THE DisTriBUuTED COoMPUTING COLUMN

BY

MaAaRio MAVRONICOLAS

Department of Computer Science, University of Cyprus
75 Kallipoleos St., CY-1678 Nicosia, Cyprus
mavronic@cs.ucy.ac.cy

AN APPLICATION OF THE MONOTONE
LINEARIZABILITY LEMMA*

Costas Busch® Marios Mavronicolas® Paul Spirakis®

Abstract

Monotone RMW operations are associated with monotone groups, a cer-
tain class of algebraic groups; Fetch&Add and Fetch&Multiply operations
are two popular examples. Recently, Busch et al. [3] introduced the Mono-
tone Linearizability Lenuima, which establishes inherent ordering constraints
of linearizability for a certain class of executions of any distributed system
that implements a monotone RMW operation. Through the Monotone Lin-
earizability Lemma, Busch er al. 3] derived the first lower bounds on size
(the number of switches) for any (non-trivial) switching network implement-
ing a monotone RMW operation.

In this note, we present another application of the Monotone Lineariz-
abiliry Lemma. We provide a very simple and succinct proof that any switch-
ing network implementing a monotone RMW operation has sequential exe-
cutions with n processes and latency Q(n). Since Fetch&Increment is imple-
mentable with counting networks of polylogarithmic latency [2], this lower
bound implies a time complexity separation between Fetch&Increment and
any monotone RMW operation in the mode] of switching networks.

“Work partially supported by the EU contracts IST-1999-14186 (ALCOM-FT) and IST-2001-
33116 (FLAGS). +Depanmem of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180; Email: buschc@cs.rpi.edu. fDepartment of Computer Science, University of Cyprus,
Nicosia CY-1678, Cyprus; Email: mavronic@ucy.ac.cy. $Department of Computer Engineer-
ing and Informatics, University of Patras, Rion, 265 00 Patras, Greece, & Computer Technology

Institute, P. O. Box 1122, 261 10 Patras, Greece; Email: spirakis@cti.gr.

70

The Bulletin of the TATCS

1 Introduction

A Read&Modify&Write shared variable or register [8, 1 1], henceforth abbreviated
as RMW, is an abstract variable type that aliows reading its old value, computing
via some specific operator a new value as a function of the old value, and writ-
ing the new value back to the register, all in a single, atomic (indivisible) RMW
operation. The Fetch&Increment, Fetch&Add and Fetch&Multiply are popular
examples of BMW registers.

Due to their fundamental importance as synchronization primitives, it is de-
sirable to devise suitable distributed data structures for the construction of high-
concurrency, low-latency and low-contention implementations of RMW registers.
Intuitively, the contention of an implementation measures the extent to which
concurrent processes access the same memory location simultaneously; it has
been argued quite convincingly that contention is a critical factor for the over-
all efficiency of (asynchronous) shared memory algorithms (see, e.g., [4]). A
counting network [2] is a particular class of finite-sized distributed data structures
used to construct high-concurrency, low-latency and low-contention implemen-
tations of RMW registers that simultaneously support the Fetch&Increment and
Fetch&Decrement operations [1].

We focus on a specific class of RMW operations whose associated operators
correspond to a certain class of algebraic groups introduced and studied here,
which we call monotone groups. A monotone group has a total order and a mono-
tone subdomain; the latter enjoys a significant monotonicity property, which we
call Monotonicity under Composition: applying the operator on an element from
the monotone subdomain results to another element in the monotone subdomain
that strictly dominates the initial one with respect to the total order.

Busch et al. [3] have shown the Monotone Linearizability Lemina, which es-
tablishes inherent ordering constraints of linearizabiliry [10] for a certain class of
executions of any distributed system that implements a monotone RMW operation;
recall that an execution is /inearizable [10] if the values returned to operations in
it respect the real-time ordering of the operations.

Busch et al. [3] used switching nerworks [6] as a test-bed for the applicabil-
ity of their Monotone Linearizability Lemma. Switching networks are a class of
distributed data strucrures, recently described by Fatourou and Herlihy [6], that
may be used for concurrent, low-contention implementations of RMW registers;
switching networks are a natural generalization of counting nenvorks [2]. Through
a modular use of the Monotone Linearizability Lemma, Busch et al. [3, Section 6]
have shown the the first lower bounds on size (the number of swirches in the net-
work) for any (non-trivial) highly concurrent, low-contention switching network
that implements a monotone RMW operation.

