
Distributed Computing Theory To Date

�Part I� Models and an Example�

Marios Mavronicolas
�

January ��� ����

Abstract

Distributed Computing Theory has been undergoing a series of spectacular developments

in the last two decades or so� such developments have turned it into one of the most vivid

and challenging �elds of modern Theoretical Computer Science� In this four�part survey�

we attempt to highlight some of the most thrilling developments� both by now classical and

more recent� in this young �eld� Our presentation is structured around three main axes�

� canonical problems in the �eld� and results concerning them that have spawned a

whole bunch of subsequent research activities and �ndings �part II��

� theoretical and mathematical concepts� techniques and tools that have contributed to

the establishment of the formal foundations of the �eld �part II��

� some of the currently major research directions within the �eld� that are being observed

to promote its frontier and are hoped to lead to even more signi�cant developments

in the future �part III��

In this �rst introductory part� we introduce two common examples of formal models of

distributed computation message�passing and shared memory� and we discuss a very simple

example of an algorithm to achieve symmetry in a speci�c message�passing system�

�Department of Computer Science� University of Cyprus� P� O� Box ������ Nicosia CY��	�
� Cyprus� Sup�

ported by funds for the promotion of research at University of Cyprus� and by the research program E�ciency

and Performance of Distributed Systems� Capabilities and Limitations�Research Promotion Foundation� Nicosia�

Cyprus � General Secretariat for Research and Technology� Athens� Greece � Joint Program of Scienti�c and

Technological Collaboration between Greece and Cyprus� Email
 mavronic�ucy�ac�cy

�



� Introduction

Distributed Computing Theory investigates the computability and complexity properties of the�

oretical models for distributed systems� much in a corresponding way that �classical� Theory

of Computation studies the computability and complexity properties of sequential computers�

However� while Theory of Computation has been drawing its problems among those arising

in the everyday practice of computation� such as sorting� searching and matrix multiplication

�see� e�g�� ��� for a wealth of successes�� the problems on which Distributed Computing Theory

focuses have been of a completely di	erent 
avor� they are of the sort arising in a distributed

computer system� examples of such problems include processor coordination� communication�

and robustness to faults�

Distributed computer systems are extremely common nowadays to the extent that they

need no particular introduction� Examples of distributed systems range from the Internet� to

airline reservation and management systems� and to shared memory multiprocessor architec�

tures� see �
� for many more examples� The motivation for introducing and using distributed

computer systems is to share computing resources more e�ciently� enhance communication�

and improve performance�

The fundamental computing unit of a distributed system usually goes by the name process

or processor� For our purposes� a process is but a sequential thread� a piece of code that includes

instructions� Some of the instructions may involve access to communication objects� such as

registers or channels� Processors interact through these communication objects in a certain�

in general unpredictable manner� The two major interprocessor communication models are

message�passing and shared memory� In the �rst� processors interact by sending messages to

each other through a communication graph� in the second� communication is achieved through

a set of shared variables�

Each processor is an independent processing unit equipped with local memory that runs a

local program� The local programs contain both computation and communication instructions�

A distributed algorithm is but a collection of local programs� one for each processor� Executions

of an algorithm are produced by running the local programs independently �perhaps though

under some restrictions in some models��

Two important characteristics of a distributed system that a	ect the possibility and the

complexity of solving problems are the degree of synchrony and the degree of faults� As expected�

the more synchrony available� the more problems can be solved and more e�ciently� The

model making the strongest assumptions about synchrony is the synchronous model� where

computation proceeds in rounds and all processors take a step in each round� At the other

�



extreme lies the asynchronous model� where arbitrary interleaving of steps is allowed� The

most benign type of faults are crash failures where a processor stops executing from some point

on in an execution� At the other extreme� a Byzantine fault allows a processor to arbitrarily

deviate from its local program� There is a great deal of literature on the impact of these two

characteristics� synchrony and faults� on distributed computability and complexity� we will

discuss some of the related results in later parts of this survey�

Space limitations have prohibited an attempt to a complete treatment in this survey of

all topics that have been investigated within the framework of Distributed Computing Theory�

Thus� many important topics will have to be introduced very brie
y or even remain unaddressed�

Even for the topics that we will touch� the list of references will by no means be complete� we

hope that the included references will serve as initial pointers to a substantial body of literature

on distributed computing�

The rest of the �rst part of this survey paper is organized as follows� Section � presents

the essentials for models of distributed computation� An example algorithm is discussed in

