	
�d� Since there is no write operation in the
interval of operations �wop �wop�	� �� no process modi�es its Pend�X	 set except on receipt of
val�wop �	 in the time interval �tr�wop	� tr�wop�		� Notice� however� that a process that modi�es
Pend�X	 on receipt of an update message for wop �	 may return for a read operation no earlier
than tr�wop�	� and� by construction� such a read operation is not included in �wop �wop�	� ��
This implies that every read operation in �wop�wop�	� � returns the same value� as needed�

Proposition ��� implies that we may assume� without loss of generality� that at most one
read operation may be completed between any two successive completions of write operations
in � �� The next claim argues that once a value is returned by a read operation� no �later	 read
operation in � � may return a value of a preceding �in � �	 write operation�

Proposition ���� Consider a write operation wop such that wop�
� �

�	 wop
� �

�	 rop�	 Then�

there exists no read operation rop such that wop
� �

� rop	

Proof� Assume� by way of contradiction� that there exists a read operation rop such that

wop
� �
� rop� We proceed by case analysis�

�� Assume �rst that tr��rop�	 � tr��rop�	� It follows� by Claim ���� that there must be at
least one write operation on X in the interval of operations �rop�� rop�	� �
 let wop� be one
with the maximal broadcasting time among all such write operations� We consider the
intervals �wop�� rop�	� � and �wop�� rop�	� �
 it follows from Proposition ��� and Lemma ���
that the local broadcasting times of val�wop�	 and val�wop�	 are in the same time slice�
as are those of val�wop�	 and val�wop�	� Since every process receives both val�wop�	
and val�wop�	 by time tr�wop�	 
 �d� it follows� by the algorithm� that all values v�� v�
and v� were considered in both rop� and rop� as candidate values to be returned� Thus�
both v� �V v� and v� �V v�� A contradiction�

��



�� Assume now that tr�rop�	 � tr�rop�	� We apply an identical reasoning to the intervals
�wop�� rop�	� � and �wop�� rop�	� � � Let tmax� and tmax� be the maximal time compo�
nents of elements of Pend�X	 of the processes performing rop� and rop�� respectively�
at the time they return� Clearly� by time tr�rop�	� each processes modi�es its Pend�X	
set as a result of a write operation on X completed by time tr�rop�	� Thus� any mod�
i�cation of Pend�X	 at time � tr�rop�	 corresponds to a write operation returning at
time � tr�rop�	
 hence� the broadcasting time of such an operation is greater than the
broadcasting time of any write operation completed by time tr�wop�	� and the addition
of its value to Pend�X	 of any process can only increase tmax�� Hence� tmax� � tmax��
Clearly� tmax� � �j�t

r�wop�		 � �u� and tmax� � �i�t
r�wop�		 � �u� This implies that

tmax� � tr�wop�	 � �u� By the algorithm and the way wop� returns� v� �V v�� Hence�
by the way wop� returns� tmax� � tr�wop�	 � �u� A contradiction�

Clearly� Proposition ���� implies that� after the reordering� the pre�x of � � ending with
rop� is a legal operation sequence� We next prove that this pre�x is also a linearization
of 	 by showing that the reordered operations wop� and wop� �in the non�admissible triple
wop��wop�� rop�	 �overlap� in 	�

Proposition ���� The reordered pre
x of � � ending with rop� is a linearization of 		

Proof� By Proposition ���� the local broadcasting times of wop� and wop� fall in the same
slice� It follows by Proposition ��� that jtbr� �wop�	� tbr� �wop�	j � u
 
� Hence�

tc��wop�	 � tbr� �wop�	 � tbr� �wop�	 
 � 
 u � tr��wop�	� d
 � 
 u � tr��wop�	 �

by assumption on �� as needed�

Since� in permuting � �� we reordered only wop� and wop�� which� by Proposition �����
�overlap�� wop� and wop� may not be performed by the same process� This implies that our
reordering yields an operation sequence preserving the order of operations at each process�
Hence� iviol���	 � iviol��

�	� By induction� it follows that Aas is a linearizable implementation�

��� Complexity Analysis

The upper bound of �� � �	d 
 �u on jWAas j��	 is obvious since� by the algorithm� pi �rst
waits for time at most �u till it exits a �write�prohibited� interval� and then for an additional
time ��� �	d to issue an acknowledgment� We proceed to show that jRAasj��	 � �d
 �u 

minf�� ug
 ��

��



Consider a Readi�X	 event that occurs at time t in 	� We show that a matching response
occurs by time t� � t 
 �d 
 �u 
 minf�� ug 
 �� Observe that such a response may only
be prevented if an update message is delivered to pi� It seems as if a starvation may occur
due to successive update events
 however� the �slicing� technique assures that this is not the
case� Clearly� it is possible that Readi�X	 occurs �at time t	 within some interval quiet i�k	� for
some integer k� but pi enters gap i�k	� by receiving some update message before it may issue a
response to Readi�X	� Such an update message must be received no earlier than time t 
 u�
since� otherwise� LCT i�X	 would have attained the value u� By Claim ���� pi enters quiet i�k
�	
by time � t 
 u
 �u 
 � � t 
 �u 
 �� Since� by Claim ���� jquieti�k 
 �	j � �u �minf�� ug�
LCT i�X	 attains the value u within quiet i�k
�	
 hence� pi issues Returni�X� val�Xi		 by time
� t
 �d
 �u
 minf�� ug
 �� as needed�

Since 	 was chosen arbitrarily� this implies that jRAasj��	 � �d 
 �u 
 minf�� ug 
 �� as
needed�

In addition� it does not seem that the better clock precision achieved by the clock syn�
chronization algorithm of Lundelius and Lynch ���� Section �� can considerably improve our
results�

� Approximately Synchronized Clocks� Lower Bounds

In this section� we present lower bounds for the approximately synchronized clocks model�

This section is organized as follows� In Section ���� we present a lower bound on the sum of
worst�case response times for read and write operations
 this bound applies to a certain class
of sequentially consistent implementations� and it implies a corresponding lower bound for
linearizable implementations� In Sections ��� and ���� we present lower bounds on individual
worst�case response times for read and write operations� respectively
 these bounds apply to
any linearizable implementation�

��� Read and Write Operations

Our lower bound on the sum of the worst�case response times for read and write operations
applies to a certain class of implementations of objects� called object�separable and object�
symmetric
 roughly speaking� such implementations satisfy the following conditions�

�� Each process handles activity involving a certain object independently of all activity�
concurrent or even previous� involving other objects
 hence� the sequence of actions
taken by the process on this object is completely separated from and not a�ected by the
presence or abscence of events involving other objects�

�� Each process handles activity involving a certain object in precisely the same way it
handles activity on any other object�

��



Our formal de�nitions follow�

An implementation A is object�separable if for each process pi� every state s of pi contains jX j
components s�� s�� 
 
 
 � sjX j� one for each object� so that if an interrupt event ik involves object
Xk and �hq� �� iki� hq

��R�S� T i	 is a computation step of process pi� then �i� q�l � ql for every
l �� k
 �ii� q�k� R� S� and T result from the application of pi�s transition function on qk � � and ik�
and �iii� each of R� S and T contains events that involve only object Xk� Thus� the transition
function of a process in an object�separable implementation may be regarded as the �parallel
composition� of jX j transition functions� one for each state component associated with a speci�c
object� If� in addition� these jX j transition functions are �identical�� the implementation is
said to be object�symmetric�

Formally� an object�separable implementation A is object�symmetric if for each process
pi� for any identical up to object interrupt events ik and il involving objects Xk and Xl�
respectively� if �hq� �� iki� hq

��R�S� T i	 and �hbq� �� iki� hbq�� bR� bS� bT i	 are computation steps of pi
such that qk � bql are identical� then each of the pairs R and bR� S and bS� and T and bT are
identical up to object�

We start with two properties which will later be used in the proof of the lower bound on the
sum of the worst�case response times for read and write operations
 these are simple properties
of sequentially consistent� object�separable and object�symmetric implementations� which may
be of independent interest�

Throughout this section� assume that A is any sequentially consistent� object�separable
and object�symmetric implementation of read�write objects�


���� First Property

Loosely speaking� we establish that in any execution of A� objects �identically written� by
processes �respond identically� to read operations� This property is inspired by and generalizes
a result of Lipton and Sandberg ���� Theorem ��� formalized and strengthened by Attiya and
Welch ���� Theorem ���� for the perfect clocks model where u � d� to the approximately
synchronized clocks model�

Formally� consider objects X and Y 
 by the serial speci�cations of X and Y � there exists
an admissible ��execution 	� of A consisting of the following operations at processes pi and pj �

� pi performs a write operation wop i on Y with val�wopi	 � v and tc���wopi	 � �� imme�
diately followed by a read operation ropi on X with tc���ropi	 � tr���wopi	


� pj performs a write operation wopj on X with val�wopj	 � v and tc���wopj	 � �� imme�
diately followed by a read operation ropj on X with tc���ropj	 � tr���wopj	�

We assume that message delays in 	� are as follows� Each message from pl to pj � l �� j�
incurs a delay of d
 each message from pj to pl� l �� j� incurs a delay of d � minf�� ug
 any

��



other message incurs a delay of d�minf�� ug��� Furthermore� we assume that for each l �� j�
�l�t	 � t� while �j�t	 � t�minf�� ug��� We show�

Proposition 
�� val���ropi	 � val���ropj	 � v

Proof� We start with an informal outline of our proof� By �perturbing� 	�� we obtain
an execution 	��� which appears �symmetric� with respect to objects X and Y � and has the
following properties� �i� each process �sees� each event happening at the same �local	 time in
both 	� and 	��
 �ii� each of the objects X and Y undergoes the same �changes� at the same
�local	 time in 	��� By �i�� it su�ces to show that both read operations return v in 	��� which
follows from �ii� and object�symmetry� We now present the details of the formal proof�

We describe how to �perturb� 	� in order to obtain another admissible ��execution 	�� of
A� Consider the real vector �s � hs�� s�� 
 
 
 � sn��i� where sl � minf�� ug�� if l � j� and �
otherwise� Then� 	�� � shift�	�� �s	 with clocks ��� � shift���� �s	� That is� each event at process
pj that occurs at real time t in 	� will occur at real time t�minf�� ug�� in 	��� while times of
events at all other processes remain unchanged
 pj �s clock is shifted forward by minf�� ug���
while all other clocks remain unchanged� By Lemma ����� it follows�

Lemma 
�� 	�� is an execution of A with clocks ��� that is equivalent to 	� with clocks �	

We proceed to show�

Lemma 
�� 	�� is an admissible ��execution of A	

Proof� We �rst show�

Claim 
�� 	�� is a ��execution of A	

Proof� Fix any processes pl and pm� We proceed by case analysis�

�� Assume that none of pl and pm is pj � Then� for any real time t�

j��l�t	� ��m�t	j � j�l�t	� �m�t	j

�by construction of ��	

� jt� tj

�by construction of C	

� � � � �

as needed�

��



�� Assume now that some of pl and pm� say pl� is pj � Then� for any real time t�

j��l�t	� ��m�t	j � j��j�t	� ��m�t	j

� j�j�t	 

minf�� ug

�
� �m�t	j

�by construction of ��	

� jt�
minf�� ug

�



minf�� ug

�
� tj

�by construction of �	

� � � � �

as needed�

We continue to show that all delays are in the range �d� u� d�� Fix any MCS processes pl
and pm� and let dlm be the delay of any message m from pl to pm in 	�� By Lemma ����� the
delay dlm� of m in 	�� is dlm 
 sl � sm� We proceed by case analysis�

�� Assume that both l �� j and m �� j� so that dlm � d � minf�� ug��� and sl � sm � ��
Then� d�lm � d�minf�� ug�� 
 �� � � d�minf�� ug���

�� Assume now that l � j� so that dlm � d�minf�� ug� sl � minf�� ug� and sm � �� Then�
d�lm � d�minf�� ug
 
minf�� ug��� � � d�minf�� ug���

�� Assume now that m � j� so that dlm � d� sl � �� and sm � minf�� ug��� Then�
dlm� � d
 ��minf�� ug�� � d�minf�� ug���

Notice that since minf�� ug�� � u� d�minf�� ug�� � d�u�� � d�u
 hence� d�lm � �d�u� d��
This implies that 	�� is an admissible execution� By Claim ���� it follows that 	�� is an admissible
��execution of A� as needed�

Lemma ��� implies that val��
�
�ropi	 � val���ropi	 and val��

�
�ropj	 � val���ropj	� Thus� it

su�ces to show that val��
�

�ropi	 � val��
�

�ropj	 � v�

Notice that in 	��� by construction� ��i��	 � �� while ��j��	 � ��minf�� ug��
minf�� ug�� �
� Thus� local clocks of pi and pj are identical in 	��� Since all message delays are equal� object
symmetry implies that v�i � v�j � Notice that v�i � v�j � � contradicts sequential consistency�
Therefore� v�i � v�j � v� as needed�

��




���� Second Property

Loosely speaking� we consider an execution of A with �con�icting� write operations on some
object� and �late� read operations on this object� performed after processes �hear� about the
write operations
 we establish that the �late� read operations must return the same value�

Formally� consider an object X � holding the value � at time �� By the serial speci�cation
of X � there exists an admissible ��execution 	� of A consisting of the following operations at
processes pi� pj � pk and pl�

� pi performs a write operation wop i on X with val�wop i	 � vi and tc���wopi	 � �


� pj performs a write operation wopj on X with val�wopj	 � vj and tc���wopj	 � �


� pk performs a read operation ropk on X with tc���ropk	 � d
 jWAj��	


� pl performs a read operation ropl on X with tc���ropl	 � d
 jWAj��	�

Furthermore� we assume that message delays in 	� are all equal� and that all local clocks
are perfectly synchronized�

We show�

Proposition 
�
 val���ropk	 � val���ropl	

Proof� Assume� by way of contradiction� that val���ropk	 �� val���ropl	� We construct an
admissible ��execution 	�� of A that is not sequentially consistent�

We start with an informal outline of our proof� We obtain an admissible ��execution 	�� by
�augmenting� 	� as follows� Each of pk and pl performs an additional later read operation on
X � preceded by a pair of a write and a read operation on two other objects Y and Z� We use
object symmetry to argue that the operations on Y and Z must be �interleaved� in any legal
serialization of 	��� This will prevent all read operations on X by one of pk and pl to precede
all such operations by the other in any legal serialization� Since 	�� is an �augmentation� of
	�� the �early� read operations on X in 	�� must return di�erent values� as in 	�� We use
object separability to argue that each �later� read operation on X returns the same value as
the corresponding earlier read operation by the same process� Since read operations on X by
pk and pl must be �interleaved�� this contradicts sequential consistency� We now present the
details of the formal proof�

Consider objects Y and Z� By the serial speci�cations of X � Y and Z� there exists an
admissible ��execution 	�� of A consisting of the following operations at processes pi� pj � pk
and pl�

� pi performs a write operation wop i on X with val��
�

�wopi	 � xi and tc
��
�

�wopi	 � �


��



� pj performs a write operation wopj on X with val��
�

�wopj	 � xj and tc
��
�

�wopj	 � �


� pk performs a read operation ropk on X with tc
��
�

�ropk	 � tc���ropk	� followed by a write

operation wopk on Y with val��
�

�wopk	 � y and tc
��
�

�wopk	 � tr����ropk	� followed by a

read operation rop
���
k on Z with tc

��
�

�rop
���
k 	 � tr

��
�

�wopk	� and �nally followed by a read

operation rop
���
k on X with tc

��
�

�rop
���
k 	 � tr

��
�

�rop
���
k 	


� pl performs a read operation ropl on X with tc
��
�

�ropl	 � tc���ropl	� followed by a write

operation wop l on Z with val��
�

�wopk	 � z and tc
��
�

�wopl	 � tr
��
�

�ropl	� followed by a

read operation rop
���
l on Y with tc

��
�

�rop
���
l 	 � tr

��
�

�wopl	� and �nally followed by a read

operation rop
���
l on X with tc

��
�

�rop
���
l 	 � tr

��
�

�rop
���
l 	�

Furthermore� we assume that all message delays in 	�� are equal� and that all local clocks
are perfectly synchronized�

By object separability� val��
�

�rop
���
k 	 � val��

�

�ropk	 and val��
�

�rop
���
l 	 � val��

�

�ropl	� Since

all message delays are equal� object symmetry implies that either val�rop
���
k 	 � val�wopl	 and

val�rop
���
l 	 � val�wopk	� or val�rop

���
k 	 � val�rop

���
l 	 � �� However� notice that val�rop

���
k 	 �

val�rop
���
l 	 � � violates sequential consistency� It follows that val�rop

���
k 	 � val�wopl	 and

val�rop
���
l 	 � val�wopk	�

Since 	�� is sequentially consistent� there exists a legal serialization � of 	�� such that for

each MCS process pi� ops�	��	 j i � � j i� Clearly� either rop
���
k

�
�	 ropl or rop

���
l

�
�	 ropk


without loss of generality� assume the former� Since 	�� j l � � j l� ropl
�
�	 wopl� By the serial

speci�cation of Z� wop l
�
�	 rop

���
k � Since 	�� j k � � j k� rop

���
k

�
�	 rop

���
k � It follows that

ropl
�
�	 rop

���
k � A contradiction�

We now present our main lower bound result�

Theorem 
�� For the approximately synchronized clocks model� in any sequentially consistent�
object�separable and object�symmetric implementation A of at least three objects accessed by at
least four processes�

�jRAj
 jWAj	��	 � d

minf�� ug

�



Proof� Assume� by way of contradiction� that there exists a sequentially consistent� object�
separable and object�symmetric implementation A of such objects for which �jRAj
jWAj	��	 �
d
 minf�� ug��� We construct an admissible ��execution of A that is not sequentially consis�
tent�

��



We start with an informal outline of our proof� We construct an admissible ��execution 	 of
A in which each of twoMCS processes pk and pl performs an �early� and a �late� read operation
on an object X 
 we use object�symmetry to �force� pk and pl to either return di�erent values
in di�erent order� which� clearly� violates sequential consistency� or to maintain �inconsistent�
copies of the same object� also shown to violate sequential consistency� These di�erent values
are written by �con�icting� write operations on X by processes pi and pj � We appropriately
choose message delays in 	 so that� under the assumption �jRAj
 jWAj	��	 � d
minf�� ug���
pk �gathers� fast information about the write operation by pi� but cannot �hear� about the
write operation by pj till late� �The roles of delays of messages from pi and pj are reversed for
pl�	 Thus� by object�symmetry� read operations by pk and pl return di�erent values in di�erent
order� establishing the contradiction� We now present the details of the formal proof�

Consider objects X and Y � each holding the value � at time �� By the serial speci�cations
ofX and Y � there exists an admissible ��execution 	�� ofA consisting of the following operations
at processes pi� pj� pk and pl�

� pi performs a write operation wopi onX with val�wop i	 � vi and tc��wopi	 � minf�� ug���
followed by a read operation ropi on Y with tc��ropi	 � tr��wop i	