In this note, we present yet another application of the Monorone Linearizabil-

71

BEATCS no-85 THE EATCS COLUMNS

iry Lemma. This application deals with /atency, the maximum number of switches
traversed by a token in a switching network. We prove that any switching network
(whether made up of switches of finite or infinite state) that implements a mono-
tone RMW operation induces executions with latency at least [%W here, n 1s
the number of concurrent processes participating in the execution, and c, the net-
work’s capacity, 1s the maximum number of processes that simultaneously access
a switch in any execution of the network.

Counting networks provide concurrent implementations of Fetch&increment
operation achieving finite size and latency polylogarithmic in the number » of con-
current processes [2]. In contrast, the shown lower bound on latency establishes
that any switching network for a monotone RMW operation must incur latency
linear in the number of concurrent processes, moreover, this happens even in
sequential executions (in the absence of concurrency). So, it implies a time com-
plexity separation between Fetch&Increment and any monotone RMW operation
in the mode! of switching networks.

Our lower bound on latency complements, via a shorter and simpler proof, a
correponding lower bound of [@1 on latency shown in [7, Theorem 3.2].

-1

2 Monotone Groups

This section closely follows [3, Section 2]. Denote Z, N and Q the sets of in-
tegers, natural numbers (including zero), and rational numbers (excluding zero),
respectively.

We start with the definition of a group. A (binary) operator on a set I is a
mapping @ : I' x T — T'. A group (I',®) is a set I together with an operator &
such that the following properties hold:

1. Closure: For all pairs of elements a,be T, a®beT.
2. Associativiry: For all triples of elements a,b,c € I, (a®b)®c = a®(bdc).

3. Identity Element: There is an element a € T, called the identity element of
I, such that foreach elementaeI',a®e=e®a = a.

4. Inverse Element: for each element a € T, there is an element a~! e T, called
the inverse of a, suchthata®a™ ' =a '@ a =e.

An Abelian group is a group (I',®) which satisfies the following additional
property:

5. Commutativity: For all pairs of elementsa,b e T, a®b=bda.

72

The Bulletivv of the EATCS

We proceed to define two composite operators by applying the (binary) opera-
tor @ a number of times. For any integer k, define the unary operator @k I-T
as follows:

adad®...da, ifk>0
—_—

k times

@a = e, ifk =0
i 1

% ateate.. . eat, ifk<0

—k times

Call €, the power operator. '
For any integer #, the operator 4, : I'" — I is n-ary.
e Forn =0, it assumes the constant value [+ = e.

e Forn=1,14,{a} =aforallelementsa € T. Forn = -1, |¢)_;{a}) = a”".

e For|n| > 2. |4, takes as input an ordered multiset {a,a>,...,ay} € T, and
it yields the result
H{a o a,) = adamd...0ay, ifn>2
PRl T elea' @ @a,, ifn< -2

n

denoted also as [+J_, a;. Note that, by associativity, the result of applying
the operator is well defined.

Call |+ the summation operator.

Assume now that the set I' is totally ordered; thus, a total order < is defined
on I'. For any pair of elements a, b € T, write a < b (and, equivalently, b > a) if
a < banda # b. A monotone subdomain of I' is a subset M C T that satisfies the
following three properties:

1. Closure: For any two elements a,b € M,a® b € M.
2. Identity Lower Bound: For any elementa € M, e < a.

3. Monotoniciry under Composition: For any pair of elements a, b € M, both
a<a®bandb<adb.

A monotone group [3] is a quadruple (I', M, @, <), where (I', ®) is an Abelian
group, < is a total order on I', and M C I is a monotone subdomain of I'. [t
is easy to see that both quadruples (Z, N \ {0}, +, <) and (Q,N\ {0, 1},-, <) are
monotone groups.

