
Optimal, Distributed Decision-Making:
The Case of No Communication

Stavros Georgiades1, Marios Mavronicolas2, and Paul Spirakis3

1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.
Email: stavrosg@turing.cs.ucy.ac.cy

2 Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT 06269–3155. Part of the work of this author was performed while at

Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus,
and while at AT&T Labs – Research, as a visitor to the Special Year on Networks,

DIMACS Center for Discrete Mathematics and Theoretical Computer Science. Email:
mavronic@engr.uconn.edu

3 Department of Computer Engineering and Informatics, University of Patras,
Patras, Greece & Computer Technology Institute, Patras, Greece. Partially supported
by the EU ESPRIT Long Term Research Project ALCOM-IT (Proj. # 20244), and

by the Greek Ministry of Education. Email: spirakis@cti.gr

Abstract. We present a combinatorial framework for the study of a
natural class of distributed optimization problems that involve decision-
making by a collection of n distributed agents in the presence of incom-
plete information; such problems were originally considered in a load
balancing setting by Papadimitriou and Yannakakis (Proceedings of the
10th Annual ACM Symposium on Principles of Distributed Computing,
pp. 61–64, August 1991). For any given decision protocol and assuming
no communication among the agents, our framework allows to obtain a
combinatorial inclusion-exclusion expression for the probability that no
“overflow” occurs, called the winning probability, in terms of the volume
of some simple combinatorial polytope.
Within our general framework, we offer a complete resolution to the spe-
cial cases of oblivious algorithms, for which agents do not “look at” their
inputs, and non-oblivious algorithms, for which they do, of the general
optimization problem. In either case, we derive optimality conditions
in the form of combinatorial polynomial equations. For oblivious algo-
rithms, we explicitly solve these equations to show that the optimal algo-
rithm is simple and uniform, in the sense that agents need not “know” n.
Most interestingly, we show that optimal non-oblivious algorithms must
be non-uniform: we demonstrate that the optimality conditions admit
different solutions for particular, different “small” values of n; however,
these solutions improve in terms of the winning probability over the op-
timal, oblivious algorithm. Our results demonstrate an interesting trade-
off between the amount of knowledge used by agents and uniformity for
optimal, distributed decision-making with no communication.

G. Ciobanu and G. Păun (Eds.): FCT’99, LNCS 1684, pp. 293–303, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

294 S. Georgiades, M. Mavronicolas, and P. Spirakis

1 Introduction

In a distributed optimization problem, each of n distributed agents receives a pri-
vate input, communicates possibly with other agents to learn about their own
inputs, and decides, based on this possibly partial knowledge, on an output; the
task is to maximize a common objective function. Such problems were originally
introduced by Papadimitriou and Yannakakis [9], in an effort to understand the
crucial economic value of information [1] as a computational resource in a dis-
tributed system (see, also, [2,4,8,10]). Intuitively, the more information available
to agents, the better decisions they make, but naturally the more expensive the
solution becomes due to the need for increased communication. Such natural
trade-offs between communication cost and the quality of decision-making have
been studied in the contexts of communication complexity [7] and concurrency
control [6] as well.

Papadimitriou and Yannakakis [9] examined the special case of such distri-
buted optimization problems where there are just three agents. More specifically,
Papadimitriou and Yannakakis focused on a natural load balancing problem (see,
e.g., [3,5,11], where each agent is presented with an input, and must decide on a
binary output, representing one of two available “bins,” each of capacity one; the
input is assumed to be distributed uniformly in the unit interval [0, 1]. The load
balancing property is modeled by requiring that no “overflow” occurs, namely
that inputs dropped into each “bin” not exceed together its capacity. Papadimi-
triou and Yannakakis [9] pursued a comprehensive study of how the best possible
probability, over the distribution of inputs, of “no overflow” depends on the amo-
unt of communication available to the agents. For each possible communication
pattern, Papadimitriou and Yannakakis [9] discovered the corresponding opti-
mal decision protocol to be unexpectedly sophisticated. The proof techniques
of Papadimitriou and Yannakakis [9] were surprisingly complex, even for this
seemingly simplest case, combining tools from nonlinear optimization with geo-
metric and combinatorial arguments; these techniques have not been hoped to
be conveniently extendible to instances of even this particular load balancing
problem whose size exceeds three.