� pj performs a write operation wopj onX with val�wopj	 � vj and t
c
��wopj	 � minf�� ug���

followed by a read operation ropj on Y with tc��ropj	 � tr��wopj	


� pk performs a write operation wopk on Y with val�wopk	 � vk and tc��wopk	 � �� followed

by two consecutive read operations rop
���
k and rop

���
k on X � with tc��rop

���
k 	 � tr��wopk	

and tc��rop
���
k 	 � jWAj��	 
 minf�� ug�


� pl performs a write operation wop l on Y with val�wopl	 � vl and tc��wopl	 � �� followed

by two consecutive read operations rop
���
l and rop

���
l on X � with tc��rop

���
l 	 � tr��wopl	

and tc��rop
���
l 	 � jWAj��	 
 minf�� ug���

We assume that the message delays in 	 are as follows� Each message from pi to pm� m �� i�
incurs a delay of either d if m � l� or d�u if m �� l
 each message from pj to pm� m �� j� incurs
a delay of either d if m � k� or d � u if m �� k
 any other message incurs a delay of d � u���
Furthermore� we assume that in 	� �m�t	 � t if m �� fi� jg� or t�minf�� ug�� if m � fi� jg� We
remark that any message sent by pi or pj while performing write operations on X is delivered
before the late read operations on X by pk and pl are invoked�

Since �jRAj 
 jWAj	��	 � d 
 minf�� ug��� it follows that tr��rop
���
k 	 � d 
 minf�� ug���

hence� the assumed message delays imply that pk may not receive a message from pj till after

time tr��rop
���
k 	� Thus� Proposition ��� applies on the pre�ces of 	 j i and 	 j j consisting of all

events at pi and pj occurring no later than time tc��rop
���
k 	 in 	 to yield that val�rop

���
k 	 � vi�

A symmetric argument establishes that val�rop
���
l 	 � vj �

By the symmetry in delays of messages sent by processes pi and pj �writing to X	 to
processes pk and pl� there are two possibilities� either val���ropk	 � xj and val���ropl	 � xi�

��



or val���ropk	 � xi and val���ropl	 � xj � Clearly� the �rst possibility immediately con�
tradicts sequential consistency� On the other hand� the second possibility contradicts� by
object�separability� Proposition ���� Thus� in every case� a contradiction is reached�

We remind the reader that although� apparently� the assumption of at least three objects
is not explicitly used in the proof of Theorem ���� this assumption is necessary since it is used
in the proof of Proposition ����

Since linearizability implies sequential consistency� it immediately follows�

Corollary 
�� For the approximately synchronized clocks model� in any linearizable� object
separable and object symmetric implementation of at least three objects accessed by at least
four processes�

�jRAj
 jWAj	��	 � d

minf�� ug

�



��� Read Operations

We prove a lower bound on the worst�case response time for a read operation
 this applies to
any linearizable implementation of read�write objects� under reasonable assumptions on the
sharing pattern of processes� More speci�cally� we consider any linearizable implementation of
read�write objects including one with at least two readers and a distinct writer
 we show that
the worst�case response time for a read operation on this object is no less than minf�� ug���
The proof constructs an execution for which if read operations are too short� then linearizability
can be violated by appropriately shifting process� histories� We show�

Theorem 
�
 Assume that A is a linearizable implementation of read�write objects including
an object X with at least two readers and a distinct writer	 Then� for the approximately
synchronized clocks model�

jRA�X	j��	 � minf�� ug�� 


Proof� Assume� by way of contradiction� that there exists a linearizable implementation A
of X for which jRA�X	j��	� minf�� ug��� We construct an admissible ��execution of A which
is not linearizable�

Let pi and pj be two processes that read X � and let pk be a process that writes X � An
informal outline of our proof follows� We start with an execution in which pi reads � from
X � then pj and pi alternate reading from X while pk is writing x to X � and �nally pj reads x
from X � Thus� there exists a read operation rop�� say by pi� that returns � and is immediately
followed by a read operation rop� by pj that returns x� If pi�s process history is shifted later
by minf�� ug��� while pj �s process history is shifted earlier by minf�� ug��� the result is an

��



execution in which rop� precedes rop�
 in the meanwhile� processes� clocks are appropriately
shifted so that pi and pj still �see� the same events occurring at the same local time in the
new execution� Since rop� returns x� while rop� returns �� this contradicts linearizability� We
now present the details of the formal proof�

Let b � djWA�X	j��	�minf�� uge� By the serial speci�cation of X � there exists an ad�
missible ��execution 	 of A consisting of the following operations at processes pi� pj � and
pk�

� for each l� � � l � b� pi performs a read operation rop
��l�
i on X with tc��rop

��l�
i 	 �

lminf�� ug


� for each l� � � l � b� pj performs a read operation rop
��l���
j on X with tc��rop

��l���
j 	 �

lminf�� ug
minf�� ug��


� pk performs a write operation wopk on X with tc��wopk	 � minf�� ug�� and val�wopk	 �
x�

We assume that the message delays in 	 are as follows� Each message from pi to pl� l �� i�
incurs a delay of either d if l � j or d�minf�� ug�� if l �� j
 each message from pj to pl� l �� j�
incurs a delay of either d �minf�� ug if l � i or d � minf�� ug�� if l �� i
 each message from
pl to pi or pj � l �� fi� jg� incurs a delay of d�minf�� ug��� Moreover� we assume that all local
clocks are perfectly synchronized in execution 	�

Figure ��a	 depicts the execution 	� where time runs from left to right� each horizontal line
represents events at a single process and time points that are used in the proof are marked at
the bottom�

Since A is linearizable� there exists a legal linearization � of 	 such that for each MCS
process pl� ops�		 j l � � j l� The following sequence of simple claims describes the sequence
� �

Claim 
�� rop
���
i

�
�	 wopk

Proof� Clearly�

tr��rop
���
i 	 � tc��rop

���
i 	 
 jRA�X	j��	

�by de�nition of jRA�X	j��		

� � 

minf�� ug

�
�by construction of 	 and assumption on jRA�X	j��		

� tc��wopk	

�by construction of 		 


��



pk
wopk

pi
rop

���
i rop

���
i � � � � � �

rop
��b�
i

pj
rop

���
j � � � � � �

rop
��b���
j

Time � � � � � � � � � �b� �

�a� The execution �

pk
wopk

pi
rop

���
i � � � � � �

rop
��b�
i

pj
rop

���
j rop

���
j � � � � � �

rop
��b���
j

Time � � � � � � � � � �b� �

�b� The execution ��

Figure �� The executions 	 and 	�� Time is measured in units of minf�� ug��
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Hence� by de�nition of
�
�	� rop