Fix any integer n > 2. Consider n distinct elements a,,d,...,a, € I with
ay,ax,...,a, ¥+ e. Say that ay,as,...,a, are n-wise independent over (I', ®) if

73

BEATCS no- 85 THE EATCS COLUMNS

for any sequence of n integers ki, k»,.... k,;, where =1 < k; < 2forl <7 < n,
that are not all simultaneously zero, \JJi_, €D, a; # e. Say that the monotone group
(', M, @, <) is n-wise independent [3] if there are n distinct elements a, a;, . . ., a,
€ M, with ay,a,,...,a, # e, that are n-wise independent over (I',®). Busch
et al. [3, Lemma 2.5] prove that for any integer n > 2, the monotone group

(I, M, &, <) is n-wise independent.

3 System Model

Our model of a distributed system is the one in [3, Section 3]. We consider a
distributed system P consisting of sequential processes. Each process applies a
sequence of operations to a distributed data structure, alternately issuing an in-
vocation and then receiving the associated response. Each invocation at process
p; has the form Invoke(a) for some value a € M; each response at process p;
has the form Response,(b) for some value b € M U {e}. Formally, an execution
of system P is a (possibly infinite) sequence « of invocation and response events.
For each invocation at process p; in execution ¢, there is a later response in a that
matches it and no invocation at p; that precedes the matching response in «.

An operation at process p; in execution & is a matching pair op, = [Invoke,(a),
Response;(b)] of an invocation and response at p;; op; is of fype a. We will write
a = In(op;) and b = Out(op,); so, op; has input and outpur a and b, respectively.

An execution ¢ induces a partial order -5 on the set of operations in ¢ as
follows: For any two operations op;, = [Invoke; (a;), Response, (b))] and op,, =
[Tnvoke,,(ay), Response, (b,)] at processes p;, and p;,, respectively, say that op;,
precedes op,, in execution o, denoted op;, = op;,, if the response Response; (b))
precedes the invocation Invoke,(a,). In particular, execution « induces, for each

a . .
process p; a total order —; on the set of operations at p; in « as follows: opf.” and

2 @ 2 . - a
opf- 8 opf” —; opf. " if and only if opf” — opgz).

For any execution a of system P, a serialization S (a) [5] of execution « is a
sequence whose elements are the operations of @, and each operation of & appears

exactly once in S(a). Thus, a serialization S () is a total order Sﬁl on the set of
operations in «. Notice that there may be, in general, many possible serializations
of the execution a.

Say that a sertalization S (@) is valid for the monotone group (I, M, &, <) if
the following two conditions hold:

1. Valid Start: 1f op; = [Invokei{a), Response;(b)] is the first operation in
S(a), then b = e.

2. Valid Composition: For any two of operations 0p§|” = {Invoke; (a)),

74

The Bulletivv of the TATCS

Response; (b))} and op(l.f' = [Invoke,(a,), Response, (by)] that are con-
secutive in S(a), b, = b) @ q,.

System P implements the monotone group (I', M, &, <) if every execution «
of P has a serialization that is valid for the monotone group, Monotone RMW
operations are those associated with monotone groups. Say that system P imple-
ments the (monotone) operation RMW ((I', M, @, <)) whenever it implements the
associated monotone group. In the rest of this section, we refer to a distributed
system P implementing a monotone group (I', M, @, <).

Busch et al. [3, Lemma 3.1] prove that for any execution « of system P, there
is a unique serialization S () that is valid (for the monotone group). Fix any
arbitrary execution « of the system P, and its (unique) valid serialization S(a)

Say that execution « is linearizable [10] if the serialization S(a) extends —>

S{a)
that is, for any pair of operations op'"’ and op® such that op'V = 0p@, op!" =5

op'¥. The Valid Composition condition implies that for any two operations op'"

and op'® such that op'V S op™®, Out(op'?) < Out(op'®). Thus, it follows that
for any pair of operations op'? and op'® such that op’ — op@, Out(op'") <
Out(op™).

We continue to state the Monotone Linearizability Lemma [3, Proposition 5.1],
which establishes ordering constraints of linearizability on the system P. Recall
that the monotone group (I', M, @, <) is n-wise independent for any integer n > 2.
So, there are n distinct elements a, as, ..., a, € M, with a;,a», ..., a, # e, which
are n-wise independent over (I, @).

Proposition 3.1 (Monotone Linearizability Lemma). Consider any execution
« of system P in which each process p; issues only operations of type a;, where
| <i < n. Then, aislinearizable.

Although linearizability has so far been studied as a required property for a
distributed system that best guarantees acceptable concurrent behavior, the Mono-
tone Linearizability Lemma provides the first (non-trivial) instance of a distributed
system where linearizability is an inkerent property.

4 Switching Networks

In this section, we follow [3, Section 4] to present a framework for switching
networks.

An ([, fou)-switch, or switch for short, is a routing element with f, input
wires, foq output wires, and an internal state, f;, and f,,, are called the switch’s
Jan-in and fan-out, respectively. A switch’s internal state is a collection of vari-
ables, possibly with initial values. In the initial state of switch, all of its variables

75

BEATCS no-85 THE EATCS COLUMNS

are set to their initial values. The number of internal states of a switch may be
either finite or infinite, giving rise to a finite or infinite switch, respectively. In
either case, a switch changes its internal state according to its transition function.

A (Wi, W)-Switching network N has wy, input wires and w,,,, output wires,
and it is formed by connecting together switches; thus, we connect output wires
of switches to input wires of other switches. Some switches have input wires
(resp., output wires) not connected to other switches in the network, and these
wires are the wy, input wires (resp., w,,, output wires) of the switching network
N. A path in a switching network is a sequence of switches each (other than the
last) connected to the next.

We assume a collection of asynchronous, non-failing processes that access a
switching network by shepherding tokens through it. A switching network may
be accessed by many tokens simultaneously, which traverse the network asyn-
chronously; however, each process has at most one token sheperded through the
network at each time. The concurrency of a switching network is the maximum
number of processes (and, therefore, tokens as well) allowed to access the network
simultaneously.

Unlike counting networks [2], each token has a state (a collection of variables)
which is allowed to change as the token traverses the network according to its
transition function. The state of a token includes its input value.

A token enters the switching network on one of the network’s w;, input wires.
Then, the token is instantaneously forwarded to the switch to which the wire be-
longs; the switch then routes the token to one of its output wires from which the
token enters the next switch in the network, and so on. Both the switch’s and the
token’s states change. The token continues traversing the network in the same
fashion until it reaches one of the w,,, output wires of the network. At that point,
the token exits the network and returns a value to the process that owns it.

In more detail, when a token arrives on an input wire of a switch, the following
events occur in a single, aromic (indivisible) step: /. The switch removes the token
from the input wire. 2. The switch changes state. 3. The token changes state. 4.
The token is routed to an output wire of the switch.

For each (f,,, fou.)-switch, denote by x;, 0 </ < f,, — 1, the number of tokens
that have entered the switch on input wire /; similarly, denote by y; the number of
tokens that have exited the switch on output wire .

A switch’s srate includes both its internal state and the collections of tokens
on its input and output wires. A switch is in a quiescent state if there are no tokens
currently traversing the switch; thus, in a quiescent state, the number of tokens
that arrived on the input wires of the switch have exited the switch on its output
wires, or Z,.fl_”l X = ZJ[:; AT
A switch satisfies the following two conditions: /. Safety condition: In any

state, Z’.ﬂ” X2 fo’:”; ¥;; thus, a switch never creates tokens spontaneously. 2. Live-

=1

76

The Bulletivw of the TATCS

ness condition: Starting from any state, a switch eventually reaches a quiescent
state.

An internal configuration of a switching network is a collection of the internal
states of its switches. A configurarion of a switching network is the collection of
the states of its switches; thus, the configuration of a switching network includes
the states of all tokens currently traversing the network as well. A configuration
of a switching network is quiescent if all of its switches are in a quiescent state.

The safety and liveness properties for switches immediately imply correspond-
ing safety and liveness properties for a switching network. Furthermore. the safety
and liveness properties for switches and switching networks naturally generalize
those for balancers and balancing nenvorks [2].

For each (wy,, w,,)-switching network, denote by x;,, 0 < i < f, — 1, the
number of tokens that have entered the network on input wire /; similarly, denote
by y; the number of tokens that have exited the network on output wire j.

For any token ¢ and switch s, we denote by T = (¢, s) the state transition in
which the token ¢ passes (in a single atomic step) from an input wire to an output
wire of switch s; thus, in a state transition the state of a switch (including the
states of tokens on its input and output wires) changes according to the transition
function of the switch (and the transition functions of the tokens on its input and
output wires). Although state transitions can occur concurrently, it iS convenient
to treat them using a model of interleaving semantics,

An execution of a switching network is a finite or infinite sequence a =
Qo, 71, 01, T2, 0o, . .. of alternating configurations and switch transitions such that:
1. Qg 1s the initial configuration, in which there are no tokens on input wires
of switches except for at least one token on input wires of the network, and all
switches are in their initial internal states. 2. For each triple {Q;, ix(, Qisr1), Where
i > 0, the switch transition 7;,, carries the configuration Q; to the configuration
Qi+\-

An execution « is sequential if for any two transitions 1; = (¢, s;) and 7; =
(t,5;) that involve the same token ¢, all transitions (if any) between them also
involve that token. Loosely speaking, tokens traverse the network one completely
after the other in a sequential execution.

Consider now a configuration Q of the switching network N in which there
is a single token ¢ on some input wire of the network. Clearly, there is a wunigue
execution suffix @ of the network AV that starts with the configuration Q. In the
execution suffix @, token ¢ follows a path 7 from the input wire 7 to an output wire
of the network, where it exits the network and it is returned b as its output value.
Call = and b the preferred path and preferred value, respectively, of the token ¢
with respect to the configuration Q.

The latency of a switching network is the maximum number of switches tra-
versed by any token, where the maximum is taken over all executions of the net-

77

BEATCS no-85 THE EATCS COLUMNS

work. The input and output values of token in execution a will be denoted as
In.(r) and Out,(?), respectively. The capacity ¢ [9] of a switching network A is the
maximum number of processes, where the maximum is taken over all executions
of the network, that simultaneously access a particular switch in an execution of
the network. On the account of capacity, a switching network is low-contention if
capacity is sufficiently small.
A switching network N can be used to implement a monotone group (I', M,

@, <) as follows. I. Each token ¢ by process p; corresponds to an operation

op; = [Invoke;(a),Response;(b)]

invoked by process p;, where @ € M and b € M U {e}. We say that a is the input
value of the token ¢, and b is the ourput value of the token ¢. The input value of the
token is part of the token’s (initial) state. 2. For any execution ¢, the invocation of
operation op; corresponds to the first transition 7; = (#;, s;) in execution @, where
t; = t and s; is an input switch of the network; this transition occurs when the
token enters the network. The response of operation op corresponds to the latest
transition 7; = (¢, s;) in execution &, where ¢; = ¢ and s; is an output switch of
the network; this transition occurs when the token exits the network., 3. When
token ¢ exits the network, it carries encapsulated in its state the output value b that
operation op; is returned.

Use now execution « to define its subsequence ¢’ that contains only transitions
that correspond to invocations and responses of the operations corresponding to
tokens. The sequence ¢’ induces an execution of a distributed system in the natural
way. Denote P(N) the induced distributed system that is determined by all such
induced executions, one for each execution of the switching network AN. The
switching network N implements the monotone group (I', M, @, <) if the induced
distributed system P(N) implements the monotone group (I', M, &, <).

5 The Impossibility of Low-Latency Switching Net-
works
In this section, we present an impossibility result for low-latency switching net-

works that implement monotone groups. We first prove an interesting property of
such networks.

Lemma 5.1 (Intersection Lemma). Consider a switching nenvork N implement-

ing a monotone group. Then, for any arbitrary configuration Q, the preferred
paths of any two tokens with respect to configuration Q intersect each other.

78

The Bulletinw of the EATCS

Proof. Consider the network N in a quiescent configuration Q. Denote v the out-
put value returned by N 1o the last token in the (unique) valid serialization of
the execution fragment ending with total configuration Q, and let a denote that
last token’s input value. Consider tokens #; and ¢; with input values a; and a;,
respectively. Assume, by way of contradiction, that the preferred paths of ¢+ and
t; starting from total configuration Q do not intersect. Since the network N im-
plements the monotone group (I', M, &, <), and since the preferred paths do not
intersect, the output values of ¢, and ¢; when they run sequentially into the net-
work N with ¢ first and ¢; next, starting from s are both equal to v & a (those that
would be returned in separate executions where only one of the tokens would be
running). However, the Monotone Linearizability Lemma (Proposition 3.1) im-
plies that execution ', where both tokens are running, is linearizable. Hence, the
token #; is serialized before token ¢; in the (unique) valid serialization of execution
o’. Since the network A implements the monotone group (I', M, @, <), the output
values of t; and ¢ are v®a and v®a®a;, respectively. Since a; # e, v®a £ v®ada;,
a contradiction.]

