Distributed Computing Theory To Date
(Part I: Models and an Example)

Marios Mavronicolas®

JANUARY 16, 2001

Abstract

Distributed Computing Theory has been undergoing a series of spectacular developments
in the last two decades or so; such developments have turned it into one of the most vivid
and challenging fields of modern Theoretical Computer Science. In this four-part survey,
we attempt to highlight some of the most thrilling developments, both by now classical and

more recent, in this young field. Qur presentation is structured around three main axes:

e canonical problems in the field, and results concerning them that have spawned a

whole bunch of subsequent research activities and findings (part IT);

e theoretical and mathematical concepts, techniques and tools that have contributed to
the establishment of the formal foundations of the field (part IT);

e some of the currently major research directions within the field, that are being observed
to promote its frontier and are hoped to lead to even more significant developments
in the future (part IIT).

In this first introductory part, we introduce two common examples of formal models of
distributed computation message-passing and shared memory, and we discuss a very simple

example of an algorithm to achieve symmetry in a specific message-passing system.

*Department of Computer Science, University of Cyprus, P. O. Box 20537, Nicosia CY-1678, Cyprus. Sup-
ported by funds for the promotion of research at University of Cyprus, and by the research program Efficiency
and Performance of Distributed Systems: Capabilities and Limitations, Research Promotion Foundation, Nicosia,
Cyprus & General Secretariat for Research and Technology, Athens; Greece — Joint Program of Scientific and

Technological Collaboration between Greece and Cyprus. Email: mavronic@ucy.ac.cy

1 Introduction

Distributed Computing Theory investigates the computability and complexity properties of the-
oretical models for distributed systems, much in a corresponding way that (classical) Theory
of Computation studies the computability and complexity properties of sequential computers.
However. while Theory of Computation has been drawing its problems among those arising
in the everyday practice of computation, such as sorting, searching and matriz multiplication
(see, e.g., [3] for a wealth of successes), the problems on which Distributed Computing Theory
focuses have been of a completely different flavor: they are of the sort arising in a distributed
computer system; examples of such problems include processor coordination, communication,

and robustness to faults.

Distributed computer systems are extremely common nowadays to the extent that they
need no particular introduction. Examples of distributed systems range from the Internet, to
airline reservation and management systems, and to shared memory multiprocessor architec-
tures; see [4] for many more examples. The motivation for introducing and using distributed
computer systems is to share computing resources more efficiently, enhance communication,

and improve performance.

The fundamental computing unit of a distributed system usually goes by the name process
or processor. For our purposes, a process is but a sequential thread: a piece of code that includes
instructions. Some of the instructions may involve access to communication objects, such as
registers or channels. Processors interact through these communication objects in a certain,
in general unpredictable manner. The two major interprocessor communication models are
message-passing and shared memory. In the first, processors interact by sending messages to
each other through a communication graph; in the second, communication is achieved through

a set of shared variables.

Each processor is an independent processing unit equipped with local memory that runs a
local program. The local programs contain both computation and communication instructions.
A distributed algorithm is but a collection of local programs, one for each processor. Executions
of an algorithm are produced by running the local programs independently (perhaps though

under some restrictions in some models).

Two important characteristics of a distributed system that affect the possibility and the
complexity of solving problems are the degree of synchrony and the degree of faults. Asexpected,
the more synchrony available, the more problems can be solved and more efficiently. The
model making the strongest assumptions about synchrony is the synchronous model, where

computation proceeds in rounds and all processors take a step in each round. At the other

extreme lies the asynchronous model, where arbitrary interleaving of steps is allowed. The
most benign type of faults are crash failures where a processor stops executing from some point
on in an execution. At the other extreme, a Byzantine fault allows a processor to arbitrarily
deviate from its local program. There is a great deal of literature on the impact of these two
characteristics, synchrony and faults, on distributed computability and complexity; we will

discuss some of the related results in later parts of this survey.

Space limitations have prohibited an attempt to a complete treatment in this survey of
all topics that have been investigated within the framework of Distributed Computing Theory.
Thus, many important topics will have to be introduced very briefly or even remain unaddressed.
Even for the topics that we will touch, the list of references will by no means be complete; we
hope that the included references will serve as initial pointers to a substantial body of literature

on distributed computing.

The rest of the first part of this survey paper is organized as follows. Section 2 presents
the essentials for models of distributed computation. An example algorithm is discussed in
Section 3. We conclude, in Section 4, with some initial remarks and pointers to additional

information.

2 Two Models of Distributed Computation

In this section, we provide the basic elements of a formal model of a distributed system. These
elements are essential for following the rest of this survey, although somehow more detailed
than needed for the sake of providing an example of a formal model of a distributed system.
Our presentation partially follows [2, Sections 3.1 & 4.1]. The model itself is a simplification
of other formal models, such as the I/O automaton [11]. We use the terms processors and

processes interchangeably.

2.1 Message Passing

A system consists of n processors py,...,p,. Processors are located at the nodes of a graph
G = (V,F), where V = [n]. For simplicity, we identify processors with the nodes they are
located at and we refer to nodes and processors interchangeably. Each processor p; is modeled
as a (possibly infinite) state machine with state set ();. The state set (); contains a distinguished
initial state qo ;. The state set); also includes a subset I; of idle states; we assume ¢o; € I;.
We assume that any state of p; includes a special component, buffer,, which is p;’s message

buffer. A configuration is a vector C = (¢1,...,q,) where ¢; is the local state of p;; denote

state;(C') = ¢;. The initial configuration is the vector (goq,...,q0,,). Processes communicate
by sending messages, taken from some alphabet M, to each other. A send action send(j, m)
represents the sending of message m to a neighboring process p;. Let S; denote the set of all
send actions send(j, m) for all m € M and all j € [n], such that (7,j) € F; that is, §; includes

all the send actions possible for p;.

We model computations of the system as sequences of atomic events, or simply events. Fach
event is either a computation event, representing a computation step of a single process, or a
delivery event, representing the delivery of a message to a process. Each computation event
is specified by comp(i,5) for some ¢ € [n]. In the computation step associated with event
comp(i,5), the process p;, based on its local state, changes its local state and performs some
set S of send actions, where S is a finite subset of S;. Each delivery event has the form del(¢, m)
for some m € M. In a delivery step associated with the event del(¢,m), the message m is added

to buffer;, p;’s message buffer.!

Each process p; follows a deterministic local algorithm A; that determines p;’s local compu-
tation, i.e., the messages to be sent and the state transition to be performed. More specifically,
for each ¢ € Q;, Ai(q) = (¢, 5) where ¢’ is a state and 5 is a set of send actions. We assume
that once a process enters an idle state, it will remain in an idle state, i.e., if ¢ is an idle state,
then ¢’ is an idle state. An algorithm (or a protocol) is a sequence A = (Ay,..., A,) of local

algorithms.

An execution is an infinite sequence of alternating configurations and events
a = Co,ﬂ'l,Cl,...,ﬂ']‘,C]‘ ey

satisfying the following conditions:

1. Cy is the initial configuration;

2. If 7; = del(i,m), then state;(C;) is obtained by adding m to buffer;.

3. If m; = comp(t,5), then state;(C;) and S are obtained by applying A; to state;(C;_1);
4. If w; involves process 7, then state,(C;_1) = statey(C};) for every k # i

5. For each m € M and each process p;, let S(i,m) be the set of j such that 7; contains a
send(i,m) and let D(i,m) be the set of j such that 7; is a delivery event del(¢, m). Then
there exists a one-to-one onto mapping o; ., from S(7,m) to D(i, m) such that o; ,,(j) > j

for all j € S(i,m).

!The system model can be extended to allow arbitrary state change upon message delivery without changing

the results; for clarity of presentation, we chose not to do so.

That is, in an execution the changes in processes’ states are according to the transition function,
only a process which takes a step or to which a message is delivered changes its state, and
each sending of a message is matched to a later message delivery and each message delivery
to an earlier send. We adopt the convention that finite prefixes of an execution end with a
configuration, and denote the last configuration in a finite execution prefix a by last(a). We
say that m; = comp(¢,5) is a non-idle step of the execution if state;(C;_1) & I;, i.e., it is taken

from a non-idle state.

2.2 Shared Memory

Processes communicate by b-atomic registers (also called shared variables). Fix some integer
b > 0 called the fan-in. Each shared variable may attain values from a domain, a set V of values,
which includes a special “undefined” value, L. Each process p; has a single read-modify-write
atomic operation available to it that may read a shared variable R, return its value v, and modify
R. Associated with each shared variable R, is a set Access(R) that includes the processes which

may perform atomic operations on R; we assume that, for each R, |Access(R)| < b.

A configuration is extended to consist of the states of the processes and the values of the
shared variables. Formally, an extended configuration C' is a vector (q15- -y qn,v1,02,...), where

q; is the local state of p; and v is the value of the shared variable Rj; denote statei(é) = ¢

and valuer(C') = vg. The initial configuration is the configuration in which every local state is

an initial state and all shared variables are set to L.

Each event is a computation event representing a computation step of a single process; it is
specified by comp(i, R) for some ¢ € [n]. In this computation step, the process, p;, based on
its local state performs an operation on a shared variable R, performs some local computation,

and changes to its next state.

Each process p; follows a deterministic local algorithm 4; that determines p;’s local com-
putation, i.e., the register to be accessed and the state transition to be performed. More

specifically, A; determines:

¢ A shared variable R as a function of p;’s local state.

e Whether p; is to modify R and, if so, the value v’ to be written, and p;’s next state as a

function of p;’s local state and the value v read from R.

We assume that once a process enters an idle state, it will remain in an idle state. An algorithm

(or a protocol) is a sequence A = (Ay, ..., Ay) of local algorithms.

3 An Example

In this section, we discuss a very simple example of a distributed algorithm for a message-
passing distributed system whose underlying communication network has the tree topology.
We introduce an algorithm to break symmetry in this system, and we discuss ways to evaluate
it. The algorithm is taken from a recent interesting paper by Dinitz, Moran and Rajsbaum [5],
investigating the exact communication costs for achieving and breaking symmetry in a tree

network.

The consensus problem models achieving symmetry in a distributed system. Due to its ap-
parent foundational importance, it has been studied extensively in the literature on distributed
computing theory (see [2, Chapter 5] for a collection of results and references). Consensus is a
particular case of a decision task, where processors start with input values and must eventually
decide on output values that satisfy the task’s specification. For the sake of presentation, we
assume that the inputs are the processors’ id’s (distinct identification numbers), more specifi-
cally the least significant bits of them, while the outputs are binary. In the consensus decision
task, all processors must decide on the same bit. If all id’s are odd, they must output 1, else

they must output 0.

A terminal processor in a tree network is a processor residing at a leaf; all other processors
are called intermediate processors. We sketch below (omitting some details) a simple algorithm

that enables processors to solve the consensus problem for a tree:

e Upon its wake-up, each terminal processor sends its bit (precisely the least significant bit

of its id) to its (unique) neighbor.

¢ Each intermediate processor p waits for the moment of receiving messages over all links
incident to it, except for a single one. It then relays the accumulated maximum bit over

this unique remaining link.

e Each processor p waits for the moment of receiving messages over all links incident to it.
It then decides on the maximum of all bits it had ever seen and relays its decision in the
reverse direction over all links except the one it had previously sent. (Thus, a terminal

processor will not send a bit for a second time over its unique incident link.)

It is simple to see that this algorithm is correct. We would like to quantitatively measure the
efficiency of this algorithm using the two main complexity measures that are used for evaluating
(and comparing) distributed algorithms, namely number of messages and time (the latter to be

discussed in later parts). The message complezity of an algorithm is the number of messages

sent in executions of the algorithm. We usually consider the worst-case message complexity
which is taken as the maximum number of messages sent over all executions. Sometimes, we
distinguish message complexity from bit complexity, which is the number of bits sent. This
distinction accounts for the size of messages and awards algorithms that send as few bits as

possible.

The presented algorithm sends exactly two messages with a single bit over each link (in
opposite directions). This happens in all possible executions of the algorithm, and not just in

the worst-case. Since a tree with n vertices has n — 1 links, the bit complezity of the algorithm

is 2(n — 1), thus O(n).

4 Conclusion and Further Information

In the first part of this survey, we have reviewed the message-passing and shared-memory
models of distributed computation, and provided a simple example to convey the flavor of a
distributed algorithm. In the next (second) part, we will survey significant concepts and results
related to the central problems of mutual exclusion, leader election and consensus. These
problems carry much of the flavor of the problems arising in a distributed system, and they
have been studied extensively since the early days of distributed computing. They have been
the vehicles of the earliest algorithms and impossibility results in distributed computing theory,
and have lent themselves as convenient test-beds for important ideas, tools and techniques, such
as randomization, formal reasoning and impossibility proofs, that have played a significant role
for the development of the field. They are expected to continue drawing the attention of the
research community, delimiting the formal foundations and theoretical principles of the field,
setting the stage for more applications-oriented research to benefit from and be built on top of

them, and motivating and inspiring younger researchers.

Current and on-going research on the theory of distributed computing is reported in the pro-
ceedings of the annual ACM Symposium on Principles of Distributed Computing (PODC), and
the annual International Symposium of Distributed Computing (DISC), which evolved from the
former International Workshop on Distributed Algorithms (WDAG). Some other broader con-
ferences of Theoretical Computer Science that are covering research on the theory of distributed
computing are the annual International Colloguium on Automata, Languages and Programming
(ICALP), the annual Symposium on Theoretical Aspects of Computer Science (STACS), the
annual International Colloquium on Structural Information and Communication Complexity
(SIROCCO), the annual IEEE Symposium on Foundations of Computer Science (FOCS), the
annual ACM Symposium on Theory of Computing (STOC), and the annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA). The annual IEEE International Conference
on Distributed Computing Systems (ICDCS) is a major forum for complementary research on
distributed systems. A similar forum is the annual IEEFE International Parallel and Distributed
Processing Symposium (IPDPS).

Distributed Computing is a specialized journal, which is exclusively devoted to research
articles that deal with distributed computing. Distributed Computing is also a featured research
area for the Journal of the ACM. Many other major journals of Theoretical Computer Science
have traditionally been hosting research articles in distributed computing theory; we refer to
SIAM Journal on Computing, Information and Computation, Journal of Computer and System
Sciences, Journal of Algorithms, Theoretical Computer Science, Theory of Computing Systems,
Information Processing Letters, Algorithmica and Chicago Journal of Theoretical Computer
Science, to mention a few. Papers on distributed computing appear also in journals of a
somehow more practical orientation, such as IEEE Transactions on Parallel and Distributed
Systems and Journal of Parallel and Distributed Computing. Online bibliographies for many of

these journals and the conferences listed above can be found on the World Wide Web.

Two excellent, authoritative books on the theory of distributed computing have been written
by Attiya and Welch [2] and Lynch [10]. A representative book on distributed systems is the
one by Coulouris, Dollimore and Kindberg [4]. Two relatively recent surveys on distributed
computing theory have been written by Attiya [1] and Gafni [7]. The latter places a strong

emphasis on issues of fault-tolerance. An earlier survey was written by Lamport and Lynch [8].

A nice survey talk on lower bounds in distributed computing has been given by Fich [6].

Impossibility results in distributed computing were earlier surveyed by Lynch [9].

References

[1]

[10]

[11]

H. Attiya, ”Distributed Computing Theory,” in Parallel and Distributed Computing Hand-
book, A. Y. Zomaya ed., pp. 127-160, McGraw Hill, 1996.

H. Attiya and J. L. Welch, Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, McGraw Hill, 1998.

T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, McGraw-Hill
and The MIT Press, 1990.

G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems, Concepts and Designs,
Second Edition, Addison-Wesley, 1994.

Y. Dinitz, S. Moran and S. Rajsbaum, "Exact Communication Costs for Consensus and
Leader in a Tree,” 7th International Colloguium on Structural Information and Commu-
nication Complezity, in Proceedings in Informatics 7, Carleton Scientific Press, pp. 63-77,
June 2000.

F. Fich, Lower Bounds in Distributed Computing, slides from invited talk at 13th Interna-
tional Symposium on Distributed Computing, Bratislava, Slovakia, September 1999.

E. Gafni, ”Distributed Computing: a Glimmer of a Theory,” in Algorithms and Theory of
Computation Handbook, M. J. Atallah ed., CRC Press, 1999.

L. Lamport and N. Lynch, ”Distributed Computing: Models and Methods,” in Handbook
of Theoretical Computer Science, Volume B (Formal Models and Semantics), Chapter 19,
pp- 1157-1199, MIT Press, 1990.

N. Lynch, ”A Hundred Impossibility Proofs in Distributed Computing,” Proceedings of the
8th Annual ACM Symposium on Principles of Distributed Computing, pp. 1-28, August
1989.

N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

N. Lynch and M. Tuttle, ”An Introduction to Input/Output Automata,” CWI Quarterly,
Vol. 2, No. 3, 1989.

