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Abstract gles the balancer so that the input next to come will leave on

the next output wire. If the toggle was set to the last output
Counting networks were introduced as a new class of wire it is set back to the first output wire.

concurrent, distributed, low contention data structures suit-  One can connect a collection of balancers to forbah
able for implementing shared counters. Their structure ancing network.This is done by connecting output wires
is similar to that of sorting networks. High-performance from some balancers to input wires of others. The remain-
asynchronous multiprocessing requires counting networksing unconnected input and output wires are the input and
to both have smatlepthand incur lowcontention Inorder  output wires, respectively, of the network. The number of
to achieve this, we relax in this work the requirement that input and output wires is the same and is calledvifith
the input width of the counting network is equal to its output ¢ of the network. Like the balancer, the balancing network
width. More specifically, we present an explicit, determin- receives tokens in itsputs and forwards them in its out-
istic construction of a counting network withinput width puts. A counting network is a balancing network that has

and w output width, wheré < w, t = 2¥ andw = p2'. thestep property(see Section 2), a property which makes it
This construction is practical and achieves depttig” t) able to behave like a counter. A processor that wants to ob-
which is independent from the output widih Further-  tain a new value from the counter traverses the network by

more, by takingw to be ©(tlgt) it incurs an amortized  issuing a token, and according to the output it leaves from
contention of the orde®((n 1g¢) /t), wheren isthe concur-  the network it takes an appropriate value.

rency, which improves by a logarithmic factor over all pre- | this work we deviate from the “traditional” approach
vpusly known practical counting networks constructions of gnq we construct counting networks which have different
widtht. input and output widths (different number of input and out-

put wires). In our construction the input widths smaller

or equal to the output widtly. More specifically, we have
1. Introduction t = 2F, w = p2' andk < [. Our counting network, denoted

asC'(t, w), is constructed from regular balancers with-

A shared counter can be easily implemented using a sin-puts and outputs and from balancers with different number
gle sharedFetch&Incrementvariable. However, empiri-  of inputand output wires. A-input, p-output balancer be-
cally, the time to access a shared variable grows at leashaves in the same as a regular balancer, that is, a token is
linearly with the contention the extent to which concur-  received from one of itg inputs and is forwarded to one of
rent processors simultaneously attempt to access the variits p outputs using the same toggle mechanism witet-
able. Aspne®t al. [3] suggested theounting networlas tings (see also [2, 11]). IA'(¢, w) we use balancers with
an alternative approach for implementing shared counters. ¢ = 2 andp > 2. In figure 1 we see the construction of

Counting networks are constructed from simple ele- C(4,8), where the balancers are drawn with vertical lines
ments calledbalancersin a similar way that sorting net- and the wires are drawn with horizontal lines. We see that
works are constructed from comparators (see [4, 10]).this construction uses-input, 2-output balancers, anz
Loosely speaking, a balancer can be thought of as a tog{nput,4-output balancers.
gle mechanism withp input and output wires thaeceives Our construction improves over all known practical con-
tokens from its input wires and forwards them to its output structions in terms oflepthandcontention two important
wires (see [3, 5, 8]). When a token appears on an input wire,measures for balancing and counting networks. The depth
it takes the output wire to which the toggle is set, and tog- of a balancing network is the maximal path length from an



lows. A balancing network can be divided in layers, where
each layer contains the balancers that are in a specific depth.
In the traditional counting networks the width of all the lay-
ers is equal t@, making the contention to be the same for
each layer. On the other hand, in our network, only the first
lgt layers have width, and the rest layers, which are the
majority, have widthw. By takingw to be larger thar
more balancers are available at each of the last layers. Thus
the contention of the balancers of these layers decreases as
w increases, making the total contention to decrease.

The construction uses as a building block a network with
a novel merging property which we célbunded difference
Figure 1. The counting network  C'(4, 8). §-merging network This network mergers the outputs of
two counting networks which have a difference of at most

inout wire t tout wire. The depth is important since 4. The contention measurement is done using the recursive
INpUt wire 1o an outpu €. he depth Isimp method introduced in [9]. The rest of the paper is orga-

the number of memory locations that a processor may have ized as follows. In Section 2 we give the necessary defini-

to access, before its incremental request is satisfied, is aﬂons, in Section 3 we present the construction of a bounded

most the erth of the network. The contention is the ex- differenced-merging network, and in section 4 we present
tent to which concurrent processors access the same mem;

. . . he construction of our counting network. Finally, in Sec-
orylogatlon (the bglancgr in our case) at the same time. Thetion 5 we give our concluding remarks and present some
amortized contentigmefined by Dworlet al.[7], measures

o ; i open problems.

contention in the worst-case and in the limit when many
processors access the balancing network concurrently. In o
order to achieve good performance in a counting network it 2. Definitions
is necessary to achieve both small depth and low contention
(see [6]). We denote an integer sequence with a capital letter, e.qg.

The traditional practical counting networks known so far X, and its elements with small letters e.g;. The first
achieve deptid(lg” t), wheret is the width of the network.  index of a sequence i Let X(X) denote the sum of all
Such networks are the bitonic and periodic counting net- the elements ok'. From know on whenever we say that we
works [3], which use-input,2-output balancers, and other compare two sequencésandY we mean that we compare
constructions which use balancers of larger widths [1, 8, 9]. their sums, that is, we actually compat¢X) andX(Y).
The amortized contention that is achieved by these networksTake a sequenc& of length (width)p. We say thatX has
is of the ordeiO((n1g” t) /1), wheren is the processor con-  the step property, or alternatively is step, if) < #;—z; <
currency. Itis easy to see that in these networks if we needi, for any,j, 0 < i < 7 < p— 1. We say thatY has
low contention we have to use large widths. However, this the k-smooth property, or alternativel is k-smooth, if
has the side effect that it increases the depth of the network0 < |z; — ;| < k, forany0 <i,j <p-1
Therefore, there exists a trade off between the choice of Let b be ag-input, p-output balancer. Lef{ be the
the appropriate depth and contention which is related to thesequence (input sequence) of widttsuch thate; is the
width of the counting network. number of tokens received on thith wire of b, for all

Our construction, due to its irregular structure, achieves 0 < i < ¢ — 1. In a similar way we define the sequerice
depth O(lg*t) which is independent from its output (outputsequence) for the output wires. Let shateof b at
width.  Simultaneously, the amortized contention is a given time be defined as the collections of tokens received
O((nlg®t)/w + (nlgt)/t))) which means that by increas- onits inputand left from its output wires. A statebd qui-
ing the output width the contention drops. Therefore, for escentf £(X) = X(Y'); that is, the number of tokens that
any fixed input widtht we can decrease the contention by entered the balancer is equal to the number of tokens that
increasing only the output width, while preserving the depth left it. The following formal safety, liveness and step prop-
of the network. This way, we avoid the trade off between erties are required fdr. (1) In any stateX(X) > X(Y) (b
depth and contention found in traditional networks. Actu- never creates output tokens). (2) Given any finite number
ally, by makingw to be of the orde©(¢lgt) we achieve  of input tokens ta it reaches within a finite aount of time

amortized contention of the ordé((n lgt)/t) which im- a quiescent stateé fiever “swallows” input tokens). (3) In
proves by a logarithmic factor over all known best practical any quiescent staté has the step property.
counting network constructions. Let B be any balancing network of input widthand

The performance of our network can be explained as fol- output widthw. Let X andY be the input and output se-



quences, respectively, &. The state of3 is defined asthe M (w, d) and letY” denote its output sequence.
collection of states of all its component balancers. Similarly  The construction is by induction ofi. For the base
to the balancer, the state Bfis quiescent it (X) = (V). case we have = 2 and the networkM (w, 2) consists
As in the balancer, we require to have the safety and live-  from w/2 2-input, 2-output balancerso, . .., b,/;—1. The
ness properties. For the rest of the paper we will assume thafirst and second input wires of balandgrare connected
the balancing networks we consider are in quiescent state. to »;_; anda;, respectively, and its first and second out-
A counting network is a balancing network such that its put wires are connected ;1 andys;, respectively, for
output sequence has the step property. We will denote al < 7 < w/2 — 1. The first and second input wires of
counting network of input width and output widthw as balancerb,, are connected ta, andb,, ;,_, respectively,
C(t, w). and its first and second output wires are connected smd
A bounded differencé-merging network is a balancing  y,,_1, respectively.
network of equal input and output width, whose input se-  For the inductive casé > 2, the networkM (w, §) is
guence can be divided into two equal length subsequencesonstructed as follows (see figure 2). We take two copies
A and B such that its output sequence has the step prop-of the networkM (w/2,6/2) denoted as{y(w/2,4/2) and
erty wheneverd and B both have the step property and M;(w/2,6/2). The first and second input sequences of
0 < X(A) — X(B) < 4. That is the difference between My(w/2,6/2) are connected to the even subsequences of
A and B is bounded by. We denote such a network of A and B, respectively. The first and second input se-
width w as M (w, ¢). We will refer to the sequence$ and quences of\f; (w/2,4/2) are connected to the odd subse-
B as the first and second input sequence, respectively, ofjuences ofd and B, respectively. Next, we take a copy
M(w,d). of the networkM (w, 2). The first and second input se-
On an MIMD shared memory multiprocessor machine, quences ofif (w, 2) are connected to the output sequences
a balancing networlks is implemented as a shared data of Mo(w/2,d/2)andM;(w/2,5/2), respectively. The out-
structure, where balancers are records and wires are pointput sequence oM (w, 2) is connected to the sequenkte
ers from one record to another. Each of the machine’s This completes the construction. Next, we show the cor-
n asynchronous processors runs a program that repeatrectness ofif (w, d), then we calculate its depth and we es-
edly traverses the data structure from some input pointertimate its contention.
to some output pointer, each time shepherding a new to-
ken through the network. Tokens generated by proces-
sorp;, I € {0,...,n — 1}, enter the network on input
wire [ mod ¢. The limitation on the number of concur-
rent processors implies a limitation on the number of to- 4
kens concurrently traversing the network at any given time:
Y(X)-X(Y) <n.
Consider an execution dB entering a quiescent state — v
after m tokens pass through it. Each time a token passes
through a balancer, all tokens pending at this balancer in-
cur astall step, modeling their delay due to contention with B
each other. The number of stall steps has beewndnired
in [7] as a measure of contention. The contention incurred
by the traversal ofn tokens through the network at con-
currencyn, denoteccont(m, n, B), is the maximum num-
ber of stalls, over all possible executions, induced by an Figure 2. The network M (8, ).
adversary scheduler. The amortized contention of the net-
work B at concurrency:, denotedcont(n, B), is the limit

supremum ofont(m,n, B) divided bym, asm goes to ~ Proposition 3.1 M(w,é) is a bounded differences-
infinity. merging network.

Mo(4,4d/2)

My(4,4/2)

. . Sketch of proof: First we examine the base ca$e= 2.
3. A Bounded Differences-Merging Network If the difference between the input sequencesand B is
exactly0 or 1 then the balancers do not affect the input se-
In this section we present the construction of a boundedquences and the output sequentédias the step property.
differenced-merging networkM (w, d) wherew = p2', If the actual difference is exactB/then there are two sub-
§=2p>1,1>2andl < k < [. Let AandB cases. In the first subcase the two input sequences form a
denote the first and second input sequences, respectively, of-smooth sequence and one of the balanggrs ., by, /21



makes the output sequence to have the step property. Inthé. Next, we take two copies af'(¢/2, w/2) denoted as
second subcase the two input sequences fotysmooth  Co(?/2,w/2) andCy(¢/2,w/2). The first and second out-
sequence and the balanégmrmakes the output sequence to put wires of balanceb; are connected to th&h input of
have the step property. the networkCo(t/2, w/2) andC'y(t/2, w/2), respectively,
Next, we examine the inductive caée> 2. Sincethe forall0 < i < ¢/2 — 1. Next, we take the bounded dif-
difference between the sequencesndB is at mosty we ferencet /2-merging networkM (w, t/2) described in sec-
have that the difference between their even subsequencetion 3. The first and second input sequences of network
is at mostd/2, and similarly the difference between their M (w,t/2) are connected to the output sequences of the net-
odd subsequences is at mégR. Furthermore, these sub- works Co(t/2,w/2) and Cy(t/2,w/2), respectively. The
sequences have the step property. Therefore, by the induceutput sequence dff (w, ¢/2) is connected to the sequence
tion hypothesis, the outputs of network (w/2,4/2) and Y. This completes the construction. Next, we show the
Mo(w/2,8/2) have the step property. Since in a sequence correctness of’(¢, w), then we calculate its depth and we
the even subsequence is greater by one or equal than thestimate its contention.
odd subsequence, we have that the output sequence of net-
work Mo (w/2,4/2) is bigger by at most two or equal to the
output sequence of networW; (w/2,4/2). Therefore the =
output sequence of netwo (w, 2) has the step property, al
as needed. m X S

Proposition 3.2 depth(M (w,d)) = 1gd.

M(8,2)

Sketch of proof: We solve the recurrence
depth(M (w, §)) = depth(M (w/2,8/2)) +
depth(M (w, 2)). For the base case we have
depth(M (w,2)) = 1. [ ]

—
S
o~
o
—
o

Proposition 3.3 cont(m,n, M(w,d)) < m(2n/w —
1)lgé Figure 3. The network C'(4,8).

Sketch of proof: Let my and m; denote the num- . .
ber of tokens that enter the networkiy(w/2,3/2) Theorem 4.1 C'(t, w) is a counting network.
and M;(w/2,6/2), respectively. The con-

struction guarantees concurrency:/2 for each Sketch of proof: For the base case = 2 the network

of these networks. We solve the recurrence 0(2’.“’) is obviously a counting networ!<. For the in-
cont (m, n, M (w,8)) < cont(mo,n/2, Mo(w/2,6/2)) + ductive caset > 2 we have _the following. The bal-
cont(my,n/2, Ml(w/57 §/2)) + cont(m,n, M(w,2)). ancersbo, .. ., b;/o_1 make the input sequence of network
For the base case we havent(m,n, M (w,2)) Co(t/Q,w/Q) to be greater by at mosgf2 or equal'to the
m(2n/w — 1), since the contention of a balancer with con- input sequence of network (¢/2, w/2). By the induc-

currencyn which traversen tokens is equal ten(n — 1) tion hypothesis, the output sequences of these two networks
' have the step property and furthermore their output se-

[
guences have the same difference as their input sequences.
) Therefore, by Proposition 3.1, we have that the output se-
4. A Counting Network quence of\ (w, t/2) has the step property, as needecs

In this Section, we present a counting netwetk,w)  Theorem 4.2 depth(Si,.) = (18° t + 1gt)/2
wheret = 2% w = p2!, p,l > 1,andl < k < [. Let X

; . Sketch of proof: We solve the recurrence
3;1%)& du(?)note the input and output sequences, respectlvely,depth(c(t’ ) _ | 4 depth(C(1/2,0/2) +
The construction is by induction an For the base case gepttlz](]‘ﬁ(w’ t/2)) by u;;gg ;]f:ecre;ult of_Plroposmon 3.2
we havet = 2 and the networlC'(2, w) is just a2-input, or the base case we haepth(C(2, v)) = 1. "

w-output balancer. For the inductive case> 2 the net-  Theorem 4.3 cont(n, C(t,w)) < (nj/w — 1/2)1g%t +
work C'(t, w) is constructed as follows (see figure 3). We (2n/t —njw—1/2)1gt B

taket/2 2-input, 2-output balancers$o,...,b;/2_1. The

first and second input wires of balandgrare connected  Sketch of proof: Let my and m; denote the num-
to x2; and zg;41, respectively, for alld < ¢ < t/2 — ber of tokens that enter the netwofk(¢/2,w/2) and
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