We are now ready to prove:

Theorem 1 (Lower Bound on Latency of Switching Networks). Take a switch-
ing network N that implements a monotone group (I, M, @, <). Then, there is
a seTuemial execution of N with n tokens such that each token traverses at least

switches.
Proof. Consider ntokens 1,1, ..., ¢, issued by distinct processes, with respective
input values a|, as, . .., a, € M which are n-wise independent in (M, ®).

By Lemma 5.1, for any arbitrary configuration O, the preferred paths of any
two tokens with respect to configuration Q intersect each other. By the definition
of ¢, no more than ¢ — 1 tokens (other than ;) can access any switch along the pre-
ferred path of ¢; (starting from total configuration s). Since every other process’s
preferred path must intersect 1;’s preferred path, it follows that the preferred path
of ¢; must include at least [W switches.

Take now any sequential execution o of N, starting from any arbitrary quies-
cent total configuration s, in which each token ¢ issues only operations with input
value a;. Since the preferred path of any token includes at least [” I] switches,

the first token to run will traverse at least ,-] switches of N, and the network
will return to another quiescent total conﬁguxauon, for which the same argument
applies inductively. m]

Together with the lower bounds on size shown in [3], Theorem 1 suggest that
inherent linearizability, established through the Monotone Linearizabilirv Lemma,
is the crucial bottleneck that rules out efficiency (with respect to both size and

79

BEATCS no- 85 THE EATCS COLUMNS

latency) for any concurrent. low-contention switching network that implements a
monotone RMW operation.

References

(1]

(2]

(31

(4]

(3]

(6]

(8]

(9]

W. Aiello, C. Busch, M. Herlihy, M. Mavronicolas, N. Shavit and D. Touitou, “Sup-
porting Increment and Decrement Operations in Balancing Networks,” Chicago Jour-
nal of Theoretical Computer Science, 2000-4, December 14, 2000 (electronic).

J. Aspnes. M. Herlihy and N. Shavit. “Counting Networks.” Journal of the ACM,
Vol. 41, No. 5. pp. 1020-1048, September 1994,

C. Busch, M. Mavronicolas and P. Spirakis, "The Cost of Concurrent, Low-
Contention Read&Modify&Write," Theoretical Computer Science, accepted.

C. Dwork, M. Herlihy and O. Waarts, “Contention in Shared Memory Algorithms,”
Journal of the ACM, Vol. 44, No. 6, pp. 779-805, November 1997.

K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger, “The Notions of Consistency
and Predicate Locks in a Database System,” Communications of the ACM, Vol. 19,
No. 11, pp. 624-633, November 1976.

P. Fatourou and M. Herlihy, “Adding Networks,” Proceedings of the 15th Inter-
national Symposium on DIStributed Computing, J. L. Welch ed., pp. 330-342,
Vol. 2180, Lecture Notes in Computer Science, Springer-Verlag, Lisbon, Portugal,
October 2001.

P. Fatourou and M. Herlihy, "Read-Modify-Write Natworks," Distributed Computing,
Vol. 17, pp. 33-46, 2004,

J. Goodman, M. Vernon and P. Woest, “Efficient Synchronization Primitives for
Large-Scale, Cache-Coherent Multiprocessors,” Proceedings of the 3rd International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 64-75, April 1989.

M. Herlihy, N. Shavit and O. Waarts, “Linearizable Counting Networks,” Distributed
Computing, Vol. 9, No. 4, pp. 193-203, February 1996.

[10] M. Herlihy and J. Wing, “Linearizability: A Correctness Condition for Concur-

rent Objects,” ACM Transactions on Programming Languages and Systems, Vol. 12,
No. 3, pp. 463-492, July 1990.

[11] C. P. Kruskal, L. Rudolph and M. Snir, “Efficient Synchronization on Multipro-

cessors with Shared Memory,” Proceedings of the 5th Annual ACM Symposium on
Principles of Distributed Computing, pp. 218-228, August 1986.

80