���
i

�
�	 wopk � which implies� by de�nition of linearization�

that rop
���
i

�
�	 wopk� as needed�

We continue by showing�

Claim 
��� wopk
�
�	 rop

��b���
j

Proof� Clearly�

tr��wopk	 � tc��wopk	 
 jWA�X	j��	

�by de�nition of jWA�X	j��		

�
minf�� ug

�

 bminf�� ug

�by construction of 	 and de�nition of b	

� tc��rop
��b���
j 	

�by construction of 		 


Hence� by de�nition of
�
�	� wopk

�
�	 rop��b���

j � which implies� by de�nition of linearization�

that wopk
�
�	 rop

��b���
j � as needed�

For each r� � � r � �b
 �� let rop�r� � rop
�r�
i if r is even� or rop

�r�
j if r is odd� We show�

Claim 
��� For each r� � � r � �b� rop�r�
�
�	 rop�r���

Proof� Clearly� for any r� � � r � �b�

tr��rop
�r�	 � tc��rop

�r�	 
 jRA�X	j��	

�by de�nition of jRA�X	j��		

� tc��rop
�r�	 


minf�� ug

�
�by assumption on jRA�X	j��		

� tc��rop
�r���	�

minf�� ug

�



minf�� ug

�
�by construction of 		

� tc��rop
�r���	 


Hence� by de�nition of
�
�	� rop�r�

�
�	 rop�r���� which implies� by de�nition of linearization�

that rop�r�
�
�	 rop�r���� as needed�

��



It follows by Claims ���� ���� and ���� that there exists an index r�� � � r� � �b� such
that rop�r��

�
�	 wopk

�
�	 rop�r����� Since � is a legal sequence of operations� it follows that

val��rop
�r��	 � � and val��rop

�r����	 � x� Assume� without loss of generality� that r� is even�
so that rop�r�� is a read operation by process pi�

We now show how to �perturb� 	 to obtain another admissible ��execution 	� of A that is
not linearizable� De�ne the real vector �s � hs�� s�� 
 
 
 � sn��i as follows� For each index l � �n��
sl is equal to �minf�� ug�� if l � i� minf�� ug�� if l � j� and � otherwise� Then� 	� � shift�	��s	
with clocks �� � shift��� �s	� That is� each event at process pi that occurs at real time t in 	
will occur at real time t 
minf�� ug�� in 	�� each event at process pj that occurs at real time
t in 	 will occur at real time t �minf�� ug�� in 	�� and times of events at all other processes
remain unchanged
 pi�s local clock is shifted backward by minf�� ug��� pi�s local clock is shifted
forward by minf�� ug��� and all other clocks remain unchanged� The execution 	� is depicted
in Figure ��b	� using the same conventions as in Figure ��a	�

By Lemma ����� it follows that�

Lemma 
��� 	� is an execution of A with clocks �� that is equivalent to 	 with clocks �	

We proceed to show�

Lemma 
��� 	� is an admissible ��execution of A	

Proof� Since all local clocks are perfectly synchronized in execution 	 and

jk�skmax � k�skminj � j
minf�� ug

�
� ��

minf�� ug

�
	 j � �

minf�� ug

�
� minf�� ug � � �

Lemma ���� immediately implies that 	� is a ��execution� We continue to show that all delays
are in the range �d � u� d�� Fix any MCS processes pl and pm� Let dlm be the delay of any
message m from pl to pm in 	
 By Lemma ����� the delay d�lm of m in 	� is dlm
sl�sm� Clearly�
if l �� fi� jg and m �� fi� jg� so that sl � sm � �� then d�lm � dlm� We proceed to consider all
remaining cases�

�� Assume that l � i andm � j� so that dlm � d� sl � �minf�� ug��� and sm � minf�� ug���
Then� d�lm � d�minf�� ug�

�� Assume that l � j and m � i� so that dlm � d � minf�� ug� sl � minf�� ug��� and
sm � �minf�� ug��� Then� d�lm � d�

�� Assume that l � i and m �� j� so that dlm � d � minf�� ug��� sl � �minf�� ug��� and
sm � �� Then� d�lm � d�minf�� ug�

�� Assume that l � j and m �� i� so that dlm � d � minf�� ug��� sl � minf�� ug��� and
sm � �� Then� d�lm � d�

��



�� Assume that m � i and l �� j� so that dlm � d � minf�� ug��� sl � �� and sm �
�minf�� ug��� Then� d�lm � d�

�� Assume that m � j and l �� i� so that dlm � d � minf�� ug��� sl � �� and sm �
minf�� ug��� Then� d�lm � d�minf�� ug�

Since d�u � d�minf�� ug � d� it follows that in all cases d�lm � �d�u� d�� as needed� This
completes the proof that 	� is an admissible ��execution of A�

Since A is linearizable� there exists a legal linearization � � of 	� such that for each MCS
process pl� ops�	

�	 j l � � � j l� We show�

Claim 
��� rop�r���� � �

�	 rop�r��

Proof� Clearly�

tr���rop
�r����	 � tc���rop

�r����	 
 jRA�X	j��	

�by de�nition of jRA�X	j��		

� tc���rop
�r����	 


minf�� ug

�
�by assumption on jRA�X	j��		

� tc��rop
�r����	�

minf�� ug

�



minf�� ug

�
�by construction of 	�	

� tc��rop
�r����	

� tc��rop
�r��	 


minf�� ug

�
�by construction of 		

� tc���rop
�r��	

�by construction of 	�	 


Hence� by de�nition of
��

�	� rop�r���� ��

�	 rop�r��� which implies� by de�nition of lineariza�

tion� that rop�r���� � �
�	 rop�r��� as needed�

However� Lemma ���� implies that val���rop
�r����	 � x and val���rop

�r��	 � �
 since � � is

a legal operation sequence� this implies that rop�r��
� �
�	 rop�r����� A contradiction�

We remark that the general structure of the proof of Theorem ��� follows the one of ����
Theorem ���� showing a lower bound of u�� for the imperfect clocks model� However� due
to the more delicate timing assumptions in the approximately synchronized clocks model� our
proof has required more careful timing arguments� Our improvement over ���� Theorem ����
is achieved by carefully choosing message delays in shifting process histories�

��



��� Write Operations

We �nally show that� under reasonable assumptions on the sharing pattern of processes� in any
linearizable implementation of read�write objects including one with at least two writers and a
distinct reader� the worst�case response time for a write operation is at least minf�� ug��� The
proof constructs an execution for which if write operations are too short� then linearizability
can be violated by appropriately shifting process histories�

Theorem 
��
 Assume X is an object with at least two writers and a distinct reader	 Then�
for the approximately synchronized clocks model� in any linearizable implementation A of X�
jWA�X	j��	� minf�� ug��	