In this work, we introduce a novel combinatorial framework in order to en-
hance the study of general instances of distributed optimization problems of the
kind considered by Papadimitriou and Yannakakis [9]. More specifically, we pro-
ceed to the general case of n agents, with each still receiving an input uniformly
distributed over [0, 1] and having to choose one out of two “bins”; however, in
order to render the problem interesting, we make the technical assumption that
the capacity of each “bin” is equal to δ, for some real number δ possibly grea-
ter than one, so as to compensate for the increase in the number of players.
Papadimitriou and Yannakakis [9] focused on a specific kind of decision proto-
cols by which each agent chooses a “bin” by comparing a “weighted average” of
the inputs it “sees” against some “threshold” value; in contrast, our framework
allows for the consideration of general decision protocols by which each agent
decides by using any (computable) function of the inputs it “sees”.

Optimal, Distributed Decision-Making: The Case of No Communication 295

Our starting point is a combinatorial result that provides an explicit inclusion-
exclusion formula [12, Section 2.1] for calculating the volume of any particular
geometric polytope, in any given dimension, of some speficic form (Proposi-
tion 1). Roughly speaking, such polytopes are the intersection of a simplex in the
positive quadrant with an orthogonal parallelepiped. An immediate implication
of this result are inclusion-exclusion formulas for calculating the (conditional)
probability of “no overflow” for a single “bin,” as a function of the capacity δ
and the number of inputs that are dropped into the “bin” (Lemmas 1 and 2).

In this work, we focus on the case where there is no communication among the
agents, which we completely settle for the case of general n. Since communication
comes at a cost, which it would be desirable to avoid, it is both natural and
interesting to choose the case of no communication as an initial “testbed”. We
consider both oblivious algorithms, where players do not “look” at their inputs,
and non-oblivious algorithms, where they do. For each case, we are interested in
optimal algorithms.

We first consider oblivious algorithms. Our first major result is a combinato-
rial expression in the form of an inclusion-exclusion formula for the probability
that “no overflow” occurs for either of the “bins” (Theorem 1). This formula
incorporates a suitable inclusion-exclusion summation, over all possible input
vectors, of the probabilities, induced by any particular decision algorithm, on the
space of all possible decision vectors, as a function of the corresponding input
vector. The coefficients of these probabilities in the summation are independent
of any specific parameters of the algorithm, while they do depend on the input
vector. A first implication of this expression is the reduction of the general pro-
blem of computing the probability that “no overflow” occurs to the problem of
computing, given a particular decision algorithm, the probability distribution of
the binary output vectors it yields. Most significantly, this expression contributes
a methodology for the design of optimal decision algorithms “compatible” with
any specific pattern of communication, and not just for the case of no communi-
cation that we particularly examine: one simply renders only those parameters
of the decision algorithm that correspond to the possible communications, and
computes values for these parameters that maximize the combinatorial expres-
sion as a function of these parameters. This is done by solving a certain system
of optimality conditions (Corollary 2).

We demonstrate that our methodology for designing optimal algorithms for
distributed decision-making is both effective and useful by applying it to the
special case of no communication that we consider. We manage to settle down
completely this case for oblivious algorithms. We exploit the underlying “sym-
metry” with respect to different agents in order to simplify the optimality con-
ditions (by observing that all parameters satisfying them must be equal). This
simplification reveals a beautiful combinatorial structure; more specifically, we
discover that each optimality condition eventually amounts to zeroing a parti-
cular “symmetric” polynomial of a single variable. In turn, we explicitly solve
these conditions to show that the best possible oblivious algorithm for the case
of no communication is the very simple one by which each agent uses 1/2 as its

296 S. Georgiades, M. Mavronicolas, and P. Spirakis

“threshold” value; given that the optimal (non-oblivious) algorithms presented
by Papadimitriou and Yannakakis for the special case where n = 3 are somehow
unexpectedly sophisticated, it is perhaps surprising that such simple oblivious
algorithm is indeed optimal for all values of n.