Section �� We conclude� in Section 
� with some initial remarks and pointers to additional

information�

� Two Models of Distributed Computation

In this section� we provide the basic elements of a formal model of a distributed system� These

elements are essential for following the rest of this survey� although somehow more detailed

than needed for the sake of providing an example of a formal model of a distributed system�

Our presentation partially follows ��� Sections ��� � 
���� The model itself is a simpli�cation

of other formal models� such as the I�O automaton ����� We use the terms processors and

processes interchangeably�

��� Message Passing

A system consists of n processors p�� � � � � pn� Processors are located at the nodes of a graph

G � �V�E�� where V � �n�� For simplicity� we identify processors with the nodes they are

located at and we refer to nodes and processors interchangeably� Each processor pi is modeled

as a �possibly in�nite� state machine with state set Qi� The state set Qi contains a distinguished

initial state q��i� The state set Qi also includes a subset Ii of idle states� we assume q��i �� Ii�

We assume that any state of pi includes a special component� bu�er i� which is pi�s message

bu	er� A con�guration is a vector C � �q�� � � � � qn� where qi is the local state of pi� denote

�



statei�C� � qi� The initial con�guration is the vector �q���� � � � � q��n�� Processes communicate

by sending messages� taken from some alphabet M� to each other� A send action send�j�m�

represents the sending of message m to a neighboring process pj � Let Si denote the set of all

send actions send�j�m� for all m � M and all j � �n�� such that �i� j� � E� that is� Si includes

all the send actions possible for pi�

We model computations of the system as sequences of atomic events� or simply events� Each

event is either a computation event� representing a computation step of a single process� or a

delivery event� representing the delivery of a message to a process� Each computation event

is speci�ed by comp�i� S� for some i � �n�� In the computation step associated with event

comp�i� S�� the process pi� based on its local state� changes its local state and performs some

set S of send actions� where S is a �nite subset of Si� Each delivery event has the form del�i�m�

for somem � M� In a delivery step associated with the event del�i�m�� the message m is added

to bu�er i� pi�s message bu	er��

Each process pi follows a deterministic local algorithm Ai that determines pi�s local compu�

tation� i�e�� the messages to be sent and the state transition to be performed� More speci�cally�

for each q � Qi� Ai�q� � �q�� S� where q� is a state and S is a set of send actions� We assume

that once a process enters an idle state� it will remain in an idle state� i�e�� if q is an idle state�

then q� is an idle state� An algorithm �or a protocol� is a sequence A � �A�� � � � �An� of local

algorithms�

An execution is an in�nite sequence of alternating con�gurations and events

� � C�� ��� C�� � � � � �j� Cj� � � � �

satisfying the following conditions�

�� C� is the initial con�guration�

�� If �j � del�i�m�� then statei�Cj� is obtained by adding m to bu�er i�

�� If �j � comp�i� S�� then statei�Cj� and S are obtained by applying Ai to statei�Cj����


� If �j involves process i� then statek�Cj��� � statek�Cj� for every k �� i�

�� For each m � M and each process pi� let S�i�m� be the set of j such that �j contains a

send�i�m� and let D�i�m� be the set of j such that �j is a delivery event del�i�m�� Then

there exists a one�to�one onto mapping �i�m from S�i�m� to D�i�m� such that �i�m�j� � j

for all j � S�i�m��

�The system model can be extended to allow arbitrary state change upon message delivery without changing

the results� for clarity of presentation� we chose not to do so�






That is� in an execution the changes in processes� states are according to the transition function�

only a process which takes a step or to which a message is delivered changes its state� and

each sending of a message is matched to a later message delivery and each message delivery

to an earlier send� We adopt the convention that �nite pre�xes of an execution end with a

con�guration� and denote the last con�guration in a �nite execution pre�x � by last���� We

say that �j � comp�i� S� is a non�idle step of the execution if statei�Cj��� �� Ii� i�e�� it is taken

from a non�idle state�

��� Shared Memory

Processes communicate by b�atomic registers �also called shared variables�� Fix some integer

b � � called the fan�in� Each shared variable may attain values from a domain� a set V of values�

which includes a special �unde�ned� value� �� Each process pi has a single read�modify�write

atomic operation available to it that may read a shared variableR� return its value v� and modify

