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A Network Security Problem

e Information network with

® nodes insecure and vulnerable to infection by attackers
e.g., viruses, Trojan horses, eavesdroppers, and

® a system security software or a defender of limited
power, e.g. able to clean a part of the network.

e In particular, we consider
® a graph G with
® yattackers each of them locating on a node of G and
® a defender, able to clean a single edge of the graph.
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A Network Security Game: Edge Model

e \We modeled the problem as a Game
NMy(G) = N, {Sitiens {IP}ien)
® on a graph G(V, E) with two kinds of players (set NV ):

® yattackers (set N’UP) or vertex players (vps) vp;, each of them
with action set, Syp, =V,

® a defender or the edge player ep, with action set, Sep = E,
and Individual Profits in a profile ® = (81, -+ 8|A,| Sep) € S

* vertex player vp;: IP;(s) =0 if s; € sep or 1 otherwise
l.e., 1if it is not caught by the edge player, and 0 otherwise.
® Edge player ep: ICep(s) = |{s; : s; € sep}|
l.e. gains the number of vps incident to its selected edge Sep. /
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Nash Equilibria in the Edge Model

e \We consider pure and mixed strategy profiles.

e Study associated Nash equilibria (NE), where no player

can unilaterally improve its Individual Cost by switching
to another configuration.
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Notation

P.(ep, e): probability ep chooses edge e in s
P.(vp;, v): probability vp, chooses vertex vin s
P.(vp, v) = 22N, P(vp,Vv): # vps located on vertex vin's

D.(1): the support (actions assigned positive probability) of
player i2 NV in s.

ENeigh.(v) = {(u,v) € E: (u,v) € Ds(ep)}

P (Hit(v)) = XecENeigh(v) Fs(ep, €): the hitting probability of ¢
m.(V) =2ien,, Ps(vpi, v): expected # of vps choosing v

mg(e) = my(u)+mg(v)

Neigh(X) = {u € X : (u,v) € E(G)}

/
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Expected Individual Costs
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e Vvertex players vp;:

e edge player ep:

1N

/ N\
IPep(8) = ),

\_

IPi(s) = Xvev Bs(upi;v) - (1 — Ps(Hit(v))

D/ N/ / |
(J,,’U)EE Fslep,e) - (Mms(u) 1T Ms(v),

ISAAC, Dec 2005



4 h

Summary of Results

e No instance of the model contains a pure NE
e A graph-theoretic characterization of mixed NE
e Introduce a subclass of mixed NE:
— Matching NE
® A characterization of graphs containing matching NE

® A linear time algorithm to compute a matching NE on
such graphs

® Bipartite graphs and trees satisfy the characterization

® Polynomial time algorithms for matching NE in bipartite
graphs
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Significance

e The first work (with an exception of ACY04) to model
network security problems as strategic game and study
Its associated Nash equilibria.

e One of the few works highlighting a fruitful interaction
between Game Theory and Graph Theory.

e QOur results contribute towards answering the general
guestion of Papadimitriou about the complexity of Nash
equilibria for our special game.

e We believe Matching Nash equilibria (and/or extensions
of them) will find further applications in other network
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Pure Nash Equilibria

Theorem 1. If G contains more than one edges, then 71G)
has no pure Nash Equilibrium.

Proof.
e Lete=(u,v)the edge selected by the ep in s.
e |E|>1 = there exists an edge (u',v’))=e” #e, suchthatu =u’.
e If thereis a vp, located on e,
® vp, will prefer to switch to u and gain more
— Not a NE.
e Otherwise, no vertex player is located on e.
® Thus, ICep(s)=0,

® ep can gain more by by selecting any edge containing at least one
vertex player.

— Not a NE. [] /
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Characterization of Mixed NE

Theorem 2. A mixed configuration s is a Nash equilibrium for
any //G) if and only if:

1. D.(ep) is an edge cover of G and

2. D¢(vp) is a vertex cover of the graph obtained by D (ep).

3. (a) P(Hit(v)) = P,(Hit(u)) = min, P, (Hit(v)), 8 u,v 2 D(vp),
(b) 2e2Dgep) Ps(ep.e) =1

4. (a) m(e,)=m(e,)=max, m,(e), 8 e;, e, 2D, (ep)and
(b) 2v 2 v(s(ep) Ms(V)=v.

1. (Edge cover) Proof:

If there exists a set of vertices NC = &, Not covered by D.(ep),
— Dg(vp;) 4 NC, for all vp; 2 Nyp = IC(ep)=0

b ep can switch to an edge with at least one vp and gain more. D/
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Matching Nash Equilibria

Definition 1. A matching configuration s of /7/G) satisfies:
1. D¢(vp) is an independent set of G and
2. each vertex v of D(vp) Is incident to only one edge of

D.(ep).