We next turn to non-oblivious algorithms, still for the case of no commu-
nication. In that case, we demonstrate that the optimality conditions do not
admit a “constant” solution. Through a more sophisticated analysis, we are able
to compute more complex expressions for the optimality conditions, which still
allow exploitation of “symmetry”. We consider the particular instances of the
optimality conditions where n = 3 and δ = 1 (considered by Papadimitriou and
Yannakakis [9]), and n = 4 and δ = 4/3. We discover that the optimal algo-
rithms are different in each of these cases. However, they achieve larger winning
probabilities than their oblivious counterparts. This shows that the improved
performance of non-oblivious algorithms comes at the cost of sacrificing unifor-
mity.

We believe that our work opens up the way for the design and analysis of
algorithms for general instances of the problem of distributed decision-making
in the presence of incomplete information. We envision that algorithms that are
more complex, general communication patterns, and more realistic assumptions
on the distribution of inputs, can all be treated in our combinatorial framework
to yield optimal algorithms for distributed decision-making for these cases as
well.

2 Framework and Preliminaries

Throughout, for any bit b ∈ {0, 1} and real number α ∈ [0, 1], denote b the
complement of b, and α(b) to be α if b = 1, and 1 − α if b = 0. For any binary
vector b, denote |b| the number of entries of b that are equal to one.

2.1 Model and Problem Definition

Consider a collection of n distributed agents P1, P2, . . . , Pn, called players, where
n ≥ 2. Each player Pi receives an input xi, which is the value of a random variable
distributed uniformly over [0, 1]; denote x = 〈x1, x2, . . . , xn〉T the input vector.
Associated with each player Pi is a (local) decision algorithm Ai, that may be
either deterministic or randomized, and “maps” the input xi to Pi’s output yi.
A distributed decision algorithm is a collection A = 〈A1, A2, . . . , An〉 of (local)
decision algorithms, one for each player.

A deterministic decision algorithm is a function Ai : [0, 1] → {0, 1}, that maps
the input x1 to Pi’s output yi = Ai(xi); denote yA(x) = 〈A1(x1), A2(x2), . . . ,
An(xn)〉T the output vector of A on input vector x. A deterministic, single-
threshold decision algorithm is a deterministic decision algorithm Ai that is a
single-threshold function; that is,

Ai(xi) =
{

0, xi ≤ ai

1, xi > ai
,

Optimal, Distributed Decision-Making: The Case of No Communication 297

where 0 ≤ ai ≤ ∞. Distributed, deterministic decision algorithms and distri-
buted, deterministic single-threshold decision algorithms can be defined in the
natural way.

Say that A is randomized oblivious if for each i, 1 ≤ i ≤ n, Ai is a probability
distribution on {0, 1}; that is, Ai(0) (resp., Ai(1)) is the probability that player Pi

decides 0 (resp., 1). Denote ai = Ai(0). Thus, a distributed, randomized oblivious
decision algorithm is a collection A = 〈ai, a2, . . . , an〉 is a collection of (local)
randomized, oblivious decision algorithms, one for each player.

For each b ∈ {0, 1}, define Sb =
∑

i:Ai(x)=b xi; thus, Sb is the sum of the inputs
of the players that “decide” b. For each parameter δ > 0, we are interested in
the event that neither S0 nor S1 exceeds δ; denote PrA(S0 ≤ δ and S1 ≤ δ) the
probability, taken over all input vectors x, that this event occurs. We wish to
maximize PrA(S0 ≤ δ and S1 ≤ δ) over all protocols A; any protocol A that
maximizes PrA(S0 ≤ δ and S1 ≤ δ) is a corresponding optimal protocol.

2.2 Combinatorial Preliminaries

For any polytope Π, denote Vol(Π) the volume of Π. A cornerstone of our analysis
is the following combinatorial result that calculates the volume of any particular
polytope that has some specific form. Fix any integer m ≥ 2. Consider any pair
of vectors a = 〈α1, α2, . . . , αm〉T, and b = 〈β1, β2, . . . , βm〉T, where for any l,
1 ≤ l ≤ m, 0 ≤ αl, βl < ∞. Define the m-dimensional polytope

Π(m)(a,b) = {〈x1, x2, . . . , xm〉T ∈ [0, β1]×[0, β2]× . . .×[0, βm] |
m∑

l=1

xl

αl
≤ 1} .

Thus, Π(m)(a,b) is the intersection of the m-dimensional simplex

Π(m)(a) = {〈x1, x2, . . . , xm〉T |
m∑

l=1

xl

αl
≤ 1} ,

with the m-dimensional orthogonal parallelepiped [0, β1] × [0, β2] × . . . × [0, βm];
The vectors a and b determine the simplex and the orthogonal parallelepiped,
respectively. We provide an explicit inclusion-exclusion formula for calculating
the volume of Π(m)(a,b).