R� Associated with each shared variable R� is a set Access�R� that includes the processes which

may perform atomic operations on R� we assume that� for each R� jAccess�R�j � b�

A con�guration is extended to consist of the states of the processes and the values of the

shared variables� Formally� an extended con�guration �C is a vector hq�� � � � � qn� v�� v�� � � �i� where

qi is the local state of pi and vk is the value of the shared variable Rk� denote statei� �C� � qi

and valuek� �C� � vk� The initial con�guration is the con�guration in which every local state is

an initial state and all shared variables are set to ��

Each event is a computation event representing a computation step of a single process� it is

speci�ed by comp�i�R� for some i � �n�� In this computation step� the process� pi� based on

its local state performs an operation on a shared variable R� performs some local computation�

and changes to its next state�

Each process pi follows a deterministic local algorithm Ai that determines pi�s local com�

putation� i�e�� the register to be accessed and the state transition to be performed� More

speci�cally� Ai determines�

� A shared variable R as a function of pi�s local state�

� Whether pi is to modify R and� if so� the value v� to be written� and pi�s next state as a

function of pi�s local state and the value v read from R�

We assume that once a process enters an idle state� it will remain in an idle state� An algorithm

�or a protocol� is a sequence A � �A�� � � � �An� of local algorithms�

�



� An Example

In this section� we discuss a very simple example of a distributed algorithm for a message�

passing distributed system whose underlying communication network has the tree topology�

We introduce an algorithm to break symmetry in this system� and we discuss ways to evaluate

it� The algorithm is taken from a recent interesting paper by Dinitz� Moran and Rajsbaum ����

investigating the exact communication costs for achieving and breaking symmetry in a tree

network�

The consensus problem models achieving symmetry in a distributed system� Due to its ap�

parent foundational importance� it has been studied extensively in the literature on distributed

computing theory �see ��� Chapter �� for a collection of results and references�� Consensus is a

particular case of a decision task� where processors start with input values and must eventually

decide on output values that satisfy the task�s speci�cation� For the sake of presentation� we

assume that the inputs are the processors� id�s �distinct identi�cation numbers�� more speci��

cally the least signi�cant bits of them� while the outputs are binary� In the consensus decision

task� all processors must decide on the same bit� If all id�s are odd� they must output �� else

they must output ��

A terminal processor in a tree network is a processor residing at a leaf� all other processors

are called intermediate processors� We sketch below �omitting some details� a simple algorithm

that enables processors to solve the consensus problem for a tree�

� Upon its wake�up� each terminal processor sends its bit �precisely the least signi�cant bit

of its id� to its �unique� neighbor�

� Each intermediate processor p waits for the moment of receiving messages over all links

incident to it� except for a single one� It then relays the accumulated maximum bit over

this unique remaining link�

� Each processor p waits for the moment of receiving messages over all links incident to it�

It then decides on the maximum of all bits it had ever seen and relays its decision in the

reverse direction over all links except the one it had previously sent� �Thus� a terminal

processor will not send a bit for a second time over its unique incident link��

It is simple to see that this algorithm is correct� We would like to quantitatively measure the

e�ciency of this algorithm using the two main complexity measures that are used for evaluating

�and comparing� distributed algorithms� namely number of messages and time �the latter to be

discussed in later parts�� The message complexity of an algorithm is the number of messages

�



sent in executions of the algorithm� We usually consider the worst�case message complexity

which is taken as the maximum number of messages sent over all executions� Sometimes� we

distinguish message complexity from bit complexity� which is the number of bits sent� This

distinction accounts for the size of messages and awards algorithms that send as few bits as

possible�

The presented algorithm sends exactly two messages with a single bit over each link �in

opposite directions�� This happens in all possible executions of the algorithm� and not just in

the worst�case� Since a tree with n vertices has n� � links� the bit complexity of the algorithm

is ��n� ��� thus ��n��

� Conclusion and Further Information

In the �rst part of this survey� we have reviewed the message�passing and shared�memory

models of distributed computation� and provided a simple example to convey the 
avor of a

distributed algorithm� In the next �second� part� we will survey signi�cant concepts and results

related to the central problems of mutual exclusion� leader election and consensus� These

problems carry much of the 
avor of the problems arising in a distributed system� and they

have been studied extensively since the early days of distributed computing� They have been

the vehicles of the earliest algorithms and impossibility results in distributed computing theory�

and have lent themselves as convenient test�beds for important ideas� tools and techniques� such

as randomization� formal reasoning and impossibility proofs� that have played a signi�cant role

for the development of the �eld� They are expected to continue drawing the attention of the

research community� delimiting the formal foundations and theoretical principles of the �eld�

setting the stage for more applications�oriented research to bene�t from and be built on top of

them� and motivating and inspiring younger researchers�

Current and on�going research on the theory of distributed computing is reported in the pro�

ceedings of the annual ACM Symposium on Principles of Distributed Computing �PODC�� and

the annual International Symposium of Distributed Computing �DISC�� which evolved from the

former International Workshop on Distributed Algorithms �WDAG�� Some other broader con�

ferences of Theoretical Computer Science that are covering research on the theory of distributed

computing are the annual International Colloquium on Automata� Languages and Programming