Proof� Let pi and pj be two processes that write X � and let pk be a process that reads X �
Assume� by way of contradiction� that there exists a linearizable implementation A of X for
which jWA�X	j��	 � minf�� ug��� We construct an admissible ��execution of A that is not
linearizable�

An informal outline of our proof follows� We start with an execution in which pi writes xi
to X � then pj writes xj to X � and �nally pk reads xj from X � If pi�s process history is shifted
later by minf�� ug��� while pj �s process history is shifted earlier by minf�� ug��� the result is
an execution in which the write operation by pj precedes the write operation by pi� while pk
still �sees� the same events occurring at the same local time
 thus� pk still reads xj from X �
which contradicts linearizability� We now present the details of the formal proof�

By the serial speci�cation of X � there exists an admissible� synchronized execution 	 of A
consisting of the following operations at processes pi� pj and pk�

� pi performs a write operation wop i on X with tc��wopi	 � � and val�wopi	 � xi


� pj performs a write operation wopj on X with tc��wopj	 � minf�� ug�� and val�wopj	 �
xj 


� pk performs a read operation ropk on X with tc��ropk	 � minf�� ug�

We assume that the message delays in 	 are as follows� Each message from pi to pl� l �� i�
incurs a delay of either d if l � j or d�minf�� ug�� if l �� j
 each message from pj to pl� l �� j�
incurs a delay of either d �minf�� ug if l � i or d � minf�� ug�� if l �� i
 each message from
pl to pi or pj � l �� fi� jg� incurs a delay of d�minf�� ug��� Moreover� we assume that all local
clocks in � are perfectly synchronized�

Figure ��a	 depicts the execution 	� where time runs from left to right� each horizontal line
represents events at a single process and time points that are used in the proof are marked at
the bottom�

Since A is linearizable� there exists a legal linearization � of 	 such that for each MCS
process pl� ops�		 j l � � j l� The following sequence of simple claims describes the sequence
� �
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pk
ropk
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wopi
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Time � � �

�a� The execution �
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Time � � �

�b� The execution ��

Figure �� The executions 	 and 	�� Time is measured in units of minf�� ug��
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Claim 
��� wopi
�
�	 wopj

Proof� Clearly�

tr��wopi	 � tc��wopi	 
 jWA�X	j��	

�by de�nition of jWA�X	j��		

� � 

minf�� ug

�
�by construction of 	 and assumption on jWA�X	j��		

� tc��wopj	

�by construction of 		 


Hence� by de�nition of
�
�	� wopi

�
�	 wopj � which implies� by de�nition of linearization�

that wop i
�
�	 wopj � as needed�

We continue to show�

Claim 
��� wopj
�
�	 ropk

Proof� Clearly�

tr��wopj	 � tc��wopj	 
 jWA�X	j��	

�by de�nition of jWA�X	j��		

� � 

minf�� ug

�
�by construction of 	 and assumption on jWA�X	j��		

� tc��ropk	

�by construction of 		 


Hence� by de�nition of
�
�	� wopj

�
�	 ropk� which implies� by de�nition of linearization�

that wopj
�
�	 ropk� as needed�

Since � is a legal operation sequence� it follows by Claims ���� and ���� that val��ropk	 �
val��wopj	 � xj �

We now show how to �perturb� 	 to obtain an admissible ��execution 	� of A that is not
linearizable� De�ne the real vector �s � hs�� s�� 
 
 
 � sn��i as follows� For each index l � �n�� sl
is equal to �minf�� ug�� if l � i� minf�� ug�� if l � j and � otherwise� Then� 	� � shift�	��s	
with clocks �� � shift��� �s	� That is� each event at process pi that occurs at real time t in 	
will occur at real time t 
minf�� ug�� in 	�� each event at process pj that occurs at real time
t in 	 will occur at real time t �minf�� ug�� in 	�� and times of events at all other processes
remain unchanged
 pi�s local clock is shifted backward by minf�� ug��� pj �s local clock is shifted
forward by minf�� ug��� and all other clocks remain unchanged� The execution 	� is depicted
in Figure ��b	� using the same conventions as in Figure ��a	� By Lemma ����� it follows that�
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Lemma 
��
 	� is an execution with clocks �� that is equivalent to 	 with clocks �	

We proceed to show�

Lemma 
��� 	� is an admissible ��execution of A	

Proof� Since all local clocks are perfectly synchronized in execution 	 and

jk�skmax � k�skminj � j
minf�� ug

�
� ��

minf�� ug

�
	 j � �

minf�� ug

�
� minf�� ug � � �

Lemma ���� immediately implies that 	� is a ��execution� We continue to show that all delays
are in the range �d � u� d�� Fix any MCS processes pl and pm� Let dlm be the delay of any
message m from pl to pm in 	� By Lemma ����� the delay d�lm of m in 	� is dlm 
 sl � sm�
Clearly� if l �� fi� jg and m �� fi� jg� so that sl � sm � �� then d�lm � dlm� and d�lm is in the
range �d� u� d� since dlm is� We proceed to consider all remaining cases�

�� Assume that l � i andm � j� so that dlm � d� sl � �minf�� ug��� and sm � minf�� ug���
Then� d�lm � d�minf�� ug�

�� Assume that l � j and m � i� so that dlm � d � minf�� ug� sl � minf�� ug��� and
sm � �minf�� ug��� Then� d�lm � d�

�� Assume that l � i and m �� j� so that dlm � d � minf�� ug��� sl � �minf�� ug��� and
sm � �� Then� d�lm � d�minf�� ug�

�� Assume that l � j and m �� i� so that dlm � d � minf�� ug��� sl � minf�� ug��� and
sm � �� Then� d�lm � d�

�� Assume that m � i and l �� j� so that dlm � d � minf�� ug��� sl � �� and sm �
�minf�� ug��� Then� d�lm � d�

�� Assume that m � j and l �� i� so that dlm � d � minf�� ug��� sl � �� and sm �
minf�� ug��� Then� d�lm � d�minf�� ug�

Since d� u � d�minf�� ug � d� it follows that in all cases d�lm � �d� u� d�� This completes
the proof that 	� is an admissible ��execution of A�

Since A is linearizable� Lemma ���� implies that there exists a legal linearization � � of 	�

such that for each MCS process pl� ops�	�	 j l � � � j l� The following sequence of simple claims
describes the operation sequence � ��

Claim 
��� wopj
� �

�	 wop i

��



Proof� Clearly�

tr���wopj	 � tc���wopj	 
 jWA�X	j��	

�by de�nition of jWA�X	j��		

� tc���wopj	 

minf�� ug

�
�by assumption on jWA�X	j��		

� tc��wopj	�
minf�� ug

�



minf�� ug

�
�by construction of 	�	

� tc��wopj	

� tc��wopi	 

minf�� ug

�
�by construction of 		

� tc���wop i	

�by construction of 	�	 


Hence� by de�nition of
��

�	� wopj
��

�	 wop i� which implies� by de�nition of linearization�

that wopj
� �
�	 wopi� as needed�

We continue to show�

Claim 
��� wopi
� �

�	 ropk

Proof� Clearly�

tr���wopi	 � tc���wop i	 
 jWA�X	j��	

�by de�nition of jWA�X	j��		

� tc���wop i	 

minf�� ug

�
�by assumption on jWA�X	j��		

� tc��wopi	�
minf�� ug

�



minf�� ug

�
�by construction of 	�	

� tc��wopi	

� tc��ropk	 

minf�� ug

�
�by construction of 		

� tc���ropk	

�by construction of 	�	 


��



Hence� by de�nition of
��

�	� wop i
��

�	 ropk � which implies� by de�nition of linearization�

that wop i
� �
�	 ropk� as needed�

Since � is a legal operation sequence� it follows by Claims ���� and ���� that val��ropk	 �
val�wopj	 � xj � Since � � is a legal operation sequence� it follows by Claims ���� and ���� that
val���ropk	 � val�ropi	 � xi� However� Lemma ���� implies that val���ropk	 � val��ropk	� A
contradiction�

We remark that the general structure of the proof of Theorem ���� follows the one of ����
Theorem ���� showing a corresponding lower bound of u�� for the imperfect clocks model�
However� due to the more delicate timing assumptions in the approximately synchronized
clocks model� our proof has required more careful timing arguments�

We can show that the algorithm in Theorem ��� for the perfect clocks model still works
for the imperfect clocks model� and� hence� for the approximately synchronized clocks model
too� if there are either a single reader and more than one writers or a single writer and more
than one readers��See ���� Section ������ for a corresponding observation�	 This implies that
the assumptions about the numbers of readers and writers made in Theorems ��� and �����
respectively� are necessary�

� Imperfect Clocks

In this section� we state our upper and lower bounds for the imperfect clocks model�

��� Upper Bound

Fix any arbitrarily small constant � subject to the constraint � � � � minf�u� d� ug� Since
the imperfect clocks model can be simulated by the approximately synchronized clocks model
with � � u� Theorem ��� immediately implies�

Theorem ��� For the imperfect clocks model� there exists a linearizable implementation Aimp

of read�write objects that achieves jRAimp j��	 � �d
�u
 � and jWAas j��	 � ����	d
�u�
for any constant � such that � � � � �� u�d	

��� Lower Bounds

Theorem ��� immediately implies�

��



Theorem ��� For the imperfect clocks model� in any sequentially consistent� object�separable
and object�symmetric implementation A of at least three objects accessed by at least four pro�
cesses�

�jRAj
 jWAj	��	 � d

u

�



Since linearizability implies sequential consistency� Theorem ��� immediately implies�

Corollary ��� For the imperfect clocks model� in any linearizable� object�separable and object�
symmetric implementation A of at least three objects accessed by at least four processes�

�jRAj
 jWAj	��	 � d

u

�



Theorem ��� immediately implies�

Theorem ��� Assume X is an object with at least two readers and a distinct writer	 Then�
for the imperfect clocks model� in any linearizable implementation A of X� jRA�X	j��	 � u��	

Finally� Theorem ���� immediately implies�

Theorem ��
 Assume X is an object with at least two writers and a distinct reader	 Then� for
the imperfect clocks model� in any linearizable implementation A of X� jWA�X	j��	 � u��	

	 Discussion and Future Research

In this section� we provide a review of our results� a survey of related work� and directions for
further research�

��� Review

We have shown a collection of lower and upper bounds for linearizable implementations of
shared memory consisting of read�write objects� in models of perfect� imperfect� and approx�
imately synchronized clocks� For the perfect clocks model� we presented a parameterized
linearizable implementation� achieving worst�case response times of �d and ��� �	d for read
and write operations� respectively� where � is a trade�o� parameter� � � � � �� For the
approximately synchronized clocks model� our linearizable implementation achieves worst�case
response times of less than �d
�u
minfdelta� ug
 �� and of ����	d
�u for read and write
operations� respectively� where 
 � � is an arbitrarily small constant� For the approximately
synchronized clocks model� we also showed a lower bound of d
minf�� ug�� on the sum of these

��



worst�case response times� assuming certain symmetry properties for the implementations� and
a lower bound of minf�� ug�� on the worst�case response times for read and write operations�
Although there remains a gap between our upper and lower bounds for the approximately
synchronized clocks model� we feel that our work substantially answers the question of how
the time requirements for read and write operations depend on the timing uncertainties of this
model� as measured by the parameters d and u and �� In particular� we have shown that only
a single �long communication� �i�e�� a communication requiring time d	 is required for both
read and write operations� and this communication cannot be avoided�

This paper continues the complexity�theoretic study of the cost of implementing memory
objects in a message�passing system� under various correctness conditions and timing assump�
tions� which was initiated in ���� ��� ���� Although our model ignores several important prac�
tical issues� like� e�g�� limitations on local memory size� clock drift� and �hot spots�� we believe
that our algorithms can be adapted to work in more realistic systems� We also believe that
our results contribute to the understanding of the �ne and intrinsic relation between sequential
consistency and linearizability�

��� Related Work and Comparison

In this section� we review works that present time bounds for message�passing implementations
of read�write objects under sequential consistency and linearizability� As those works are
directly related to our work� we comment in detail on the relation between the results they
provide and our results�

Attiya and Welch ��
�

For the perfect clocks model� Attiya and Welch ���� Theorems ��� � ���� present a fast read
linearizable implementation that guarantees time � for a read and time d for a write� and
another fast write linearizable implementation that guarantees the reverse� These implemen�
tations are the special cases of our implementation where � � � and � � �� respectively� Both
the implementations in ���� and ours rely heavily on using timers and use messages that carry
explicit timing information�

Attiya and Welch next consider the imperfect clocks model
 they present ���� Theorems
��� and ���� a sequentially consistent implementation that guarantees time � for a read and
time �d for a write� and another sequentially consistent implementation that guarantees the
reverse� Both of these implementations use as a subroutine a fast atomic broadcast algorithm
they devise� but their modularity allows the use of any atomic broadcast algorithm like e�g��
the one in ����� They also show lower bounds of u�� and u�� for read and write operations�
respectively�

��



Attiya and Friedman ����

Attiya and Friedman ���� introduced a new hybrid condition for shared memory multipro�
cessors� called hybrid consistency� which combines the expressiveness of strong consistency
conditions� like� e�g�� sequential consistency and linearizability� and the e�ciency of weak con�
sistency conditions� like� e�g�� pipelined RAM ���� and causal memory ���� In hybrid consistency�
memory access operations are classi�ed as either weak or strong� Attiya and Friedman de�ned
two versions of hybrid consistency� one based on sequential consistency and another based on
linearizability
 they presented a completely asynchronous message�passing implementation of
hybrid consistency based on linearizability allowing for instantaneous weak operations while
the response for strong operations is linear in the network delay d�

Chaudhuri� Gawlick and Lynch ����

Building on our work� Chaudhuri� Gawlick and Lynch ���� Section �� show how to simulate
our algorithm for the perfect clocks model �Section �	 in the imperfect clocks model and
obtain a linearizable algorithm for that model which is simpler than ours� Their algorithm
achieves worst�case response times of u 
 c and d 
 u � c for read and write operations�
respectively� where c is a trade�o� constant between � and d� For purpose of comparison� set
c � �d� where � � � � �� so that these bounds can be written as �d 
 u and ��� �	d 
 u�
respectively� These bounds are more tight than ours in terms of the number of additive
multiples of the message delay uncertainty u� However� since our algorithm for the perfect
clocks model uses messages that carry explicit timing information� the simulation algorithm
in ���� does so too
 in this aspect� the simulation algorithm in ���� is inferior to a fairly obvious
modi�cation of our algorithm for the imperfect clocks model that uses messages of bounded
size� Furthermore� we believe that the time�slicing technique used by our main algorithm
not only provides more insight into the inherent di�culties of implementing linearizability in
message�passing environments� but will also prove useful to e�ciently solving other problems
in distributed computing�

Kosa ����

Kosa ���� considers the worst�case response time for operations on abstract data types and
studies the combined e�ect of the amount of synchrony� the strength of the consistency guar�
antee and algebraic properties of the operations on this response time� For a wide variety of
algebraic properties� Kosa extends the following results� already shown for read�write objects
by results in this paper and in �����

� sequential consistency and linearizability are equally costly in the perfect clocks model


� linearizability is more expensive in the imperfect clocks model than in the perfect clocks
model ����� Theorems ��� and ���� are shown using the same techniques as Theorems ����
and ���� respectively� in this paper	


��



� sequential consistency is cheaper than linearizability in the imperfect clocks model�

For sake of completeness and comparison� we summarize in Table � our main results and
other related results known to us that provide similar bounds for message�passing implemen�
tations of sequential consistency and linearizability�

��� Future Research

Our work leaves open several interesting questions� Most obviously� it would be interesting
to see if our bounds for the approximately synchronized clocks model� and� hence� for the
imperfect clocks model� can be further improved� �Partial improvements have been presented
in ���� for the case of upper bounds for the imperfect clocks model
 see Section ��� for a
description�	

Our results assume that clocks are available to processes
 what if processes have no timing
information at all and computations are completely asynchronous What is the tightest coef�
�cient of d bounding jRj 
 jW j for sequentially consistent or linearizable implementations of
read�write objects in this case Also� it will be very interesting to obtain bounds on the worst�
case response times of implementing other memory objects like� e�g�� atomic snapshots ����
under sequential consistency and linearizability� How does strengthening of the shared mem�
ory primitives a�ect the worst�case response times �Partial answers have been provided by
Friedman �����	

It would be interesting to examine the bene�ts of using timing information for implement�
ing hybrid consistency ���� and see how the time requirements for performing weak and strong
operations depend on the timing uncertainties of the model studied in this paper� Another
interesting open question related to hybrid consistency is whether hybrid consistency based on
sequential consistency allows for more e�cient implementations than hybrid consistency based
on linearizability� Lower and upper bounds shown in ���� imply that as far as fast implemen�
tations are considered� i�e�� implementations for which the response times for weak read and
weak write operations are both strictly less than d��� there is no signi�cant improvement in
performance for hybrid consistency based on sequential consistency over hybrid consistency
based on linearizability� However� results in this paper and in ���� suggest that a higher gain
in performance might be possible if the implementation is not required to be fast�

A wide avenue for further research suggested by our work is the study of the costs of imple�
menting sequentially consistent and linearizable objects in the presence of partial synchrony�
The assumption of clocks that advance at the same rate� that of real time� is crucial for the
results in this paper� It would be interesting to see what might be achieved if there were a
known bound on the relative speeds of processors� clocks� or if no such bound existed� Some
preliminary steps in this direction have been taken by Eleftheriou and Mavronicolas ����� in
the context of the drifting clocks model and under di�erent assumptions on message delays�
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Timing Correctness Cost
Model Condition Measure Lower bounds Upper bounds

jRj � �d � � � � � � �
Perfect Sequential �� � � and � also in �����
Clocks Consistency� jWj � ��� ��d � � � � � � �
�� � u � �� Linearizability �� � � and � also in �����

jRj� jWj d ���� ��� d �also in �����
Sequential jRj � �
Consistency jWj � �

jRj� jWj 	 �
�d� 
u�minf�� ug� � 


Approximately jRj minf�� ug	� � � � � � �� u	d and
Synchronized � � � � minf�u� d� ug
Clocks �
�� � � ��� u � �� ��� ��d � 
u �

Linearizability jWj minf�� ug	� � � � � � �� u	d
�
d� �u�minf�� ug� � ��

jRj� jWj d� u	� � � � � � minf�u� d� ug
�

Sequential jRj � � ����
Consistency jWj � � ����

jRj� jWj 	 �d ����
�d� �u� �� �

jRj 	 � � � � �� u	d and
Imperfect u	� ���� � � � � minf�u� d� ug
Clocks �d� u� � � � � � ����
�� ��� ��� ��d � 
u �

u � �� Linearizability jWj 	 �also in ����� � � � � �� u	d
��� ��d � u� � � � � � ����
d� �u� ��

jRj� jWj 	 � � � � minf�u� d� ug
d� �u ����

jRj � �d ����
No Clocks Linearizability jWj � �d ����

jRj� jWj � ��d ����

Table �� Summary of time bounds for message�passing implementations of read�write objects
under sequential consistency and linearizability� Results marked by � are shown in this paper

references for other results are also given� An arrow � �resp�� 
	 indicates that the result follows
from the corresponding result for the stronger �resp�� weaker	 timing model�
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For additional work on memory consistency conditions and related issues of complexity�
implementations� performance� veri�cation and programming� the reader is referred to a sub�
stantial body of recent research ��� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ����
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