Proposition 1.

Vol(Π(m)(a,b)) =

V∅ −
∑

1≤i≤m

V{i} +
∑

1≤i<j≤m

V{i,j} −
∑

1≤i<j<k≤m

V{i,j,k} + · · · + (−1)mV{1,2,...,m} ,

where

V∅ =
1
m!

m∏
l=1

αl ,

298 S. Georgiades, M. Mavronicolas, and P. Spirakis

and for each set of indices I ⊆ {1, 2, . . . , m},

VI =
{

V∅(1 −∑l∈I βlα
−1
l)m, 1 >

∑
l∈I βlα

−1
l

0, 1 ≤∑l∈I βlα
−1
l .

2.3 Probabilistic Lemmas

In this section, we present two straightforward implications of Proposition 1 that
will be used later.

Lemma 1. Assume that for each i, 1 ≤ i ≤ m, xi is uniformly distributed over
[0, βi]. Then, for any parameter δ > 0,

Pr(
m∑

i=1

xi ≤ δ) =
1
m!

∑
I⊆{1,2,...,m},

∑
l∈I

βl<δ(−1)|I|(δ −∑l∈I βl)m∏m
l=1 βl

.

An immediate implication of Lemma 1 concerns the special case where for
each i, 1 ≤ i ≤ n, βi = 1.

Corollary 1. Assume that for each i, 1 ≤ i ≤ m, xi is uniformly distributed
over [0, 1]. Then, for any parameter δ > 0,

Pr(
m∑

i=1

xi ≤ δ) =
1
m!

∑
0≤l≤m,l<δ

(−1)l

(
m

l

)
(δ − l)m .

We also show:

Lemma 2. Assume that for each i, 1 ≤ i ≤ m, xi is uniformly distributed over
[βi, 1]. Then, for any parameter δ > 0,

Pr(
m∑

i=1

xi ≤ δ) =

= 1 − 1
m!

∑
I⊆{1,2,...,m},|I|−

∑
l∈I

βl<m−δ(−1)|I|(m − δ − |I| +
∑

l∈I βl)m∏m
l=1(1 − βl)

.

3 Oblivious Algorithms

3.1 The Winning Probability

We show:

Theorem 1. Assume that A is any randomized oblivious algorithm. Then,

PrA(S0 ≤ δ and S1 ≤ δ) =

= δn
∑

b∈{0,1}n

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|!)

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

n∏
i=1

α
(bi)
i) .

Optimal, Distributed Decision-Making: The Case of No Communication 299

The proof of Theorem 1 relies on appropriately using Corollary 1. Theorem 1
immediately implies necessary conditions for any optimal protocol. These con-
ditions are determined by simultaneously vanishing the partial derivatives with
respect to all parameters of the algorithm.

Corollary 2 (Optimality conditions for oblivious algorithms). Assume
that A is an optimal, randomized oblivious algorithm. Then, for any index k,

∑
b∈{0,1}n

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

∂

∂αkl
α

(bk)
k

n∏
i=1,i 6=k

α
(bi)
i)

= 0 .

3.2 The Optimal Oblivious Algorithm

For each i, set 1 ≤ i ≤ n,

Ai(x) =
{

0, xi ≤ aii

1, xi > aii
;

it follows that PrA(yi = 0) = aii and PrA(yi = 1) = 1 − aii. We show that the
optimal winning probability is achieved by the very simple protocol for which,
for each i, 1 ≤ i ≤ n, ai = 1/2.

Theorem 2. Consider the oblivious case. Then,

max
A

PrA(S0 ≤ δ and S1 ≤ δ) =
1
n!

(
δ

2

)n

·
n∑

r=0

(
(

n

r

)2 ∑
0≤l≤r,l<δ

(−1)l

(
r

l

)(
1 − l

δ

)r

·
∑

0≤l≤n−r,

l<δ

(−1)l

(
n − r

l

)(
1 − l

δ

)n−r

)

Proof. Take any optimal protocol A. By Theorem 1,

PrA(S0 ≤ δ and S1 ≤ δ)

= δn
∑

b∈{0,1}n

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

n∏
i=1

a
(bi)
ii) .

300 S. Georgiades, M. Mavronicolas, and P. Spirakis

Fix any index k, 1 ≤ k ≤ n. By Corollary 2,

∑
b∈{0,1}n

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

n∏
i=1,i 6=k

a
(bi)
ii

∂

∂akl
PrA(yk = bk))

= 0 ,

so that

∑
b∈{0,1}n,bk=1

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

n∏
i=1,i 6=k

a
(bi)
ii) −

∑
b∈{0,1}n,bk=0

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·

n∏
i=1,i 6=k

a
(bi)
ii)

= 0 .

By symmetry of optimality conditions, it follows that a11 = a22 = . . . = ann;
denote α their common value. Clearly,

∑
b∈{0,1}n,bk=1

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
· 1
(n − |b|)! ·

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
· α|b|−1(1 − α)n−1−(|b|−1)) −

∑
b∈{0,1}n,bk=0

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
· α|b|(1 − α)n−1−|b|)

= 0 .

There are
(

n−1
|b|−1

)
vectors b ∈ {0, 1}n with bk = 1; for any such vector,

1 ≤ |b| ≤ n. Similarly, there are
(
n−1
|b|
)

vectors b ∈ {0, 1}n with bk = 0; for any

Optimal, Distributed Decision-Making: The Case of No Communication 301

such vector, 0 ≤ |b| ≤ n − 1. It follows that
n∑

|b|=1

(
n − 1
|b| − 1

)
(

1
|b|!

∑
0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·
(

α

1 − α

)|b|−1

) −

n−1∑
|b|=0

(
n − 1
|b|

)
(

1
|b|!

∑
0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·
(

α

1 − α

)|b|
)

= 0.

The left-hand side is a polynomial in α/(α−1) of degree n−1. Consider any
integer r, where 0 ≤ r ≤ n − 1; We show that the coefficients of (α/(α − 1))r

and (α/(α − 1))n−1−r are the negative of each other.
Thus, the left-hand side is a symmetric polynomial of degree n−1. Moreover,

we can establish along similar lines that for the case where n is odd, the coefficient
of (α/(α − 1))(n−1)/2 is identically zero. This implies that 1 is the only one real
root of this polynomial; setting α/(α−1) = 1 yields α = 1/2, with corresponding
optimal winning probability

PrA(S0 ≤ δ and S1 ≤ δ)

= δn
∑

b∈{0,1}n

(
1

|b|!
∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

1
(n − |b|)!

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
·
(

1
2

)n

=
1
n!

(
δ

2

)n ∑
b∈{0,1}n

(
(

n

|b|
) ∑

0≤l≤|b|,l<δ

(−1)l

(|b|
l

)(
1 − l

δ

)|b|
·

∑
0≤l≤n−|b|,l<δ

(−1)l

(
n − |b|

l

)(
1 − l

δ

)n−|b|
)

=
1
n!

(
δ

2

)n n∑
r=0

(
(

n

r

)2 ∑
0≤l≤r,l<δ

(−1)l

(
r

l

)(
1 − l

δ

)r

·

∑
0≤l≤n−r,l<δ

(−1)l

(
n − r

l

)(
1 − l

δ

)n−r

) ,

as needed.

Theorem 2 implies that for any integer n, the optimal winning probability of
an oblivious algorithm is computable in exponential time.

302 S. Georgiades, M. Mavronicolas, and P. Spirakis

4 Non-oblivious Algorithms

4.1 The Winning Probability

Theorem 3. Assume that A is any randomized non-oblivious algorithm. Then,

PrA(S0 ≤ δ and S1 ≤ δ)

=
∑

b∈{0,1}n

(
1

(n − |b|)!
∑

I⊆{i:bi=0},
∑

l∈I
βl<δ

(−1)|I|
(

δ −
∑
l∈I

βl

)n−|b|
·




|b|∏
l=1

(1 − βl) − 1
|b|!

∑
I⊆{i:bi=1},

|I|−
∑

l∈I
βl<|b|−δ

(−1)|I|
(

|b| − δ − |I| +
∑
l∈I

βl

)|b|


) .

