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Abstract

In this work, we continue the study of stability issues for packet-switched
routing. More specifically, we adopt the Adversarial Queueing Theory
framework, where an adversary controls rates of packet injections and de-
termines packet paths. In addition. the power of the adversary is enhanced to
include manipulation of link capacities. However, in doing so, the adversary
may use only two possible (integer) values, namely 1 and C > 1; morcover,
the capacity changes are not abrupt: once a link capacity is set to a value,
it maintains this value for a period of time proportional to the number of
packets in the system at the time of setting the link capacity to the value. We
call this the Adversarial, Quasi-Static Queueing Theory model. Within this
maodel, we obtain the following results:

e The protocol LIS (Longest-in-System) is unstable at rates r > v/2 — |
for large enough values of C. The proof uses a small network of just
ten nodes.

This represents the current record for the instability threshold of LIS
over models of Adversarial Queucing Theory with dynamic capacities.

e The composition of LIS with any of SIS (Shortest-in-System), NTS
(Nearest-to-Source) and FTG (Furthest-10-Go) is unstable at rates r >
V21 for large enough values of C.

These represent the first results on the instability thresholds of com-
positions o greedy protocols over models of Adversarial Queueing
Theory with dynamic capacitics.

*This work has been partially supported by the IST Program of the European Union under contract
numbers IST-1999-14186 (ALCOM-FT) and 1ST-2001-33116 (FLAGS) and by funds from the Joint
Program of Scientific and Technological Collaboration between Greece and Cyprus (rescarch project
“Efficiency and Performance of Distributed Systems: Capabilities and Limitations”).
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e We present bounds for the instability thresholds of all directed sub-
graphs that are forbidden for stability.
These bounds are lower than their counterparts for the classical Adver-
sarial Queueing Theory model.
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1 Introduction

Motivation-Framework. We are interested in the behavior of packet-switched
networks in which packets arrive dynamically at the nodes and they are routed in
discrete time steps across the links. Recent years have witnessed a vast amount
of work on analyzing packet-switched networks under non-probabilistic assump-
tions (rather than stochastic ones); We work within a model of worst-case contin-
uous packet arrivals, originally proposed by Borodin er al. [4] and termed Adver-
sarial Queueing Theory to reflect the assumption of an adversarial way of packet
generation and path determination.

A major issue that arises in such a setting is that of stability— will the number
of packets in the network remain bounded at all times? The answer to this question
may depend on the rate of injecting packets into the network, the capacity of the
links, which is the rate at which a link forwards outgoing packets, and the protocol
that is used when more than one packet wants to cross a given link in a single
time step to resolve the conflict. The underlying goal of our study is to establish
stability and instability properties of networks and protocols when packets are
injected by an adversary (rather than by an oblivious randomized process) and
capacilies are chosen by the same adversary in a dynamic way.

Most studies of packet-switched networks assume that one packet can cross
a network link (an edge) in a single time step. This assumption is well motivated
when we assume that all network links are identical. However, a packet-switched
network can contain different types of links, which is common especially in large-
scale networks like Internet. Then, it is well motivated (o assign a capacity to cach
link. Furthermore, if each link capacity takes on values in the two-valued set of
integers {1,C} for C > 1, C takes on large values and each value stays for a long
lime, then we can consider approximately as a link failure the assigning of unit
capacity to a link, while the assigning of capacity C to a link can be considered
as the proper service rate. Therefore, the study of stability behavior of networks
and protocols under our model of quasi-static capacities can be considered as an
approximation of the fault-tolerance of a network where links can temporarily fail
(zero capacity).

In this work we consider the impact on stability behavior of protocols and
networks if the adversary besides the packet injections in paths which it deter-
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mines, it also can set the capacities of network edges in cach time step. This
subfield of study was initiated by Borodin et al. in [S]. Note that we continue
to assume uniform packet sizes. Furthermore, we consider greedy contention-
resolution protocols- always advance a packet across a queue (but one packet at
cach discrete time step) whenever there resides at least one packet in the queue.
The protocol specifies which packet will be chosen. We study five greedy pro-
tocols: LIS (Longest-in-System) gives priority to the packets that have been for
the longest amount of time in the network; SIS (Shortest-in-Systen) gives prior-
ity to the packets that have been for the shortest amount of time in the network;
FTG (Furthest-to-Go) gives priority (o the packet that has the maximum num-
ber of edges in its prescribed path still to be traversed; NTS (Nearest-to-Source)
gives priority to the packet that has traversed the minimum number of edges in
its prescribed path; NTG-U-LIS (Nearest-To-Go-Using-Longest-In-System) gives
priority to the packet that has the minimum number of cdges in its prescribed
path still to be traversed, while it gives priority to the packet that has been for the
longest amount of time in the network for tie-breaking.

Roughly speaking a protocol P is stable [4] on a network G against an adver-
sary 4 of rate r if there is an integer B (which may depend on ¢ and 4) such that
the number of packets in the system is bounded at all times by B. We say that a
protocol P is universally stable [4] if it is stable against every adversary of rate
less than 1 on every network. Also, a nenwork G is universally stable [4] if every
greedy protocol is stable against every adversary of rate less than 1 on G.

Contribution. We define here the weakest possible adversary of dynamically
changing capacities of network links in the context of Adversarial Queucing The-
ory where the adversary may set link capacities to any of two integer values | and
C (C > | is a parameter called high capacity).” Moreover, once a link changes its
capacity value, the model we use requires that the value stays fixed for at least a
constant proportion of the number of packets in the system at the time when the
capacity was last set. We call this the Adversarial, Quasi-Static Queuneing Theory
mnodel. In this framework, we consider four protocols LIS, SIS, FTG, NTS; all
four were shown universally stable in the standard model of Adversarial Queueing
Theory.

e We construct a simple LIS network of only 10 nodes that is unstable at
rates r > /2 — | for large enough values of C (Theorem 3.1). This result
is the first one that presents an instability threshold less than % for a small-
size network. Till now instability thresholds of 4 or less have been proved
only on parameterized networks. To show this, we use an adversarial con-
struction that sets properly the capacities of various networks edges to 1 for
specified time intervals in order to accumulate packets.

e We then consider networks where different protocols may run on their

*In the classical Adversarial Queucing Theory only one capacity value is available to the adversary.
g y only
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nodes (heterogeneous networks, Internet). Thus, we prove that the compo-
sition of LIS with any of SIS, NTS and FTG is unstable at rates r > /2 — |
(for large enough values of C) (Theorem 4.1). To show this, we provide in-
teresting combinatorial constructions of networks, for each queue of which
we specify the contention-resolution protocol to be used.

e Finally, we examine the impact on network stability of dynamically chang-
ing network link capacities presenting bounds for the instability thresholds
of all the directed subgraphs that are forbidden for stability. Through im-
proved combinatorial constructions of networks and executions we present
adversarial constructions that improve the state-of-the-art instability thresh-
old induced by certain known forbidden subgraphs on networks running a
certain greedy protocol (Theorems 5.1, 5.2). More specifically we improve
the instability threshold of the six simple subgraphs in Figure 3 that have
been proved in [2] to be forbidden subgraphs for the universal stability of
networks.

Related Work. Stability Issues under the Adversarial Queueing Model. Adver-
sarial Queueing Theory was developed by Borodin et al. [4] as a more realistic
model that replaces traditional stochastic assumptions in Queueing Theory [6] by
more robust, worst-case ones. It received a lot of interest in the study of stabil-
ity and instability issues (see, e.g., [1, 7, 8, 9, 11, 12]). The universal stability
of various natural greedy protocols (SIS, NTS, FTG, LIS) has been established
by Andrews et al. [1]. Also, several greedy protocols such as Nearest-To-Go
(NTG) have been proved unstable at arbitrary small rates of injection in [12]. The
subfield of study of the stability properties of compositions of universally stable
protocols was introduced by Koukopoulos et al. in [10, 8] where lower bounds
of 0.683 and 0.519 on the instability threshold of the composition pairs LIS-SIS,
LIS-NTS and LIS-FTG were presented.

Instability of Forbidden Subgraphs. In [2, Theorems 1, 2], a characterization for
directed networks universal stability is given when the packets follow simple
paths (paths do not contain repeated edges) that are pure (simple paths do not
contain repeated vertices) and simple paths that are not pure (simple paths con-
tain repeated vertices).” According to this characterization, a directed network
graph is not pure simple path universally stable if and only if it does not contain
as subgraphs any of the extensions of the subgraphs U or U, (2, Theorem 1];
it is pure simple path universally stable if and only if it does not contain as sub-
graphs any of the extensions of the subgraphs §; or S or $3 or 4 [2, Theorem 1)
(see Figure 3). For purpose of completeness and comparison, we summarize, in
Table 1, all results shown in this work and in [2] that provide instability bounds
on the injection rate for the forbidden subgraphs (S, $2, 53, S1, U, Us).

“Corresponding characterization for the stability of undirected networks was shown in [1, Theorem
3.16].
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Apply to: Instability (AQM) Instability (AQSQM)
Si | pure s.p. r > 0.87055 [2, Lemma 8| r>0.8191 (Thm.5.1)
S> | pure s.p. r>0.84089 [2, Lemma 9] r>0.8191 (Thm.5.1)
S3 | pure s.p. r>0.84089 [2, Lemma 10] | r > 0.8191 (Thm. 5.1)
Si | pure s.p. r>0.84089 [2, Lemma 1] | » > 0.8191 (Thm. 5.1)
U, | notpure s.p. | r>0.84089 |2, Lemma 7] r>0.794 (Thm. 5.2)
U> | not pure s.p. | r>0.84089 (2, Lemma 7] r>0.755 (Thm. 5.2)

Table I: Instability thresholds of forbidden subgraphs in AQM vs. AQSQM. We
denote AQM the Adversarial Queueing Theory Model, AQSQM the Adversarial
Quasi-Static Queueing Theory Model and s.p. the simple path.

Stability Issues in Dynamic Networks. Borodin et al. in |5] studied for the first
time the impact on stability when the edges in a network can have capacitices and
slowdowns. They proved that the universal stability of networks is preserved un-
der this varying context. Also, it was shown that many well-known universally
stable protocols (SIS, NTS, FTG) do maintain their universal stability when ei-
ther the link capacity or slowdown is changing dynamically, whereas the universal
stability of LIS is not preserved. More specifically Borodin er al. in |5, Theorem
1] presented for the first time an instability threshold of r > 5(-(:—1 > 0.5 for LIS
protocol.

Road Map. The rest of this paper is organized as follows. Section 2 presents
model definitions. Section 3 presents our instability bound for LIS. Section 4
demonstrates instability bounds for protocol compositions. Section 5 shows in-
stability bounds for forbidden subgraphs. We conclude, in Section 6, with a dis-
cussion of our results and some open problems.

2 Model

The model definitions are patterned after those in [4, Section 3], adjusted to re-
flect the fact that edge capacitics may vary arbitrarily as in [5, Section 2], but we
address the weakest possible model of changing capacities. A routing network is
a directed graph with nodes and edges. Time proceeds in discrete steps. A packet
is an atomic entity that resides at a node at the end of any step. It must travel along
paths in the network from its source (o its destination, both of which are nodes in
the network. When it reaches its destination, we say that it is absorbed. During
cach step, a packet may be sent from its current node along one of the outgoing
edges from that node. Edges can have different integer capacities, which may or
may not vary over time. Denote C,(r) the capacity of edge e at time step t. That
is. we assume that edge e is capable of simultaneously transmitting up to C,(r)
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packets at time 1.

Let C > 1 be an integer parameter. We demand that Ve and Vi C,(r) € {1,C}
(i.e. each edge capacity can get only two values, high and low). We also demand
for each edge e that C.(r) stays at some value for a continuous period of time,
at least proportional to the number of packets in the system at the time when the
capacity was last set. We call this the Adversarial, Quasi-Static Queueing Theory
Model. This model is the weakest possible of models implied by [5].

Any packets that wish to travel along an edge e at a particular time step but
are not sent wait in a queue for edge e. The delay of a packet is the number of
steps spent by the packet while waiting in queues. At each step, an em adversary
generates a set of requests. A request is a path specifying the route followed by a
packet.* We say that the adversary generates a set of packets when it generates a
set of requested paths. We restrict our study to the case of non-adaptive routing,
where the path traversed by each packet is fixed at the time of injection, so that we
are able to focus on queueing rather than routing aspects of the problem. (See [3]
for an extension of the adversarial model to the case of adaptive routing.) There
are no computational restrictions on how the adversary chooses its requests in any
given time step.

Fix any arbitrary positive integer w > 1. For any edge e of the network and any
sequence of w consecutive time steps, define N(w,e) to be the number of paths
injected by the adversary during the time interval of w consecutive time steps that
traverse edge e. For any constant r, 0 < r < 1, a (w,r)-adversary is an adver-
sary that injects packets subject to the following load condition: For every edge
e and for every sequence T of w consecutive time steps, N(T,e) < r¥,c.Ce(t).
We say that a (w,r)-adversary injects packets at rate r with window size w. The
assumption that r < 1 ensures that it is not necessary a priori that some edge of
the network is congested (that happens when r > 1).

In the adversarial constructions we study here for proving instability, we split
time into phases. In each phase, we study the evolution of the system configura-
tion by considering corresponding time rounds. For each phase, we inductively
prove that the number of packets of a specific subset of queues in the system in-
creases in order (o guarantee instability. This inductive argument can be applied
repeatedly, thus showing instability. Furthermore, we assume that there is a suf-
ficiently large number of packets sp in the initial system configuration. This will
imply instability results for networks with an empty initial configuration, as estab-
lished by Andrews er al. [1, Lemma 2.9]. For simplicity, and in a way similar to
that in [1] and in works following it, we omit floors and ceilings from our analy-
sis, and we sometimes count time steps and packets only roughly. This may only
result to loosing small additive constants, while it implies a gain in clarity.

*In this work, it is assumed, as it is common in packet routing, that all such paths are simple paths
with no overlapping edges. However, in Section 5 we consider two different kinds of simple paths:
simple paths that do not contain repeated vertices (pure simple paths) and simple paths that contain
repeated vertices (not pure simple paths).
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Figure 1: The network 4.

3 Instability Bound for LIS

Theorem 1 Let r > /2 — 1. There is a network N and an adversary 4 of rate r
such that the system (N, A, LIS is unstable in the quasi-static model of capaci-
ties.

Proof. Consider the network A in Figure 1. The construction of the adversary

A is broken into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there are s
. J JooJ ¢ L ..

packets that are queued in the queues f), fy, fs, f7 (in total) requiring to traverse

the edges e, f>, f1.

Induction Step: At the beginning of phase j+ | there will be more than s; packets

(sj+1 packets) that are queued in the queues fi, fi, fs, f7 (in total) requiring to
7 !

traverse the edges ey, f5, f;-

We will construct an adversary A such that the induction step holds. The main
ideas of the construction of 4 are (a) the careful tuning of the duration of each
round of every phase j (as a function of the high capacity C, the injection rate
r and the number of packets in the system at the beginning of phase j, s;) to
maximize the growth of the packet population in the system and, (b) the careful
setting of the capacities of some edges to | for specified time intervals in order
to accumulate packets. Proving that the induction step holds, we ensure that the
inductive hypothesis will hold at the beginning of phase j+ 1 for the symmetric
edges with an increased value of s/, 541 > s;.

From the inductive hypothesis, initially. there are s packets (called S — flow)
in the queues f,',ji,f;, j; requiring Lo traverse the edges eq, f2, f1. In order to
prove the induction step, it is assumed that there is a set § with a large enough
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number of [§| = s; packets in the initial system configuration. During phase j the
adversary plays three rounds of injections as follows:

¢ Round 1: This round lasts |T\| = % time steps.

Adversary's behavior. During this round the edges e, f, fs,f7,e|,fé,fi
have high capacity C, while all the other edges have unit capacity. The
adversary injects a set X of |X| = rC|T;| packets in queue e wanting to
traverse the edges eq, f1, fs, f7,€1 ,fé,_/i and aset S| of || = r|T}| packets
in queue f> wanting to traverse the edges f3, fi.

Evolution of the system configuration. All the S packets will traverse their
initial edges in s; time steps blocking the packets of set X in queue eq be-
cause the network A uses LIS protocol and the packets of set S are longer
time in the system than X packets. For the same reason, the S packets block
all the packets of set S in queue f>. At the same time, the packets of set §
are delayed in queue f due to the unit capacity of the edge f>. The remain-
ing packets of the set S in f> at the end of this round are |S'I =|§|-
packets. The packets of S that manage to traverse the edge f> continue
traversing their remaining path and they are absorbed. Therefore, the num-
ber of packets in queue f> at the end of this round requiring to traverse the
edges f2, fa is aset S of |Sy| = |S’| + 51| packets.

e Round 2: It lasts |T>| = |3C—2‘ time steps.

Adversary’s behavior. During this round the edges f4,f7,e;,f£, f; have
high capacity C, while all the other edges have unit capacity. The adver-
sary injects a set Y of |Y| = rC|T>| packets in queue fy requiring to traverse

the edges f3, f7,e1, f, f-

Evolution of the system configuration. The packets of set Y are blocked by
the packets of the set S in queue fy because Sy packets are longer time in
the system than ¥ packets. The packets of set S, traverse the edge f4 and
they are absorbed. At the same time, X packets are delayed in queue f
due to its uml cdpacny Therefore, the remaining packets of X in queue f)
is a set X' ] of |X'| = |X| — |T2| packets requiring to traverse the edges fi,

f57f7)e]7f27f4

® Round 3: It lasts |T3] = —- time steps.

Adversary’s behavior. During this round the edges f1, fs, € ,fzr,ji have high
capacity C, while all the other edges have unit capacity. The adversary in-
jects a set Z of |Z| = rC|T3| packets in queue f| requiring to traverse the

edges fi, f6,€|7f2af4

Evolution of the system configuration. The X' packets block the Z pack-
ets in queue fi because they are longer time in the system. At the same
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time X' packets are delayed in queue f5 due to the unit capacity of the
edge fs. Therefore, the remaining packets of X' in queue fs is a set |X”(
of |X"| = |X'| — | T3 packets requiring to traverse the edges fs, fo, ¢ ,fé,fj.
Morcover, Y packets are delayed in queue fy due to the unit capacity of
the edge f3 during this round. Therefore, the remaining packets of Y in
queue fy is a set |Y'| of |Y'| = |Y| —|T3] packets requiring to traverse the
edges fi, f1,€ ,fé,fi. Note that during this round |K| = 2|T3] packets ar-
rive in queuce f7 from queues fy, fo. However, the edge f7 has unit capacity
and the duration of this round is |T3| time steps. Consequently, |L| = |T3]
packets will remain in queue f7 at the end of this round requiring to tra-
verse the edges f7,e,,f3,fi. Therefore, the number of packets in queucs
1, 14, fs, f7 requiring to traverse the edges e ,_/é,fi at the end of this round
is sjp1 = X [+ Y| +]2]+|L].

In order to have instability, we must have s, > s;. This holds for
PICT+CP = Cl+12C7 =3¢ + 1] > P+ CP =20+ |

When C tends (o infinity, the instability threshold converges to v/2 — 1. This
argument can be repeated for an infinite number of phases showing that the
number of packets in the system increases forever.

4 Instability Bounds for Protocol Compositions

Theorem 2 Let r > /2 — 1. There is a network Gi and an adversary A of rate r
such that the system (G;, 4,P) is unstable in the quasi-static model of capacities,
if P is a composition of LIS protocol with any protocol of a) SIS, b) NTS and ¢)
FTG.

Proof Sketch. Part a) Consider the network G in Figure 2. The network
J N F . " J " X 5 " J -
Cdgcs €0,¢) 7f| ).f] 7f3’f3 use LIS pml()col, while the CdgCS f?7.f27.f47./47./57fﬁ7f6,
5o ) ; « ; e

fo> 17, f7 use SIS protocol. The construction of the adversary 4 is broken into

phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there are s

i 1o ' P i

packets that are queued in the queues f|, f3, fs, f, (in total) requiring to traverse

the €dgCS €0, Zaf%/-l

Induction Step: At the beginning of phase j+ | there will be more than s ; packets

(sj4+1 packets) that are queued in the queues f1, fi, fs, fo (in total) requiring to
J J J

traverse the edges ey, fo, f3, f;-
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Figure 2: The network G.

We will construct an adversary 4 such that the induction step holds. Proving
that the induction step holds, we ensure that the inductive hypothesis will hold at
the beginning of phase j+ 1 for the symmetric edges with an increased value of
$j» $j+1 > s;. From the inductive hypothesis, initially, there are s ; packets (called
S — flow) in the queues f;,f:l,f;, fé requiring to traverse the edges e, f>, f3, f1.
In order to prove the induction step, it is assumed that there is a set S with a large
enough number of |§| = s; packets in the initial system configuration. During
phase j, the adversary plays three rounds of injections as follows:

¢ Round 1: This round lasts |T)| = %’ time steps.

Adversary's behavior. During this round the edges eq, f1, f5, fo, €1 ,f;, f;,f;
have high capacity C, while all the other edges have unit capacity. The ad-
versary injects a set X of |X| = rC|Ti| packets in queue ey wanting 1o tra-
verse the edges e, f1, fs, f6, €1 ,fé,f;,f; and aset S| of |S;| = r|Ty| packets
in queue f, wanting to traverse the edge f>.

Evolution of the system configuration. All the S packets will traverse their
initial edges in s5; time steps blocking the packets of set X in queue e
that uses LIS protocol because S packets are longer time in the system. At
the same time, the packets of set S are delayed in queue f> that uses SIS
protocol due to §; packets which are shorter time in the system and the
unit capacity of the edge f>. The remaining packets of the set S in f> at the
end of this round requiring to traverse the edges f», f3, f4 are a set S» of
|S2] = |S| = (|Ti] — |S1]) packets. The S packets that manage to traverse the
edge f> continue traversing their remaining path and they are absorbed.

¢ Round 2: It lasts |T>| = % time steps.

. . . . N ' ’ !
Adversary’s behavior. During this round the edges f3, fi, fo, et 3o s
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have high capacity C, while all the other edges have unit capacity. The
adversary injects a set Y of |Y| = rC|T3| packets in queue f3 requiring o
traverse the edges f3, fi, fo, € ,‘/‘é, j};,f:‘.

Evolution of the system configuration. The packets of set Y are blocked by
the set 82 in queue f3 that uses LIS protocol because S> packets are longer
time in the system. The packets of set Sz traverse the edge f3 and they are
absorbed. Al the same time, the packet set X is delayed in queue f) due to
the unit capacity of lhe Ld% f1. Therelore, the remaining packets of X in
queue fi is a set |X’ | of |X | = |X| —|T»| packets requiring to traverse the

Ldgbb fl7.f57.f()7‘|7.f27f37f4'

!

Round 3: It lasts |T3| = = time steps.

. - . . . X J I .
Adversary's behavior. Durmg this round the edges f1, f7, <'|,j3’,_)‘},f4,f3
have high capacity C, while all the other edges have unit capacity. The
= rC|T3| packets in queue f) requiring to

adversary i
traverse the edges f1, f7,e) ,fé,f},fi. Also, it injects a set S3 of [S3] = r| T3]
packets in queuc fi wanting to traverse the edge fy, a set Sy of |Sy] = r| T3]
packets in queue fs wanting to traverse the edge f5 and a set Ss of |Ss| =
r| T3] packets in queue fg wanting to traverse the edge fs.

Evolution of the svstem configuration. The X' packets block the Z packets in
queue fi that uses LIS protocol because they are longer time in the system.
At the same time X' packets are delayed in queue f5 that uses SIS protocol
due to the unit capacity of the edge f5 durm«' this round and the Sy packets
that are shortcr time in the system lhdn X' packus Thurclou, the remaining
packets of X' in queue fs is a set [X"| of [X"| = |X'| = (T3] = S4) packets
requiring to traverse the edges fs, fo, €1, 2,f;,f_;. Moreover Y pdc_l\uls are
delayed in queue fy that uses SIS protocol due to the unit capacity of the
edge fy during this round and the S3 packets that are shorter time in the
system lhan Y packets. Therefore, the remaining packets of ¥ in queue fy is
a set |Y | of |Y | = Y] —(|]T3] — S3) packets requiring to traverse the edges
.f4’.f67el 7f2>f3’f4-

Note that during this round | K| = 2| T3] — |S3]| —|S4| packets arrive in queue
fo from queues fi, fs. However, the edge f¢ has unit capacity and uses
SIS protocol that gives priority to the S5 packets. Furthermore, the duration
of this round is |T3] time steps. Consequently, the number of packets that
remain 1n gueue fe at the end of this round requiring to traverse the edges
)‘(,,e],f,, fufiis|l] = Ss| — | Tz]. Therefore, the number of packets
in queues f1, fa, fs, fo requiring to traverse the edges e ,fé,f;,fi at the end
of this round is s = X"+ Y|+ |Z| + |L].
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i) S| iii) S,
f,
1 g1 81// i
Pl €,
=, f3
g,
iv) §, vi) U,

Figure 3: Pure simple-path networks $1,.5,,.53,54, and not pure simple-path net-
works U, U;.

In order to have instability, we must have s, > s;. This holds for
PIC+2C7 —C—1]+2C*-3C* - C+2] > CP+C?* - 2C+ 1

When C tends to infinity, the instability threshold converges to v/2 — 1. This
argument can be repeated for an infinite number of phases showing that the
number of packets in the system increases forever for r > v/2 — 1.

Parts b, ¢) Parts a, b, ¢ are proved similarly. One difference is the replacement
of SIS protocol in Part a by NTS in Part b and FTG in Part c. The topology of
the network G> and the adversary construction for proving instability in Part b are
similar to Part a. But in Part ¢ the topology of the network Gz contains additional
paths that start at FTG queues and have sufficient lengths to guarantce the priority
of specific packel sets against other packets whose preservation into the system is
required for the inductive hypothesis reproduction. 0O

5 Instability Bounds for Forbidden Subgraphs

Theorem 3 Let r > 0.8191. There is a network S; and an adversary A of rate r
such that the system (S;, A,NTG — U — LIS) is unstable in the quasi-static model
of capacities when the adversary assigns to the packets simple-paths with no re-
peated vertices where S; is the network a) S\, b) S, ¢) S3 and d) Ss.

Proof Sketch. Part a) Consider the network $; in Figure 3 that uses NTG-U-LIS
protocol. We break the construction of the adversary 4 into phases.
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Induction Hypothesis: At the beginning of phase j, there are s; packets that are
queued in the queucs ey, e requiring to traverse the edge f7.

Induction Step: At the beginning of phase j+ I there will be more than s ; packets,
P g goly J P
S j+1, which will be queued in the queues ey, e> requiring to traverse the edge f).

We will construct an adversary A4 such that the induction step holds. Proving
that the induction step holds, we ensure that the induction hypothesis will hold at
the beginning of phase j+ 1 with an increased value of s;, s;41 > s;. From the
induction hypothesis, initially, there are s; packets (called S set of packets) in the
queues e, ¢2 requiring to traverse the edge f;. In order to prove that the induction
step works, we consider that there is a large enough number of packets s in the
initial system configuration. During phase j, the adversary plays three rounds of
injections. The sequence of injections is as follows:

e Round 1: It lasts |T}| = # time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C. The adversary injects in queue f; aset X of |X| = rC|T)| packets
wanting to traverse the edges f, fo.

Evolution of the system configuration. The S packets block the X packets in
queue f because S packets are nearest to their destination than X packets.
Therefore, S packets have priority over X packets, they traverse the edge f)
and they are absorbed.

e Round 2: It lasts |T>| = ‘)C(—‘ time steps.
Adversary’s behavior. During this round all the network edges have high
capacity C. The adversary injects a set ¥ of |Y| = rC|T>| packets in queue
f> requiring to traverse the edges f>,e;.
Evolution of the system configuration. X packets block Y packets in queue
> because they have nearest to go than Y packets. X packets traverse the
edge f> and they are absorbed.

Yy ..
e Round 3: It lasts |T3| = = time steps.
Adversary’s behavior. During this round all the network edges have high
capacity C. The adversary injects a set Z of |Z| = rC|T3| packets in queue f>
requiring to traverse the edges fa,e2. Also, itinjects aset Z, of |Z,| = rC|T3|
packets in queuce ¢ requiring to traverse the edges ey, f).

Evolution of the system configuration. Y packets block Z packets in queue
f> that uses NTG-U-LIS protocol because although Y packets are in the
same distance from their destination with the Z packets they are longer
time in the system than Z packets. Morcover Y packets block Z| packets in
qucue ey because they have nearest to go than Z; packets. Y packets traverse
the edge e and they are absorbed.
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® Round 4: It lasts |Ty| = ; time steps.

Adversary's behavior. During this round the edge ¢, has unit capacity, while
all the other edges have high capacity C. The adversary injects a set Z of
|Z2| = rC|T4] packets in queuc e requiring to traverse the edges e, f).

Evolution of the system configuration. Z packets block Z, packets in queue
ez because they have nearest to go than Z, packets. Z packets traverse the
edge ¢ and they are absorbed. Moreover Z; packets are delayed in queue
e| due to the unit capacity of the edge e; during this round. Therefore, lhc
remalnlng packets of Z; in queue e; at the end of this round is a set |Z |

of |Z,| = |Zi| — | Tu| packets requiring to traverse the edges ey, fi, while the
rest Zy packels traverse their remaining path and they are absorbed.

Therefore, the number of packets in queues e;,e; requiring (o traverse the
. ~ . % ! .
edge f at the end of this round is s = |Z2| +|Z,]. In order to have in-

stability, we must have s;| > s;. This holds for L4C+—'Z(9_—I) > 1. When
C tends to infinity, the instability threshold converges to 0.8191. This ar-
gument can be repeated for an infinite number of phases showing that the
number of packets in the system increases forever for r > 0.8191.

Parts b, ¢, d) As in Part a, the adversary of Parts b, ¢, d assigns to the injected
packets simple paths that cannot contain repeated edges and vertices. Again the
adversarial construction is broken into phases that are further broken into four
time rounds. The proof is based on induction on the number of phases. In Parr b
the inductive argument we prove is that if at the beginning of a phase j, there are
sj packets in the queues ez, eq (f1, f3 in Parts ¢, d) requiring to traverse the edge f
(the edges f1,e2 and f3,ey,ez in Part ¢ and f,e; and f3,e1,82,e2 in Part d), then
at the beginning of phase j+ 1 there will be more than s; packets in the queues
ez,eq4 (f1,f3 in Parts ¢, d) requiring to traverse the edge f (f1,es2 and f3,e1,e2
in Part ¢ and f1,e2 and f3,e;,22,¢2 in Part d). This inductive argument can be
repeated for an infinite number of phases showing that the number of packets in
the system increases forever. The basic idea behind the adversarial construction is
that in the first three rounds of each phase all the edges have capacity C and the
used mechanism for delaying packets that are injected in a round are packets in-
jected in previous rounds, while in the last round the transition of a link’s capacity
from Cto 1 is used as an additional blocking mechanism for delaying packets into
the system. O

Theorem 4 Let r > r;. There is a network U; and an adversary A of rate r such
that the system (U;, A,NTG —U —LIS) is unstable in the quasi-static model of
capacities when the adversary assigns to the packets simple-paths with repeated
vertices where U; is the network a) Uy with instability threshold ry = 0.794 and
b) Uy with instability threshold ry = 0.755.
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Proof Sketch. The adversary can assign to the injected packets simple paths
that can contain repeated vertices, which permits the better exploitation of the
network topology for delaying packets into the system as longer paths can be
assigned to the injected packets. The time is split into phases that are broken in
four (Part a) and three (Part b) time rounds. The proof is based on induction on
the number of phases. In Part a the induction argument we prove is that if at the
beginning of a phase j, there are s; packets in the queues ey,ex (e, fi in Part
b) requiring to traverse the edge f (f> in Part b), then at the beginning of phase
J+ 1 there will be more than s; packets in the queues ey, ex (ey, fi in Part b)
requiring to traverse the edge f (f> in Part b). This inductive argument can be
repeated for an infinite number of phases showing that the number of packets in
the system increases forever. The basic idea behind the adversarial construction
is that packet sets that are injected in a round are used as blocking mechanism
for delaying packet sets that are injected in next rounds. Additionally, in some
rounds it is used the transition of the capacity of a link {rom C to | as a blocking
mechanism for delaying packets into the system. O

6 Discussion and Directions for Further Research

Note that the equation that defines the instability bound of LIS is r[C? + C? —
C]+12C* =3C? + 1] > C*+C? = 2C + 1, while the one for the compositions of
protocols (LIS-SIS, LIS-NTS, LIS-FTG) is r2[C* +2C* — C— 1]+ r[2C3 - 3C% -
C+2] > CP 4+ C* = 2C+ . Although they differ for small C values when € —
they both reduce o r2 +2r— 1 > 0, implying r > v/2 — 1. Perhaps this is due to the
structural similarity of the proposed networks; curiously the change of protocol
does not affect the limiting characteristic equation for instability. Our results of
Section 5 suggest that, for every unstable network, its instability threshold in the
model of quasi-static capacitics may be lower than for the classical adversarial
queucing model. Proving (or disproving) this remains an open problem.
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