Lemma 1. For any graph G, if in /7{G) there exists a matching
configuration which additionally satisfies condition 1 of Theor. 2,
® then setting Dy(vp) := D(vp), 8 vp; 2 N,,, and
® applying the uniform probability distribution on the support of
each player,
we get a NE for 7/(G), which is called matching NE.

\_ 0/
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Characterization of Matching NE

Definition 2. The graph G is an S-expander graph if for every set X
HS pV, [X]- [Neighg(X)|.
Marriage Theorem. A graph G has a matching M in which

set X 4 V is matched into VAX in M if and only if for each subset
SuX, |Neighg(S)l, S|

Theorem 3. For any G, //G) contains a matching NE if and
only if the vertices of G can be partitioned into two sets:

® |ISand VC=V\IS
such that IS is an independent set of G and

k G is a VC-expander graph. /
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Proof of Theorem 3.

e If G contains an independent set IS and G is VC-expander
then 7/(G) contains a matching NE. Proof:

e G is VC-expander = by the Marriage Theorem, G has a matching M
such that each vertex u 2 VC is matched into V\VC in M.

e Partition IS into two sets:
® 1S, ={v 2 1S such that there exists an e=(u,v) 2 M and u 2 VC}.
® |S, = the remaining vertices of IS.

e Define a configuration s as follows:
® For each v2IS,, add one edge (u,v) 2 E in set M,.
¢ Set D (vp) = Dy(vp;)s vpi 2 Nvp := IS and Dg(ep) := M[ M,.
® Apply the uniform distribution for all players

\_ /
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Proof of Theorem 3. (An example)

’ e By construction, s
| is matching NE.

edges

No edg;e > between
vertices
of VC

edges-
between .
vertices

of VC
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Proof of Theorem 3. (Cont.)

~

set IS and G is VC-expander, where VC =V \ IS. Proof:

e Define set I1S=D(vp)
® [Sis anindependent set of G
¢ for each v2 VC, there exists (u,v) 2 D (ep) such that v2 IS
® for each v2 VC, add edge (u,v) 2 D,(ep) in a set MuL E.
— M matches each vertex of VC into V\ VC =IS

= G is a VC-expander

\_

e If 7/G) contains a matching NE then G contains an independent

— by the Marriage's Theorem, |Neigh(VC")|, |[VC'|, for all VC' u VC, I..e.

[]

/
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A polynomial time Algorithm A{1(G), 1S5))

~

\_

where VC=WV\IS.

Output: a matching NE of 7/G)

Compute a matching M covering all vertices of set VC.
Partition IS = VI\VC into two sets:

® IS, ={v2I1S such that there exists an e=(u,v) 2M andu 2 VC}

® IS, =the remaining vertices of IS.

Compute set M;: for each v2 IS,, add one edge (u,v) 2 E in set M,
Set D (vp) = D.(Vp;)s vpi 2 nvp = IS and D¢(ep) := M[ M; and apply the

uniform distribution for all players

Input: 74G), independent set IS, such that G is VC-expander,

/
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Correctness and Time Complexity

~

(mixed) Nash equilibrium for 74G) in time O(m).

Proof.

\_

Theorem 4. Algorithm A(/4G), I1S)) computes a matching

The algorithm follows the constructive proof of Theorem 3.

[]
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KApplication of Matching NE: \
Bipartite Graphs

Lemma 2. In any bipartite graph G there exists a matching M and
a vertex cover VC such that

1. every edge in M contains exactly one vertex of VC and

2. every vertex in VC is contained in exactly one edge of M.
Proof Sketch.
e Consider a minimum vertex cover VC
e By the minimality of VC and since G is bipatrtite,
® for each SpVC, Neighs(S)u S

— by the Marriage Theorem, G has a matching M covering all
vertices of VC (condition 2)

® every edge in M contains exactly one vertex of VC (condition 1)

\_ /
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/Application of Matching NE: \
Bipartite Graphs

Theorem 5. (Existence and Computation)
If G Is a bipartite graph, then
® /IG) contains a matching mixed NE of 7/(G) and
® one can be computed in polynomial time,
max{O0(m/n), O(n?°/y/logn)} using Algorithm A.

Proof Sketch.
e Ultilizing the constructive proofs of Lemma 2 and Theorem 3,

e Wwe compute an independent set IS such that G is VC-expander,
where VC = V\IS, as required by algorithm A.

\o Thus, algorithm A is applicable for 74G).
Sy
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Current and Future Work

~

® for specific graph families,
® exploiting their special properties

graphs

e Generalizations of the Edge model

\_

e Compute other structured/unstructured Polynomial time NE

e Existence and Complexity of Matching equilibria for general

/
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