4.2 Optimality Conditions

For non-oblivious algorithms, the analysis is more involved since it must take
into account the conditional probabilities “created” by the knowledge of inputs
by the agents. We show:

Theorem 4 (Optimality conditions for non-oblivious algorithms). As-
sume that A is an optimal, randomized non-oblivious algorithm. Then, for any
index k,

n∑
|b|=0

(
n − 1
|b|

)
(

1
(n − 1 − |b|)!

∑
0≤l≤n−1−|b|,

δ−βl>0

(−1)l

(
n − 1 − |b|

l

)
(δ − βl)n−1−|b|) ·

(−(1 − β)|b| − (|b| + 1)
(|b| + 1)!

∑
1≤l≤|b|+1,

|b|+1−δ−l+βl>0

(−1)l

(|b|
l − 1

)
l (b + 1 − δ − l + βl)|b|) +

n−1∑
|b|=0

(
n − 1
|b|

)
(((1 − β)|b| − (

1
|b|!

∑
0≤l≤|b|,

|b|−δ−l+βl>0

(−1)l

(|b|
l

)
(|b| − δ − l + βl)|b|)) ·

−(n − |b|)
(n − |b|)!

∑
1≤l≤n−|b|,δ−βl>0

(−1)l

(
n − |b| − 1

l − 1

)
l (δ − βl)n−|b|−1)

= 0 .

Unfortunately, the conditions in Theorem 4 do not admit a uniform solution
(independent of n). We discover that the solutions for n = 3 and n = 4 are

Optimal, Distributed Decision-Making: The Case of No Communication 303

different. The solution for n = 3 and δ = 1 satisfies the polynomial equation
β2 − 2β + 6/7 = 0; the solution is calculated to be equal to 1 −√1/7 = 0.622,
which is the threshold value conjectured by Papadimitriou and Yannakakis in [9]
to imply optimality for the same case. On the other hand, the solution for n = 4
and δ = 4/3 satisfies the polynomial equation −(26/3)β3+(98/3)β2−(368/9)β+
416/27 = 0; the solution is calculated to be equal to approximately 0.678.

References

1. K. Arrow, The Economics of Information, Harvard University Press, 1984.
2. G. Brightwell, T. J. Ott, and P. Winkler, “Target Shooting with Programmed

Random Variables,” Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, pp. 691–698, May 1992.

3. P. Fizzano, D. Karger, C. Stein and J. Wein, “Job Scheduling in Rings,” Proceedings
of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures, pp.
210–219, June 1994.

4. X. Deng and C. H. Papadimitriou, “Competitive, Distributed Decision-Making,”
Proceedings of the 12th IFIP Congress, pp. 350–356, 1992.

5. J. M. Hayman, A. A. Lazar, and G. Pacifici, “Joint Scheduling and Admission
Control for ATM-Based Switching Nodes,” Proceedings of the ACM SIGCOMM,
pp. 223–234, 1992.

6. P. C. Kanellakis and C. H. Papadimitriou, “The Complexity of Distributed Concur-
rency Control,” SIAM Journal on Computing, Vol. 14, No. 1, pp. 52–75, February
1985.

7. E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University
Press, Cambridge, 1996.

8. C. H. Papadimitriou, “Computational Aspects of Organization Theory,” Procee-
dings of the 4th Annual European Symposium on Algorithms, September 1996.

9. C. H. Papadimitriou and M. Yannakakis, “On the Value of Information in Dis-
tributed Decision-Making,” Proceedings of the 10th Annual ACM Symposium on
Principles of Distributed Computing, pp. 61–64, August 1991.

10. C. H. Papadimitriou and M. Yannakakis, “Linear Programming Without the Ma-
trix,” Proceedings of the 25th Annual ACM Symposium on Theory of Computing,
pp. 121–129, May 1993.

11. C. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: A Practical Schedu-
ling Scheme for Parallel Computers,” IEEE Transactions on Computers, Vol. 12,
pp. 1425–1439, 1987.

12. R. P. Stanley, Enumerative Combinatorics: Volume 1, The Wadsworth & Bro-
oks/Cole Mathematics Series, 1986.

	Introduction
	Framework and Preliminaries
	Model and Problem Definition
	Combinatorial Preliminaries
	Probabilistic Lemmas

	Oblivious Algorithms
	The Winning Probability
	The Optimal Oblivious Algorithm

	Non-oblivious Algorithms
	The Winning Probability
	Optimality Conditions