�ICALP�� the annual Symposium on Theoretical Aspects of Computer Science �STACS�� the

annual International Colloquium on Structural Information and Communication Complexity

�SIROCCO�� the annual IEEE Symposium on Foundations of Computer Science �FOCS�� the

annual ACM Symposium on Theory of Computing �STOC�� and the annual ACM Symposium

�



on Parallel Algorithms and Architectures �SPAA�� The annual IEEE International Conference

on Distributed Computing Systems �ICDCS� is a major forum for complementary research on

distributed systems� A similar forum is the annual IEEE International Parallel and Distributed

Processing Symposium �IPDPS��

Distributed Computing is a specialized journal� which is exclusively devoted to research

articles that deal with distributed computing� Distributed Computing is also a featured research

area for the Journal of the ACM� Many other major journals of Theoretical Computer Science

have traditionally been hosting research articles in distributed computing theory� we refer to

SIAM Journal on Computing� Information and Computation� Journal of Computer and System

Sciences� Journal of Algorithms� Theoretical Computer Science� Theory of Computing Systems�

Information Processing Letters� Algorithmica and Chicago Journal of Theoretical Computer

Science� to mention a few� Papers on distributed computing appear also in journals of a

somehow more practical orientation� such as IEEE Transactions on Parallel and Distributed

Systems and Journal of Parallel and Distributed Computing� Online bibliographies for many of

these journals and the conferences listed above can be found on the World Wide Web�

Two excellent� authoritative books on the theory of distributed computing have been written

by Attiya and Welch ��� and Lynch ����� A representative book on distributed systems is the

one by Coulouris� Dollimore and Kindberg �
�� Two relatively recent surveys on distributed

computing theory have been written by Attiya ��� and Gafni ���� The latter places a strong

emphasis on issues of fault�tolerance� An earlier survey was written by Lamport and Lynch ����

A nice survey talk on lower bounds in distributed computing has been given by Fich ����

Impossibility results in distributed computing were earlier surveyed by Lynch ����

�



References

��� H� Attiya� �Distributed Computing Theory�� in Parallel and Distributed Computing Hand�

book� A� Y� Zomaya ed�� pp� �������� McGraw Hill� �����

��� H� Attiya and J� L� Welch� Distributed Computing� Fundamentals� Simulations and Ad�

vanced Topics� McGraw Hill� �����

��� T� H� Cormen� C� E� Leiserson and R� L� Rivest� Introduction to Algorithms� McGraw�Hill

and The MIT Press� �����

�
� G� Coulouris� J� Dollimore and T� Kindberg� Distributed Systems� Concepts and Designs�

Second Edition� Addison�Wesley� ���
�

��� Y� Dinitz� S� Moran and S� Rajsbaum� �Exact Communication Costs for Consensus and

Leader in a Tree�� 	th International Colloquium on Structural Information and Commu�

nication Complexity� in Proceedings in Informatics 	� Carleton Scienti�c Press� pp� ������

June �����

��� F� Fich� Lower Bounds in Distributed Computing� slides from invited talk at 
�th Interna�

tional Symposium on Distributed Computing� Bratislava� Slovakia� September �����

��� E� Gafni� �Distributed Computing� a Glimmer of a Theory�� in Algorithms and Theory of

Computation Handbook� M� J� Atallah ed�� CRC Press� �����

��� L� Lamport and N� Lynch� �Distributed Computing� Models and Methods�� in Handbook

of Theoretical Computer Science� Volume B �Formal Models and Semantics�� Chapter ���

pp� ���������� MIT Press� �����

��� N� Lynch� �A Hundred Impossibility Proofs in Distributed Computing�� Proceedings of the

�th Annual ACM Symposium on Principles of Distributed Computing� pp� ����� August

�����

���� N� Lynch� Distributed Algorithms� Morgan Kaufmann� �����

���� N� Lynch and M� Tuttle� �An Introduction to Input�Output Automata�� CWI Quarterly�

Vol� �� No� �� �����

�


