Proving Correctness for Balancing Networks”

CosTas BuscH!
Department of Computer Science
University of Crete
Heraklion 71110, Greece
and
Institute of Computer Science
Foundation for Research and Technology — Hellas
Heraklion 71110, Greece

MARIOS MAVRONICOLAS?
Department of Computer Science
University of Cyprus
Nicosia 1678, Cyprus

DECEMBER 1994

*This work has been partially supported by ESPRIT III Basic Research Project # 8144 — LYDIA
(Load Balancing on High-Performance Parallel and Distributed Systems). A preliminary version of this
work has been presented in the DIMACS Workshop on Parallel Processing of Discrete Optimization
Problems, DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), Rutgers
University, New Jersey, April 1994.

TE-mail address: mpous@csi.forth.gr

tPart of the work of this author was performed while visiting Institute of Computer Science, Foun-
dation for Research and Technology — Hellas. Partially supported by the fund for the promotion of
research at University of Cyprus (Research Project “Load Balancing Problems in Shared-Memory Mul-
tiprocessor Architectures”). E-mail address: mavronic@csi.forth.gr

Abstract

Balancing networks have recently been proposed by Aspnes, Herlihy and Shavit (Proc. of the
23rd Annual ACM Symp. on Theory of Computing, pp. 348-358, May 1991) as a new class
of distributed, low-contention data structures suitable for solving a variety of multi-processor
coordination problems that can be expressed as balancing problems.

In a recent work (Proc. of the 13th Annual ACM Symp. on Principles of Distributed Com-
puting, pp. 206-215, August 1994), Busch and Mavronicolas develop a mathematical theory of
the combinatorial structure of balancing networks. In this work, a paradigmatic methodology
for showing correctness of balancing networks is developed as a direct consequence of this com-
binatorial theory. This methodology is applied to yield a transparent correctness proof for the
bitonic counting network introduced by Aspnes et al., whose layout is isomorphic to that of
the classical, bitonic sorting network of Batcher; our proof provides an interesting complement
to the one given by Aspnes et al. in terms of modularity and simplicity.

This new use of the combinatorial theory created and tuned by Busch and Mavronicolas,
along with its original uses in deriving impossibility results and designing verification algo-
rithms for balancing networks, strengthens the evidence that this theory provides the right
framework for a systematic study of balancing networks.

1 Introduction

Consider a situation where we have p producers and ¢ consumers. The producers produce
jobs at some arbitrary rate; the jobs should be performed by the consumers. One would
like to distribute the jobs as evenly as possible among the consumers. A very simple way to
solve this problem makes use of a counter. Each time a new job is produced, the producer
accesses the counter, increases it, and places the new job in a given array according to the
value obtained from the counter. Consumer numbered [periodically checks the array locations
l,e+1,2c¢+1,..., and whenever any of them contains a new job, the consumer performs it.
Clearly, the difference in the total number of jobs eventually performed by any two consumers
is at most one.

A counter can be easily implemented using a single shared Fetché Increment variable. How-
ever, empirically, the time to access a shared variable grows at least linearly with the contention,
the extent to which concurrent processors simultaneously access the variable.* In a seminal
paper, Aspnes, Herlihy and Shavit [5] suggest a completely different approach to such counting
problems. Their idea is to use a collection of shared variables called balancers, each having
low expected contention, in a way that a processor needs to access only a few variables in
order to obtain a value from the counter. Loosely speaking, a balancer can be thought of as a
two-input, two-output toggle. When an input appears on one of its input wires, it takes the
output wire to which the toggle is set, and toggles the gate so that the input next to come
will leave on the other output wire. If the balancer is initialized so that the first input to pass
through will exit on the top output wire, then, after m inputs have passed through the toggle,
exactly [m/2] will exit on the top output wire, and |m/2]| will exit on the bottom output wire.
On a shared-memory multi-processor machine, a balancer can be implemented by a single bit
CompareéSwap variable, and a wire can be implemented by a memory address pointer.

One can “connect” a collection of balancers to form a balancing network, much in the same
way a sorting network is obtained by connecting a collection of comparators (see, e.g., [17]).
This is done by connecting output wires from some balancers to input wires of others. The
remaining unconnected input and output wires are the input and output wires, respectively,
of the network. Each request for a counter value corresponds to a traversal of the network
by a token, starting from some input wire, following the pointer obtained by accessing the
first balancer to the next one, and so on. Let 2; and y; denote the number of tokens that
have entered the network on the ¢th input wire and left the network on the jth output wire,
0 <14,7 < w-—1, respectively, where w is the width of the network. A balancing network of
width w is a counting network if each time the network becomes free of tokens, i.e., all entering
tokens have exited, 0 < y; —y; < 1, for any 7,7, 0 < ¢ < j < w — 1; that is, the output has
the step property. It is often only required that the output have the step property just in
case the input is block-step, that is, in case each of two specified input subsequences has the
step property. Networks satisfying this weaker property are called merging networks, in direct

*The cost of contention varies according to the architecture of the system and the specific arbitration protocols

used (cf. [4]).

analogy to corresponding comparator networks that “merge” two sorted input sequences [17].

Aspnes et al. [5] present the first constructions of counting networks, both with width
2% for any integer k& > 1; these constructions have layouts isomorphic to the bitonic sorting
network of Batcher [6] and the periodic sorting network of Dowd et al. [11], respectively. The
correctness proof for each of these constructions have been carried out through considering
all possible executions of tokens in the network; these proofs do not appear to provide much
insight into any possible structural or combinatorial properties of these networks. Subsequently,
many other constructions of counting networks and their variations have been presented (see,
e.g., [1,2,12, 13, 15, 16]), but each of the correctness proofs for these constructions seems to
require a different argument about patterns of token executions for each specific case.

In an effort towards understanding how “external” properties of balancing networks, like,
e.g., the step property on outputs, come out as a result of “internal” combinatorial structure,
the present authors develop in [8] a systematic, mathematical theory of the combinatorial
structure of balancing networks. They propose a matrix representation of a balancing network
which relies on its relative interconnections. More specifically, they introduce the connection
matriz and order vector to describe the relation between inputs and outputs for each of the
balancers in a layer, a balancing network of depth one.! In this way, a balancing network is
represented by a collection of pairs of a connection matrix and an order vector, one pair for
each layer.

For a wide spectrum of properties of balancing networks, Busch and Mavronicolas [8] pro-
vide tight combinatorial characterization theorems for classes of balancing networks possessing
each of the properties. These characterizations theorems provide necessary and sufficient con-
ditions on the connection matrices and order vectors for the property to hold. In most of the
cases, these conditions say that, roughly speaking, the network uniformly assigns the input
part corresponding to the most significant digits of inputs on its output wires, while the prop-
erty is inherited down to the network’s response to the input part corresponding to the least
significant digits of inputs. In turn, these conditions have given rise to impossibility results
for corresponding classes of balancing networks [8, Section 5], and formal algorithms to math-
ematically verify that a balancing network in hand belongs to a certain class of networks [8,
Section 6].

In this work, we present yet another application of the combinatorial theory presented in [8].
We suggest a paradigmatic methodology for showing correctness of general constructions of
balancing networks that belong to a certain class. This methodology consists of verifying
that a general construction satisfies the necessary and sufficient conditions involved in the
combinatorial characterization theorems for the corresponding class of networks, shown in [8].

We apply our methodology on the concrete example of the bitonic network construction [5].
We obtain a new proof that the bitonic network is a counting network; this proof employs a
routine verification of the necessary and sufficient conditions involved in the combinatorial
characterization theorems for counting and merging networks, shown in [8]. Although Aspnes

"The depth of a balancing network is the length of the longest path from an input wire to an output wire.

et al. [5] already present a corresponding proof that the bitonic network is a counting network,
we feel that our proof has some additional interesting features compared to the one in [5]:
first, it is simple and modular, while the one in [5] is rather ad-hoc and not so structured;
most important, our proof yields significant insight into the combinatorial structure of the
bitonic network. It precisely determines the combinatorial transfer parameters [8] of the bitonic
network and pins down the exact properties of its construction that enforce these parameters to
satify the conditions in the combinatorial characterization theorems for counting and merging
networks shown in [8]. Furthermore, showing that these theorems hold for the bitonic network
construction reveals that the bitonic merger network, a building block of the bitonic network,
actually satisfies properties additional to those known so far: our analysis precisely identifies
classes of inputs which, though not block-step, result in a step output when filtered through
the bitonic merger.

The rest of this paper is organized as follows. Section 2 introduces some definitions and
preliminary facts. In Sections 3 and 4, we present some mathematical preliminaries, in par-
ticular, some combinatorial properties of step vectors and block-step vectors, respectively. It
turns out that some of the main arguments in our later correctness proof are nothing but re-
statements of these general properties. In Section 5, we provide an outline of the combinatorial
theory of balancing networks presented in [8]. In Section 6, we present the bitonic network and
some preliminary properties of it, while the formal proof that the bitonic network is a counting
network appears in Section 7. We conclude, in Section 8, with a discussion of our work and
directions for further research.

2 Definitions and Preliminaries

Fix throughout any integer w > 2; X(*) will denote the vector (zg, 21, ..., 2,1)", and [X()]
and [X(®)] will denote the vectors ([zo], [21],..., [Tw_1])T and (|z0], [z1],..., [zw_1])T,
respectively. Denote by [w] the index set {0,1,...,w—1}. The f-norm function ||.|i : R — R
is defined as: || X, = S¥" |2y

Fix an integer £ > 1. For any integer x > 0, define

and

Notice that = |2 k is the integer represented by the k least significant binary digits of z,
while 2 T, k is the integer obtained from x by setting each of these digits to zero. Clearly,
x lo k+ 2 |2 k=a. Define also

vk = 2y (k4 D) =2 ok = afak—aly(k+1) = g_kJ ok _ EkﬁlJQk“.

Notice that a |, k is the integer represented by the kth least significant binary digit of z.
Thus, either z o k =0or z |3 k = 281 according to whether the kth least significant binary
digit of z is 0 or 1, respectively. We will sometimes abuse notation and use z |2 k, 2 T2 £ and
x |2 k to denote the corresponding binary representations.

Extend the definitions for « |5 k, 2 T2 k and 2 |2 k from integers to any vector of integers
X () to obtain:
Xy k= (wo L2 koar Lo by 2wt Lo BT

X gk = (wo 12 kyar T2 ke ooy e 12 BT, and
X(w) IQ k = <$0 IQ k,$1 IQ k,. . .,$w_1 12 k>T

Assume henceforth that w is a power of two and fix any vector X(*). Let X%/z) and XE;;}I/U?
denote the vectors (xg, 1, .. .,xw/2_1>T and (2,2, T /21, - - 1)1, Tespectively. Let also
X2 and X% denote the vectors (0,22, ..., Ty_2) and {(xy,23,...,2,_1), respectively.
That is, the vectors X(ew/z) and X(ow/z) contain the even and odd, respectively, entries of X(*).

Finally, let X(;;U/Z) and XS];”/Q) denote the vectors

<$07 L2y ev s Tyyf2-2, Lw/2415 Lwf2435 -+« $w_1>
and
<$1,$3, e lyf2—1,Tw/2s w2425 - -+ 7$w—2> ’
. . 2 .
respectively. That is, the vector XS;”/) represents the concatenation of the vector of even

entries of Xg@;/z) with the vector of odd entries of X(w/z) while the vector ngeﬂ/z) represents

down
the concatenation of the vector of odd entries of ng;/z) with the vector of even entries of
Xglw/z)
own °

Corresponding to the definitions for X%/Q), XEIZUI/UZ), ng/z), ng/z), ng/z) and ngéj/z), we
define index sets up[w] = {0,1,...,w/2 — 1}, down[w] = {w/2,w/2 + 1,...,w — 1}, e[w] =
{0,2,...,w=2},0lw] ={1,3,...,w—1},e0lw] ={0,2,...,w/2=2, w/2+1,w/243,...,w—1}
and oe[w] ={1,3,...,w/2 = 1L, w/2,w/2 +2,...,w—2}.

For a vector X(*/2) = (x4, 1, xw/2_1>T, denote by 2X(*) the vector

T.
<$07 COPRY PRU) PREERE 2Ny xw/2—1>)

that is, the vector 2X(®) results from X(%/2) by appending in order each of the entries of
X (#/2) to itself.

Define the vectors 0() and 1(*) to be (0,0,...,0)7 and (1,1,...,1)7, respectively, each
with w entries. Define also the vectors E(*) and O(*) as follows: ¢; = 1/2 for i € e[w] and 0
for ¢ € o[w], while o; = 0 for i € e[w] and 1/2 for i € o[w]; that is, all non-zero entries of E(*)
and O(*) | the even and odd ones, respectively, are equal to 1/2.

We will sometimes adopt Iverson’s notation (see, e.g. [18]) and write logical expressions in
parentheses to mean one if true and zero if false. Thus, for example, for any number z and
condition P(z) on z, the quantity « + (P(z)) is equal to either 2 + 1 if z satisfies P(2) or « if
z does not satisfy P(z).

Our last Proposition provides elementary identities involving the ceil function that follow
immediately from the definition of this function.

Proposition 2.1 For any integers x and i,

~~
—
~—
—
=
[
K=

(i 1is odd)w =

=
|
v

-1 is odd)w = z — (1 is odd);

=
+
v

(i is even)} = 1z — (1 is even);

+ 1 is even)-‘ = z, and:

N
inNy
Sa—
— m— | - 1 —
&
N

&
+
ho|—

—I—%(z 15 even)-‘ = x4+ 1.

3 Step Vectors

In this Section, we formally define step vectors and show several combinatorial properties of
them. The reader may prefer to skip this Section for now, returning to it later when its results
are required.

We say that an integer vector X(*) is step if for any 7 and k, 0 < i < k< w — 1,
0 < x;—ar < 1.

Denote by step(IN') the set of all step vectors with w entries. The next Proposition provides
an equivalent condition for a step vector:

Proposition 3.1 (Aspnes, Herlihy and Shavit [5]) An integer vector X(*) is step if and
only if there exists some index ¢, 0 < ¢, < w, such that x; = xg for all © such that 0 < i < ¢,
and ©; = x._1 — 1 for all ¢ such that ¢, <t <w—1.

Call the quantities x¢ and ¢, in Proposition 3.1 the step value and step index, respectively,
of the vector X(®), Clearly, the special case where the index ¢, is equal to w corresponds to
the case where ; = z for all ¢ € [w]. Such a step vector is called a constant vector.

Consider step vectors X(*) and Z(*) with step values zo and 2y, and step indices ¢, and
¢, respectively. Since, by Proposition 3.1, 0 < ¢, < w and 0 < ¢, < w, it follows that
lex — ¢,| < w— 1; it also follows that

IXy = epo+ (w—c)(@o—1) = wlzo—1)+cp

and
||Z(w)||1 = ¢c,z0+ (w — Cz)(ZO — 1) = w(zo — 1) + ¢, 5

so that, in conclusion:

Claim 3.2 For any vectors X() and Z*),

(1) IIXN = 1ZEN] = Jw(wo — 20) + ¢ — ¢, and

(2) ey — | S w—1.

Our next two Propositions show certain interesting dependencies between two step vectors
whose 1-norms’ difference may only attain a value in a specific set. We first prove:

Proposition 3.3 Assume each of the vectors X() and Z(*) is step and |||X)||, — |Z(2)||,| €
{0,1}. Then, either zo = 29 and |c, — c.| € {0,1}, or |zg — 20| =1 and |c; — .| = w — 1.

Proof: We start by proving that no case other than zg = 2y and |zo — 29| = 1 is possible
regarding xq and zg.

Lemma 3.4 |29 — 2| < 1

Proof: Assume, by way of contradiction, that |z¢g — 29| > 1. There are two cases.

Take first g — 2o > 1. Since, by Claim 3.2(2), ¢, — ¢, > —w 4 1, this implies that
w(xo—20)+¢r—c; > wt+—w+1 = 1. Hence, it follows by Claim 3.2(1) that ||| X(*) =Y ()||;| =
|w(zg — 20) + ¢z — ¢.| > 1, a contradiction.

Take now zg — 2 < —1. Since, by Claim 3.2(2), ¢, — ¢, < w — 1, this implies that
w(zo—20)+cr—c. < —w+w—1 = —1. Hence, it follows by Claim 3.2(1) that ||| X (") =Y {*)||;| =
|w(zo — 20) + ¢z — ¢.| > 1, a contradiction. This completes our proof. []

Lemma 3.4 implies that either |zg — 29| = 0 or |zg — 29| = 1. We proceed by case analysis.
1. Assume first that |zg — 20| = 0 so that 29 = z. By Claim 3.2(1), it follows that

X = | Z[1] = |ew — eo]- Since |[|X)||; — ||Z09)||; € {0,1}, it follows that
|ex —¢.| €{0,1}, as needed.

2. Assume now that |zo — 2| = 1. Since |[|X™)||; — |2, € {0,1}, it follows by
Claim 3.2(1) that —1 — w(zg — 20) < ¢y — ¢ <1 —w(zg — 20).
Take first 29 — 20 = 1 so that ¢, — ¢, <1 — w. Since, by Claim 3.2(2), |¢; —¢,| <w —1,
it follows that ¢, — ¢, = 1 — w. Take now o — z0 = —1 so that ¢, — ¢. > w — 1. Since,
by Claim 3.2(2), ¢ — ¢,| < w — 1, it follows that ¢, — ¢, = w — 1. Thus, in either case
|xo — 20| = w — 1, as needed.

We continue by showing:

Proposition 3.5 Assume each of the vectors X(*) and Z(*™) is step and ||| X)||; — ||Z0)|1] €
{w—1,w}. Then, either x¢g = zo and |c; — .| = w—1, or |zg — 20| = 1 and |c, — ¢, | € {0,1}.

Proof: We start by proving that no case other than zg = 2y and |zo — 29| = 1 is possible
regarding z¢ and zg.

Lemma 3.6 |20 — 2| <1

Proof: Assume, by way of contradiction, that |zg — 29| > 1. There are two cases.

Take first 29 — 29 > 2. Since, by Claim 3.2(2), ¢, —¢, > —w+1, it follows that w(zg—20) +
cr—c; > 2w—w+1=w+1. Hence, it follows by Claim 3.2(1) that [[|X)|l; =Y)||] > w+1,
a contradiction.

Take now 2 —zp < —2. Since, bu Claim 3.2(2), ¢, —¢, < w—1, it follows that w(xg—zp)+

cp— ¢ < —2w+w—1=—w— 1. Hence, it follows by Claim 3.2(1) that [||X)||; = Y(9)||;| >
w + 1, a contradiction. This completes our proof. [|

Lemma 3.6 implies that either |zg — zo| = 0 or |zo — 29| = 1. We proceed by case analysis.

1. Assume first that |zg — 20| = 0, i.e., 7o = 20. Since |[|[X()||; — [[Y)|;] € {w — 1, w}, it
follows by Claim 3.2(1) that |¢, —¢.| € {w—1,w}. Since, by Claim 3.2(2), |¢,—¢.| < w—1,
it follows that |¢; — ¢,| = w — 1, as needed.

2. Assume now that |zg — 20| = 1. Since |[|X(®)]|; — ||Z(®)]|; € {w — 1,w}, it follows by
Claim 3.2(1) that |w(xo — 20) + ¢z — ¢-| € {w — 1, w}, where xg — z0 € {—1,1}. There
are two cases.

Take first 29 — 29 = —1 sothat | —w+ ¢, —c,| € {w—-Lw}. | —w+ecy —c;| =w—1,
then either —w+e¢,; —¢, = w—1, implying ¢, — ¢, = 2w —1, which is not possible because,
by Claim 3.2(2), |¢; — .| <w —1,0r —w+ ¢, — ¢. = —w+ 1, implying ¢, — ¢, = 1. If

‘ H |cx—cz|6{0,1}‘|cx—cz|:w—1‘
|zo — 20| = 0 || {0,1} {w—1,w}
|zo — 20| =1 || {w—1,w} {0,1}

Table 1: Summary of Propositions 3.3 and 3.5

| — w+ ¢, —¢.| = w, then either —w + ¢, — ¢, = w, implying ¢, — ¢, = 2w, which is not
possible because, by Claim 3.2(2), |¢, — ¢;| < w —1, or —w + ¢, — ¢, = —w, implying
¢y — ¢, = 0. Thus, for g — 29 = —1, |¢; —e.| € {0,1}.

Take now 29 — 2o = 1 so that w4+ ¢, —¢.| € {w—1,w}. If |lw+¢c; — .| = w—1, then

either w4+ ¢, — ¢, = w— 1, implying ¢, —c. = =1, or w4+ ¢, — ¢, = —w + 1, implying
¢y — ¢, = —2w + 1, which is not possible because, by Claim 3.2(2), |¢; — ¢.| <w — 1. If
|w+c; —c,| = w, then either w4 ¢, — ¢, = w, implying ¢, — ¢, = 0, or w+¢, — ¢, = —w,

implying ¢; — . = —2w, which is not possible because, by Claim 3.2(2), [¢; —¢.| < w—1.
Thus, for mg — 20 = 1, |¢, — .| € {0,1}.

Hence, for |zo — 20| = 1, |¢z — ¢2] € {0,1}, as needed.
|

Table 1 summarizes Propositions 3.3 and 3.5. For each condition on |z — zo| along the left
side and each condition on |c, — ¢, | across the top, the appropriate entry provides the range of
values of |||X()||; — ||Y()||1] for which these conditions simultaneously hold, assuming X(**)
and Y(*) are step.

In our next two Propositions, we still consider a pair of step vectors whose 1-norms’ dif-
ference may only attain a value in a specific set, and show that certain combinations of these
step vectors are also step. We start by proving:

Proposition 3.7 Assume each of the vectors X(“/?) and Z(*/?) js step and |||X/?)||, —
|Z0/2)||,| € {0,1}. Then, the vector [%Z(X(w/z) + Z(w/2)) — O(w)-‘ is step.

Proof: By Proposition 3.3, either g = 2z and |c, — ¢,| € {0,1}, or |29 — 20| = 1 and
|cz — ¢.] = w/2 — 1. We proceed by case analysis.

1. Assume first that 2o = 20 and |¢; — ¢;| € {0,1}. There are two cases.
(a) Take first ¢, = ¢. so that |¢, —c¢,| = 0 Then,

. 2$0, 0§’L<Cx
(+2); = {2360—27 <i<w/2-1,

so that

1 B 2o, 0<1<2¢, -1
s+ = {xo—L Yep —1<i<w—1,

and
1 zo — (i is odd)|, 0<i<2¢,—1
306+ -0)] = (15 o) .
xo—l—i(zlsodd)w, 2¢, —1l<i<w-—1.
_ Zg, 0<e<2¢, -1
o r9—1, 2c, —1<i<w-1,

by Proposition 2.1(1).
(b) Take now |c, —¢,| = 1. Without loss of generality, let ¢, — ¢, = —1. We have:

2z, 0<2<e,
(z+2); = 200 — 1, 1= ¢,
200 -2, <1 <5 -1,
so that
1 Zg, 0<1<2¢, -1
5(2(36%—2))2' = ro— %, 26, <i<2c+1
xo—1, 2, +1<i<w—-1,
and

xo—%(iisodd)w, 0<i<2¢c, -1
xo—%—%(iisodd)-‘, 2¢, <1< 2, +1
[xo—l—%(iisodd)-‘, 20, +1<i<w-—1,

To, 0 <1< 2,
-1, 2, +1 <1 <w—-1,

G+ -] =

by Proposition 2.1(1) and (2).

2. Assume now that |zg — 29| = 1. Inspecting the proof of Proposition 3.3 (case 2) reveals
that either 29 — 20 = l and ¢, —¢., =1 —w/2,0r 29 — 20 = -l and ¢, — ¢, = w/2 — 1.
The two cases being symmetrical, we consider, without loss of generality, only the case
where g — zp = 1 and ¢, — ¢, = 1 — w/2. Since, by Claim 3.2(2), ¢ — ¢.| < w/2 -1,
the latter equality implies that ¢, = w/2 and ¢; = 1, so that z; = z for all i € [w/2],
and z; = ¢ — 1 for all ¢ such that 1 < i < w/2 — 1. Thus, we have:

(¢ +2)i = {%“0’ =Y

ro+z—1, 1<i<w/2-1
2$0—1, 1=20

200 -2, 1<i<w/2-1

since zp = xo — 1, so that

-3, 0<i<1

1
52 +2)) = {x0—1, l<i<w-—1,

and

(Lot -on = Hwo_rfmmdﬂ’ e

o —1—Liisodd)|, 1<i<w-1
. Zo, 1=0
o o—1, 1<i<w—-1,
by Proposition 2.1(1) and (2).

The previous case analysis reveals that the vector [%Z(X(“’/Q) + Z(“'/z)) — O(“’)l is step in

all cases, as needed. [|
We continue by proving:

Proposition 3.8 Assume each of the vectors X(“/2) and Z(/? is step and |||X/?)||, —
|Z(/2)||1] € {w/2 — 1,w/2}. Then, the vector [%Z(X(“’/Z) + Z(/2)y E(w)w is step.

Proof: By Proposition 3.5, either 2y = 2y and |¢; —¢.| = w/2 — 1, or |zg — 20| = 1 and
|cz — cz| €{0,1}. We proceed by case analysis.

1. Assume first that 2o = 2z and |¢; — ¢.| = w/2 — 1. Without loss of generality, let
¢z — ¢, = w/2— 1. Since, by Claim 3.2(2), |¢, — ¢,| < w/2, this implies that ¢, = w/2
and ¢, = 1, so that 2; = z¢ for all ¢ € [w/2] and z; = 29 — 1 for all 7 such that
1<i<w/2—1. Thus, we have:

$0—|—2’0, 1 =10
$0—|—2’0—17 1§2§w/2—1

B {29@0, i=0

o 200 — 1, 1<i<w/2-1,

(z 4 2);

since zg = &g, s0 that

1 - Zo, Oélél
SR+ = {xo—l/Q, l<i<w—1,

10

and

1 zo + L(i is even)|, 0<2 <1
G+ -0 = ot) |
[xo—i—l—i(useven)w, l<i<w—-1
- $0-|—1, 1 =0
o z0, 1<i<w—-1,

by Proposition 2.1(3) and (4).

. Assume now that |zg — 29| = 1 and |¢, — ¢,| € {0,1}. Inspecting the proof of Proposi-
tion 3.5 (case 2) reveals that either g — 20 = —1 and ¢, — ¢, € {0,1}, 0r 29 — 20 = 1 and
¢, —c; € {0,1}. The two cases being symmetrical, we consider, without loss of generality,
only the case where z¢g — zp = —1 and ¢, — ¢, € {0,1}. We proceed by case analysis on
the value taken by ¢, — c..

(a) Assume first that ¢, — ¢, = 0. We have:

(e42) = xo + 2o, 0<1<ey
L $0—|—2’0—2, C$§Z§w/2—1,

B 200+ 1, 0<i< ¢,
o 200 — 1, ¢, <i<w/2-1,

since zg — zg — —1, so that

1 o voty, 0<i<2e -1
F2let2)) = {wo—l 2, —1<i<w-—1,

and

{xo + % + %(z is even)

[xo — L+ L(iis even)

, 0<1<2¢, -1
, 20, —1<i<w—1,

G+ 0| = {

_ xo+1l, 0<1<2¢, -1
N zo, 2, <i<w-—1,
by Proposition 2.1(5) and (4).
(b) Assume now that ¢, — ¢, = 1. We have:
Zo + 20, 0<i1<e,

(x+2); = Totz—1, 1=c,
To+20—2, e, <i<w/2-1,

20 -1, 0<i<e,
= 220 — 2, 1=¢c,
220 —3, ¢, <i1<w/2-1,

11

since o = zo — 1, so that

-1, 0<i<2c. -1

1
5(2($ +2)); = 20—1, 2¢c, <i<2c, +1

1w

zo—%, 2c, + 1< <w—1,
and
[zo % %(1 is even)w , 0<i<2¢, -1
"(%(2($ +2))+ e)i-‘ = Fo 1+ 3(iis even)w , 20, <i1<2¢,4+1

To—5+ 3 (ziseven)w, 2, +1<i<w—-1,

. 20, 0<1< 2,
o -1, 2, +1<i<w—1,

by Proposition 2.1(4) and (3).

The previous case analysis reveals that the vector [%Z(X(“’/Z) + Z(“'/z)) + E(w)w is step in
all cases, as needed. [

We continue by showing a necessary condition for X(*) 1, (d — 1) in case both X(*) and
X() |, (d— 1) are step.

Proposition 3.9 For any integer d > 2, assume both X(*) and X(™) |, (d — 1) are step.
Then, X(") 14 (d — 1) is a constant vector.

Proof: Assume, by way of contradiction, that there are indices ¢ and k, 7 < k, such that
2 l2 (d=1) # ap 12 (d—1).
By their definition, each of z; 7o (d — 1) and @y, T3 (d — 1) is a multiple of 2¢=1. Hence, it
follows that ; |2 (d — 1) — a2k T2 (d—1)=f- 29-1 for some integer f # 0. We have:
vi—ap = @ a(d=-1)tail2(d=-1)—ap 2 (d=1)—ay |2 (d-1)
= 27 i (d—1) —ay |y (d—1)

Since X(*) |5 (d— 1) is step, 0 < @; |5 (d— 1) — a1 |2 (d — 1) < 1. Hence, it follows that:

fo27 <a—ay < f2N 40

We proceed by case analysis. Assume first that f > 1. It follows that a; — z; > 2971 > 1,
since d > 2. Since X ig step and ¢ < k, x; — a3, < 1. A contradiction.

Assume now that f < —1. It follows that #; —z; < =2 '4+1 < —1, sinced > 2. Since X (w)
is step and ¢ < k, ; —zp > 0. A contradiction. This completes the proof that X(*) 1, (d—1)
is a constant vector.

12

In particular, Proposition 3.9 implies:

Corollary 3.10 For any integer d > 2, assume both X(*) and X) |, (d—1) are step. Then,
either ||X() 5 d|ly = 0 or || X() 5 d|l; = w21

We continue with a necessary condition for X |, (d — 1) in case X is step but
X |y (d— 1) is not step.

Proposition 3.11 For any integer d > 2, assume X is step but X(*) |, (d—1) is not step.
Then, there exists some index ¢, 0 < ¢ < w — 1, such that either

(1) 2zglod=...=2,1 [2d=00...0 and z, |aod=...=2ypy_1 |od=11...1, or

(2) $0l2d:...:$c_1 lgdzl()OO GNd$cl2dI...I$w_1 l2d20111

Proof: Since X(*) is step but X(*) |, (d — 1) is not step, it follows by Proposition 3.1 that
there exists some index ¢, 0 < ¢ < w — 1, such that x; = x¢ for all 2 such that 0 <17 < ¢ and

z; = 2.1 — 1 for all ¢ such that ¢ <7 < w— 1. It must be that zg |2 (d—1)=...= 2.1 |2
(d—1)=00...0, since otherwise 2. |3 (d—1)=...=2y_1 |2 (d—1) =21 |2 (d—1)—1,
contradicting the assumption that X(®) |, (d — 1) is not step.

We proceed by case analysis on the dth least significant binary digit of g = ... = z._3.
Assume first that this digit is 0,sothat 29 s d = ... = 2.1 |2d =00...0. Since z; = 2,1 —1
for all 7 such that + < ¢ < w — 1, this implies that z. | d = ... = xyp_1 |2 d = 11...1, as
needed.

Assume now that the dth least significant binary digit of 29 = ... = 2.1 is 1, so that
Zo lod=...=wx._1 |2 d=100...0. Since a; = x._1 — 1 for all ¢ such that ¢ < i < w—1, this
implies that . | d=...=x,_1 |2 d=011...1, as needed. This completes our proof. [|

4 Block-Step Vectors

In this Section, we formally define block-step vectors and show several combinatorial properties
of them. The reader may prefer to skip this Section for now, returning to it later when its
results are required.

We say that an integer vector X(¥) is block-step if both vectors XS;;’/?) and XE;:I/UZ) are step.
Denote by blockstep(IN') the set of all block-step vectors with w entries.

We first notice that certain sub-vectors of a block-step vector are also block-step.

Proposition 4.1 Assume X(w) g block-step. Then, both XS;U/Q) and XS;;U/Q) are block-step.

13

Proof: By definition of a block-step vector, both X(w/Z) and X(/2) are step. Proposi-
tion 3.1 immediately implies that both (Xup)gwM) and (Xup)g w/4) (resp., (Xdown)gwﬂ) and
(Xdown)gw/4)) are step. Since x (/2 (resp., XS;;U/Z)) is the concatenation of (Xup)gwM) and
(Xdown)(ow/4) (resp., (Xup)(ow/4) and (Xdown)éw/‘”), it follows by definition of a block-step vec-
tor that X(;;U/Z) (resp., ng;u/z)) is block-step, as needed.]

We next show that the 1-norms of certain subvectors of a block-step vector come close to
each other.

Proposition 4.2 Assume X(*) is block-step. Then,

X2 = I1XE72)] € {013

Proof: Recall that by definitions of XS;”/?) and Xﬁfg’/?),

XD = 1K)+ 1(Kaown)5

1

and

X2 = 1K) s+ (Ko)l

By definition of a block-step vector, both X(w/z) and X2 are step. By Proposition 3.1,

down
there are indices ¢yp and ciown, 0 < Cup, Cown < w/2, such that:

o (2up)i = (Typ)o for all ¢ such that 0 <@ < ¢y, and (24,)i = (24p) — 1 for all 7 such

that ¢,, <7 <w/2—1, and

Cup—1

® (Zdown)i = (Zdown)o for all ¢ such that 0 < i < ¢goun and (Tdown)i = (Tdown Jegppn,—1 — 1
for all ¢ such that ¢gop, <@ < w/2—1.

We proceed by case analysis on the parities of ¢y, and ¢cgouwn:

L. Assume both ¢, and czp,, are even. Then, clearly, ||(Xup)£w/4)||1 = ||(Xup)£)“’/4)||1 and
1%Vl = (Kot)6 s 50 that [IXE | = ([X5

2. Assume both ¢, and ¢gouy, are odd. Then, clearly, ||(Xyp)e (re/4) I = [[(Xup)o (w/4) [y +1

w/4 w/4 w 2 w 2
and [|(Xaoun) 1 = [|(X o) 11 + 1, s0 that X872y = [IX5/2);.

3. Assume ¢, is odd and ¢gy,, is even. Then, clearly, ||(Xup)£w/4)||1 = ||(Xup)2“’/47’||1 +1
and [[(Xaoun) = (Ko)5Vl 50 that X7 = X5 + 1.

4. Assume ¢, is even and cgouy is odd. Then, clearly, ||(Xup)§““/4)||1 = ||(Xup)£)“’“>||1 and
1Xatorn)l =[RS l1 + 1, 50 that [|XE |y 41 = X572

14

Thus, in all cases, ||| X7y — X871 | € {0,1}, as needed. n

For each integer k, denote by (blockstep(IN")) |4 k the set of all integer vectors X(*) ¢ [2F]"
such that X(*) = Y |, k for some block-step vector Y(*); that is, (blockstep(N™)) |4 k is

the set of the restrictions to their k least significant binary digits of blockstep vectors with w
entries. Notice that (blockstep(NY)) |4 k C [2F]*.

Our first Proposition provides an analog to block-step vectors of Corollary 3.10.

Proposition 4.3 For w > 4, assume X" € (blockstep(N™)) |3 lgw and X |, (lgw — 1)
is block-step. Then, | X(") |, lgwl|,/w is an integer.

Proof: By deﬁnition of (blockstep(N"™)) |5 lgw, there exists some block-step vector V(*)

such that V(®) |, lgw = X(®) . By definition of a block-step vector, ngf;) (resp., Vglm)m)
step.

Since X() |, (lgw — 1) is block-step, it follows, by definition of a block-step vector, that
ng;) l2 (Igw — 1) (resp., XEIZUZM l2 (Igw — 1)) is step.

Since V) |5 lgw = X it clearly follows that ngf;) l2 (lgw—1) = ng;) l2 (lgw —1)
(resp., Vi) 1 (Igw — 1) = X&) |y (Igw — 1)) and [V 1y lgwll = [1X5) 15 Igwls
(resp.. Vi), T2 Tgwlh = X5, 12 1gwll).

Hence, it follows by Corollary 3.10 that either ||X v Ig lgw|l; = 0or ||X£f;/2) l2lgw|ly =
(w/2)28 =1 = w? /4 (resp., either ||Xd1;/u721 J2lgwll;y = 0or ||Xd1;’1/ui l2lgwl|ly = (w/2)28w-1 =
w?/4). Since

X0 1 lgwlli = X&) |5 lgw]) + X072 15 1g)y

it follows that || X(*) |y lgwl|; = 0, w?/4, or w?/2. Since w is a power of two and at least four,
it follows that || X(*) |, lgwl||; /w is an integer, as needed. |

Our next Proposition provides an analog to block-step vectors of Proposition 3.11:

Proposition 4.4 For any integer d > 2, assume X(*) is block-step, but X*) |5 (d — 1) is not
block-step. Then, either

IIXE7 1o (d= 1)l = X572 |y (d = Dll| € {0.1}
and ||X™) 1y d||1/2¢ =1 for some integer 1, or
I1XE72 1o (d = Dl = X572 Lo (d= D] € {w/2-1,w/2}

and ||X(w) 12 d||1/2d =1+ 1/2 for some integer .

15

Proof: By definition of a block-step vector, both X%/Z) and XEIZUI/UZ) are step, but at least
one of X%}/z) l2 (d—=1) and del/ui
X%/z) l2 (d — 1) is not step. By Proposition 3.11, it follows that there exists some index ¢y,
0 < ¢yp <w/2—1, such that either

l2 (d = 1) is not step. Without loss of generality, assume

® (xup) l? d — (xup)cup—l 1,2 d = 00 e 0 and (fup)cup lz d = ...= (xup)w/Z—l l? d —
11...1, so that ||X /21, dlly = (0)2 = eqp)21, or
o (Tupo l2d= (wup)cup—l l2d=100...0 and (Zup)e,, l2 d= ... = (Tup)w-1 l2d =

011...1, so that ||X (/21 d||y = eyp2iT.

We proceed by case analysis on whether or not del/ui l2 (d = 1) is step.

1. Assume first that det/ui l2 (d—1) is step.

By Proposition 3.1, there exists some index ¢joun, 0 < Cgown < w/2, such that (2 40un o 2

(d_l) = ... = (xdown)cdown—l l? (d_l) and (xdoum)cdown l? (d_l) = ... = (xdoum)w/Z—l l?
(d—=1) = (Tdown)egoun—-1 l2 (d = 1) = 1.

Since X\“/?) is also step, it follows by Corollary 3.10 that elther IIX (/2) l2 d|ly =0,

down down
or ||Xd7jl/u72% 12 d|l; = (w/2)2?=". Hence, we have: Since ||X{*) 12 dllp = ||Xu1;/2) 12

d|ly + ||Xdoum 12 d||1, it follows that the possible values of ||X(*) |5 d||1/2¢ are ¢u,/2,
Cup /2 + w/d, w/d —cyp /2 and w/2 — ¢y, /2.

Since w > 4 is a power of two, it follows that either ||X(w) 12 d||1/2% = [for some integer
[in case ¢y, is even, or ||[X(™) |4 d||;/2% = 1 + 1/2 for some integer [in case ¢, is odd.

We proceed by case analysis on combinations of the parities of ¢,, and cjouwn.

(a) Assume both ¢, and ¢y, are even.
Then, clearly, (X)" 15 (d=1)]l = [[(Xup)6"" L (d=D)lly and [[(Xaouwn)6 12
(d =Dl = 1Ko)™ 12 (d = D1 s0 that [|XED |5 (d - D]y — X% 1,
(d— 1)1 = 0.
Since ¢, is even, ||X(*) |y d||;/2¢ = [for some integer [.

(b) Assume both ¢, and cgyy,, are odd.
Then, clearly, [[(Xu,)/™ 1o (d = 1)l = (X)) 12 (d= Dl — (27~ = 1) =
(X)o7l = w/2 + 1 and [(Xaouwn)™ 12 (d = Dl = 1(Xaown)" 12 (d —
Dl + 1, so that [|XE72) |y (d = 1)l — X572 12 (d = 1)l = —w/2.
Since ¢y, is odd, ||X(®) 15 d|l;/2% = 1+ 1/2 for some integer [.

(c) Assume ¢, is even and ¢q,,,, is odd.

16

Then, clearly, [[(X,,)" 1 (d=1)|h = (X)0 12 (d=1)lls and [[(Xaoun)7 15
(d=1)l1 = [(Xgoun)S” La (d= D)l +1, 50 that || XE7 |5 (d— 1))l - | XE? |,
(d= Dl = -1,

Since ¢y, is even, ||X(*) |y d||;/2¢ = [for some integer [.

(d) Assume ¢, is odd and ¢q,,,, is even.
Then, clearly, [[(Xup)"™ 1o (d = Dlls = [[(Xu)Y 2 (d = D)}y — (2571 = 1) =
IO L = Dl /21 X 1 (0Dl = X 1
(d = 1), so that [|XE7 1 (d = 1)l = [XE" |5 (d= D = —w/2+ 1.
Since ¢y, is odd, ||X(®) 15 d|l;/2% = 1+ 1/2 for some integer [.

2. Assume now that X(*/? l2 (d — 1) is not step.

down

By Proposition 3.11, there exists some index ¢gouwn, 0 < ¢gown < w/2—1, such that either

® (Zaown)o 12 d=".. = (Zdown)egpyn—1 L2 € =00...1 and (Tgown ey, l2 d=...=
(Zdown /21 l? d=11...1,so0 that [|X{“/2 |, d||1 = (/)2 — gown)27, or

e (Zgoun)o lod=...= (wdown)cdown—l l2d=100...0 and (Zgouwn)eyy,, l2d=...=
(Zadown ey b2 d=011...1, 50 that || X2 5 d|ly = cgoun2?".

Since X) s d||1 = || Xaup (w/2) l2 d|ly + ||Xd1;/u721]2 d||1, it follows that the possible values
of X(™) 14 d||1/2¢ are (cup + Cdown) /2, (/2 + up — Cdown)/2, (W2 + Cdown — up)/2 and
(W — Cyp — Cdown) /2 .

Since w > 4 is a power of two, it follows that either ||X(*) |4 d||;/2¢ = I for some integer
[in case cup and cgouy are of the same parity, or ||X(®) [y d|[;1/2% = [+ 1/2 in case ¢y
and cepen are of different parity.

We proceed by case analysis on combinations of the parities of ¢, and cgouy, -

(a) Assume both ¢, and ¢y, are even.
Then, clearly, [[(Xu,)"*) 5 (d=1)]l1 = [[(Xup)S" 15 (d=1)[|1 and [[(Xgouwn) 15
(d =Dl = 1Kaown)S” 12 (d = Dll1, s0 that XL 15 (4= D)}y = X572 |5
(d— 1)1 = 0.
Since ¢y and cgown are of the same parity, || X |3 d||;/2¢ = I for some integer /.
(b) Assume both ¢y, and cgoun are odd.
Then, clearly, [[(Xu,)/™ 1o (d = 1)l = (X)) 12 (d= Dl = (2w~ = 1) =
1(Xaup)0 = w/241 and [[(Xioun) "™ 12 (d=1D)llx = [(Xaown S 15 (d=1)|1-
(2571 1) = [|(Xaoun S [l = w0/24 1, 50 that [[XET |5 2(d= 1)l — X5 1,
(d— 1)1 = 0.

Since ¢yp and cgowy are of the same parity, ||X(w) 12 d||1/2% = I for some integer .

17

(¢) Assume ¢,; is even and ¢gouy, is odd.
Then, clearly, [|(Xup)t/*) 1o (d=1)l1 = [[(Xup)0"™ 12 (d=1)] and [|(Xaouwn)"* 15
(d=D)ll = 1Kaown)s ™ 1 (d= 1)l = (281 = 1) = [[(Xgou)6 12 (d=1)]]1 -
w/2 + 1, so that | X7 |5 (d— 1)) = |XE/ |5 (d= 1) = w/2 - 1.
Since ¢,p and ¢gouy, are of different parities, ||X(w) 12 d||1/2% = 1+ 1/2 for some
integer [.

(d) Assume ¢, is odd and ¢gq,, is even.
Then, clearly, [[(Xup)“"? 12 (d = Dl = [[(Xup)$/Y 5 (d = D)l — (2827 = 1) =
(X) S 1 (d= 1)l = w/241 and [(Xaoun)E"™ 12 (d= Dl = [[(Xaown)0 12
(d = D)1, so that XL |5 (d = Dl = X 5 (d= D)y = —w/2+ 1.
Since ¢y and cgoun are of different parities, ||[X() 1o d|[1/2¢ = 1 4+ 1/2 for some
integer [.

Inspecting the previous case analysis reveals that either |||X£§U/2) L2 (d=1)|1 — ||X£)7;U/2) 2
(d—1)|1| € {0,1} and || X |, d||;/2¢ = I for some integer [(cases 1(a), 1(c), 2(a), 2(b)), or
11X 1 (d= 1)l = X871y (d= D)) € {w/2— 1, w} and X T3 d]ly /27 = 1+1/2 for
some integer [(cases 1(b), 1(d), 2(c), 2(d)), as needed. |

5 Balancing Networks

This Section is organized as follows. Section 5.1 presents definitions for and preliminary prop-
erties of balancing networks. In Section 5.2, we define interesting classes of balancing networks,
along with corresponding combinatorial characterization theorems. Qur presentation closely
follows the one in [8], where the reader is referred for a more detailed treatment.

5.1 Balancing Networks

Balancing networks are constructed from wires and computing elements called balancers. For-
mally, a balancer b : X(2) — Y [5] is a computing element which receives integer inputs
and zy on input wires 0 and 1, respectively, and computes integer outputs o and y; on output
wires 0 and 1, respectively, so that for each 7,0 <j <1,

Y, = {Z}ZO Ti —J-‘
J 2 °

For each j, 0 < j <1, the order of output wire j is defined to be j/2; thus, output wires 0
and 1 have orders 0 and 1/2, respectively.

An immediate consequence of the definition of a balancer is that the output vector Y(?) is
step:

18

11 @

10 ®

Figure 1: A balancing network

Proposition 5.1 For a balancer b : X(2) — Y2) | the output vector Y?) is step.

The sum preservation property for a balancer is another immediate consequence of its
definition.

Proposition 5.2 For a balancer b: X2 — Y@ |[Y?)||; = |X?)|;.

For any integer w > 2, a balancing network B : X® — Y() of width w is a collection of
balancers, where output wires are connected to input wires, having w designated input wires
0,1,...,w — 1 (which are not connected to output wires of balancers), w designated output
wires 0,1,...,w — 1 (similarly not connected to input wires of balancers), and containing no
cycles. Integer inputs zg, &1, ..., &,—1 are received on input wires 0, 1,...,w — 1, respectively,
and integer outputs yo, v1,. .., Yu—1 are computed on output wires 0,1, ..., w— 1, respectively,
in the natural way. Throughout the paper, we will often abuse notation and use z; (resp., y;) as
the name of the ith input (resp., jth output) wire. Figure 1 depicts a balancing network, with
wires drawn as horizontal lines and balancers stretched vertically, and the outputs computed
on all output wires of its balancers on a specific input.

The sum preservation property for a balancing network B follows naturally from its defini-
tion and the corresponding property for a balancer:

Proposition 5.3 (Sum Preservation Property) For a balancing network B : X(w) —

Y Yy = Xy
For a balancing network B, the depth of B, depth(B), is defined to be the maximal depth

of any of its wires, where the depth of a wire is defined to be zero for an input wire of 5, and
max; (o1} depth(z;) 4 1, for the output wires of a balancer with input wires o, 1.

19

In case depth(B) = 1, B will be called a layer and will be uniquely represented by a square
w X w matrix Cg, called connection matriz and determining the connections between input
and output wires, and a w X 1 column vector Og, called order vector and determining the
order of each output wire. Formally, we set:

e for any ¢ and 7, 0 < 7,5 < w — 1, Cplji] = 1/2 if input wire ¢ and output wire j are
connected via a balancer, else Cp[ji] = 1 if output wire j coincides with input wire ¢,
and 0 otherwise.

e lorany j,0<j<w-—1, 03[j] = oif output wire j is the output wire of a balancer and
has order o, else (output wire j is not the output wire of a balancer) Og[j] = 0.

For example, for the layer B depicted in Figure 2 using the same conventions as for Figure 1,

we have:
1/2 0 0 0 0 1/2

0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 1/2 0 1/2 0 0 ’
0 0 1/2 0 1/2 0
/20 0 0 0 1/2

Ci =

and

1/2
1/2
1/2

By definitions for balancers, the connection matrix Cgz, and the order vector Og, it imme-
diately follows:

Proposition 5.4 For a layer B : X(*) — Y1)

vy — [Cp - X (w) _ 05|

Notice that the connection matrix Cg is a doubly stochastic matrix, i.e., all rows and
columns sum to one (see, e.g., [3, Chapter VIII, Section 2] for an account on doubly stochastic
matrices).

If depth(B) = d > 1, then B can be uniquely partitioned into layers By, Bz, ..., B; from
left to right in the obvious way. The connection matrix Cp, and the order vector Op, are
associated with layer B;, 1 < < d. We represent B by the sequence of d connection matrices
Cz,,Cg,,...,Cp,, and the sequence of d order vectors Op,,0s3,,...,0z,.

20

Figure 2: The layer B

The next Theorem shows that for any balancing network, the outputs take a particular
algebraic form as a function of the inputs, depending on the network’s depth and the topology
of the network.

Theorem 5.5 (Busch and Mavronicolas [8]) Let B : X(*) — Y (™) be a balancing net-
work of depth d with associated connection matrices and order vectors Cp,,Cg,,...,Cp
O5,,0s5,,...,03,, respectively. Then:

. and

Y = Cp XM 1y d+ Fa(X™ |, d),

for some matriz Cg and vector function Fg : [2¢]Y — N, such that:

(1) CB = CBd-CBd_l '---'CBl; and:

(2) Fp = Fg,, where the vector functions Fp, : [2']" — N¥, 1 < < d, are defined recursively
as follows:

Fi, (X" |5 1)
{ Cs, +Ca,_, -+ Cp, - X |5 14 Cp, - F_ (X |, (1-1)) = Og,|, 1>1

Cs, - X" |, 1-0p,], [=1
Call the matrix Cp the steady transfer matriz of B. Call the vector function Fg the
transient transfer function of B.

Theorem 5.5 shows that the output vector of a balancing network is the sum of two terms.
The first term Cg - X¥ T2 d, called the steady output term, involves the most significant part

21

X(®) 1, d of the input vector; this part is obtained by setting the d least significant binary digits
of each entry of the input vector to zero. The steady output term is a linear transformation,
defined by the steady transfer matrix Cg, of the most significant part of the input vector.

The second term [CB X 1y d 4 Cg, -FBd_l(X(“’) l2(d=1)) - OBJ, called the tran-

sient oulput term, involves the least significant part X () |, d of the input vector; this part
corresponds to the d least significant binary digits of each entry. The transient output term
is the image, under the transient transfer function Fp of B, of the least significant part of the
input vector; apparently, the least significant part of the input vector undergoes a non-linear
transformation defined by Fpy.

Thus, the steady transfer matrix Cgz is determined by the relative connections of the net-
work and shapes the steady output term, while the transient transfer function Fy is determined
by both the connections and the relative order of outputs for each balancer and shapes the
transient output term. Call the steady transfer matrix Cg and the transient transfer function
Fp the transfer parameters of B.

Since the product of two doubly stochastic matrices is doubly stochastic (see, e.g., [3,
Theorem 8.40]), Theorem 5.5(1) immediately implies:

Proposition 5.6 The steady transfer matriz Cg is doubly stochastic.
Proposition 5.6 immediately implies:
Corollary 5.7 For any vector X("), ||Cp - X(#)||; = ||X(2)];.
Our last Proposition establishes an intuitive property of the transient transfer function.

Proposition 5.8 Let B: X" — Y(*) be q balancing network of depth d. Then,
[F5(X™ Lo)l = X |2 d]]s

Proof: By Theorem 5.5 and definition of 1-norm,

Y = ||Cs - XM 15 dly +[|[Fs(X™ |5 d)|
= IX® 1y d|y +|[Fs(X™ |, d)

since, by Proposition 5.6, Cg is a doubly stochastic matrix.

By Proposition 5.3 and linearity of the 1-norm function,

YU = X0y = X 1y dfly + X |5 d])y

Hence, it follows that
IFs(X™) |2 d)fls = X |2 d]fs .

as needed. []

22

5.2 Counting and Merging Networks

Counting and merging networks [5] are among the most well studied classes of balancing
networks (see, e.g., [1, 2,7, 9, 10, 12, 13, 14, 15, 16]).

Definition 5.1 (Aspnes, Herlihy and Shavit [5]) A counting network is a balancing net-
work B : X(®) — Y(®) such that the output vector Y(*) is step.

Counting networks have been shown suitable for implementing shared counters and pro-
ducer/consumer buffers for multiprocessor architectures [5, 14].

A way of relaxing definition 5.1 is to require the step property for the output sequence only
if the inputs have some kind of a step property.

Definition 5.2 (Aspnes, Herlihy and Shavit [5]) A merging network is a balancing net-
work B : X — Y (W) such that if the input vector X is block-step, then the output vector
X () s step.

That is, the set of inputs is partitioned into two blocks, each of size w/2, and the output
vector is step whenever each of the two corresponding vectors of inputs, one for each of these
blocks, is. Merging networks have been used as building blocks of counting networks [5, 7, 10,
12].

A number of combinatorial characterizations may be derived from Theorem 5.5 for counting
and merging networks. These characterizations are stated as necessary and sufficient conditions
on the transfer parameters of a network. We start with a necessary and sufficient condition
for a counting network.

Theorem 5.9 (Busch and Mavronicolas [8]) The network B is a counting network if and
only if:

(1) Cglji] = 1/w for all i,j € [w], and

(2) the vector function Fg is step on [27]".

Theorem 5.5 can be used to show a conditional combinatorial characterization for merging
networks.

Theorem 5.10 (Busch and Mavronicolas [8]) For a network B : X(*) — Y() of depth
d, assume Cglji] = 1/w for all i,j € [w]. Then, B is a merging network if and only if the
vector function Fg is step on (blockstep(IN")) |2 d.

23

Theorem 5.10 reveals that certain merging networks may actually do more than what the
formal definition of a merging network requires: a merging network with a constant steady
transfer matrix produces a step output vector on an input vector which is not step, but has
all of its entries no more than 297! (i.e., each of its entries can be represented with d binary
digits), where d is the depth of the network, and can be extended to a step vector by “sticking”
most significamt binary digits to the left of each of its entries.

Theorems 5.9 and 5.10 suggest corresponding methodologies for proving correctness of
counting and merging networks. More specifically, to show that a balancing network B is a
counting or merging network, one computes expressions for the transfer parameters Cp and Fp
and verifies inductively that the (conditional) necessary and sufficient conditions involved in
Theorems 5.9 and 5.10, respectively, hold. A concrete application of this general methodology
on a specific example of a merging network appears in Section 7.

6 The Bitonic Network

In this Section, we describe the construction and show some preliminary properties of the
bitonic network [6].

Fix throughout w to be any power of two. The construction of the bitonic network B(+)
is inductive and identical to the one in [5]; it uses the bitonic merger network M) whose
construction is described next, as a basic module.

6.1 The Bitonic Merger Network

The balancing network M) : X() — Y@ called bitonic merger, is defined inductively as
follows: For the base case, where w = 2, M2 consists of a single balancer. Assume inductively
that we have constructed M(*/2), where w > 4; we show how to construct M(*). The network
M) ig the “cascade” of:

e a network N : X(®) — Z() which is the “parallel composition” of two networks

Méé”/z) : X(;;U/Q) — ZS;"”/?) and MS];”/Q) : XSJ;U/Q) — ZSJ"”/?);

e alayer £(: Z(") — Y consisting of w/2 balancers bo, b1, . . ., b, /_1, where balancer
b; receives inputs zy; and 23,41 and produces outputs yo; and yo;41, ¢ € [w/2].

Notice that the construction of M(*) implies that depth(Ms) = 1, while for w > 2,
depth(M™) = depth(N™) 4 depth(£L™) = depth(M™/D) 41,

implying:
Proposition 6.1 For all w > 2, depth(M(™)) = lgw.

24

Notice that, by definition of the network £("), C) [ji] = 1/2if {i,5} C {21,20 + 1} for
some [€ [w/2] and 0 otherwise, i.e.,

1/2 1/2 0 0 0 0
1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0
Cpwy = | 0 0 172 172 0 0
0 0 0 0 1/2 1/2
0 0 0 0 1/2 1/2

Also, by definition of the network £(*), O s(u)[¢] = 0 for i € e[w], and 1/2 for i € o[w], i.e.,

0
1/2
0

ow — | 1/2

0
1/2

We continue by showing that the steady transfer matrix of the bitonic merger is a constant
matrix.

Proposition 6.2 For alli,j € [w], C u[ji] = 1/w.

Proof: By induction on w. For the base case, where w = 2, the statement holds trivially by
definitions of balancer and connection matrix. Assume inductively that for each k& < w/2 that
is a power of two, C) [ji] = 1/k for all 4,j € [k]. We show that C,,u[ji] = 1/w for all
i,j € [w].

By definition of the network A(*) and induction hypothesis, C . [ji] = 1/(w/2) = 2/w
if either j € e[w] and i € eo[w], or j € o[w] and ¢ € oe[w], and 0 otherwise, so that:

Crw)
2/w 0 2/w 0 oo 2/w 0 0 2/w 0 2/w ... 0 2/w
0 2/w 0 2/w ... 0 2/w 2/w 0 2/w 0 oo 2/w 0
2/w 0 2/w 0 2/w 0 0 2/w 0 2/w ... 0 2/w
0 2/w 0 2/w 0 2/w 2/w 0 2/w 0 2/w 0
2/w 0 2/w 0 2/w 0 0 2/w 0 2/w 0 2/w
0 2/w 0 2/w 0 2/w 2/w 0 2/w 0 2/w 0

25

Hence, Theorem 5.5(1) implies:

Cuw) = Cruw Cprw

1/w
1/w
1/w
- 1/w

1/w

as needed.

1/w
1/w
1/w
1/w

1/w

1/w
1/w
1/w
1/w

i/w
1/w

1/w
1/w
1/w
1/w

1/w

1/w
1/w
1/w
1/w

1/w

1/w
1/w
1/w
1/w

1/w

By appealing to Proposition 6.2, Theorem 5.10 calls for computing expressions for F , 4.) on

X (w)

lgw. We first introduce some notation. Define

FM(;;’/Q),M(“’/Q)(

1
= 2(F,\,lw/fz)(

X |, (lgw — 1))

P2 (lgw = 1)+ F s (XS

€ (blockstep(N™)) |5 depth(M(®)) which, by Proposition 6.1, equals (blockstep(N™)) |,

P e (lgw—1)))

Our next proposition shows that the transient transfer function of M%) takes a particular

algebraic form for X ()

Proposition 6.3 Assume X

Proof: Since X (%) ¢

and X(w

By construction of the network A/(*

where

and

FM(w) (X(w))

1
— "EHX(?U) 12 1g w”1 1(“7) + 2FM(625/2)7ME;:/2)(X

) 1y lgw = O,

z(w) CN(w)'X(
= Cyw

(F e (X |5 (Igw — 1))

(FN<w>(X(w) l2 (lgw —1))),

€ (blockstep(N")) |2 lgw.

= Fum(X!

=F <w/2>(

26

) and Theorem 5.5,

Dy (Igw — 1) + F (X
XM 1y lgw 4+ F (X

€ (blockstep(IN™)) |2 lgw. Then,

€ (blockstep(N™)) |9 lgw C N* |, lgw, X(*

P

D1y

) 15 (1gw—1))
)]s (lgw - 1)),

(lgw = 1)),

(lgw—1)).

() |, (gw - 1)) - om)} .

Applying Proposition 5.4 on layer £*) yields:

Y = [Cc(m VAR OL(w)—|
= [Crw (Cpw - X™ 3 1gw + F (XM |5 (Igw = 1)) — Opu]
= [Crw - Cpw - X [31gw + Cpiu - Fypon (X |5 (Igw — 1)) — O]
= [Cpw - X" 13 1gw + Cpuy - Fyran (XM |5 (Igw — 1)) = O]

by Theorem 5.5(1). Proposition 6.2 implies that
1
Crpw - X o lgw = EHX(w) l2 lgwl 1)

Notice also that

Criwy - Fpn (XM |5 (Igw — 1))

/2 1/2 0 0 ...0 0
/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0
- 0 0 1/2 1/2 0 0 Ty (X |5 (Igw — 1))
0 0 0 0 ... 1/2 1/2
0 0 0 0 ... 1/2 1/2
1 ; o)
= 52(FM<€@5/2>(X£3/2’ l2 (lgw = 1)+ F (XL |2 (1gw - 1)) .

Hence, we have:
F i (X))
= [%HXW) J2 lgwlli1t) + 2F gy gy (XM |2 (Igw — 1)) — Oaw)W :
Since X(“) ¢ (blockstep(N™)) |5 lgw C N* |, lgw = [2'8*]*, it follows, by Theorem 5.5,
that
F oy (X))
= [%HXW) J2 lg w1+ 2F uro s (X) |y (Igw = 1)) — Oaw)W ;

as needed. []

As we will show, M(*) is a merging network, i.e., it guarantees the step property on its
w/2) .

output vector when each of the vectors ngg/?) and X! is step — but this can be ensured by

down
filtering each of these vectors through smaller counting networks.

27

6.2 The Bitonic Network

The balancing network B(*) : X() — Y called bitonic, is defined inductively. For the
base case, where w = 2, B(2) consists of a single balancer. Assume inductively that we have
constructed B(*/2) where w > 4; we show how to construct B(*). The network B(*) is the
cascade of:

e a network R : X(w) — Z() which is the “parallel composition” of two networks
3%/2) :X%’/Z) _ Z(w/2) and B2 . x(w/2) _ m(w/2),

down * down down ?

e a bitonic merger network M) : Z(w) — y(w),

7 A Correctness Proof

In this Section, we present a formal correctness proof that the bitonic network is a counting
network.

We start by showing:
Theorem 7.1 The network M) is a merging network.
Proof: The proof appeals to Theorem 5.10. By Propositions 6.2 and 6.1, it suffices to show:
Lemma 7.2 The function F \) is step on (blockstep(N™)) |2 lgw.

Proof: By induction on w. For the base case, where w = 2 and M consists of a single
balancer, notice that (blockstep(N?)) |3 1g2 = N? |5 1 and take any X)) € N? |, 1. By
definition of a balancer, Y is step, while, by Theorem 5.5, Y(?) = FB(X(Q)). It follows that
F5(X®) is step, as needed.

Assume inductively that F) is step on (blockstep(N*)) | gk for each k < w/2 that is
a power of two. Take any X(“) € (blockstep(N™)) |2 lgw. We show that F) (X)) is step.
By definition of (blockstep(N™)) |4 lgw, there exists a block-step vector V() such that
vw) lelgw = X) Tt follows by Proposmon 4.1 that each of VS;U/Z) and VSZ;U/Z) is block-step.
Notice that V{/?) |, (lgw-1) = x4/, (lgw—1) and v/, (lgw—-1) = x (/) |,
(lgw—1). It follows, by definition of (block‘step(Nw/z)) l2 (lgw—1), that both x (/2) l2 (lgw—
1) € (blockstep(IN*“/?)) |, (lgw — 1) and X (/2) o (gw —1) € (blockstep(N*/?)) |5 (lgw —1).
Hence, by induction hypothesis, each of FM(w/'))((/2 l2 (lgw —1)) and FM(w/'))(X(w 2 12
(lgw — 1)) is step.

We proceed by case analysis on whether or not X |, (lgw — 1) is block-step.

28

Case 1: X(*) |, (lgw — 1) is block-step.

By Proposition 4.3, [|X(*) |, lgw||;/w is an integer. Hence, by Proposition 6.3:
FM(w)(X(w))
Liixt) () ()
= EHX T2 lgw|l; 1) + [ZFMQM),M(OZ/Z)(X l2 (lgw — 1))—Oﬁ(w)-‘ .
By Proposition 4.2,
11X/ 12 (gw = Dl = X587 1o (gw = D)[l| € {0,1} .
By Corollary 5.8,
IF yorn (XL 1y (lgw = D)l = [IXE7? |2 (lgw - 1)

and

IF oo (XE7 1o (lgw =)l = [XE72) |5 (Igw = 1)y -
Hence, it follows that

[T g2 (X X2], (1lgw = 1)k - |IF,, <w/9>(w3 15 (Igw—1)|l1| € {0.1}.

Since each of F (w/z)(2, (lgw—1)) and F (w/z)(D s (lgw — 1)) is step, it
follows by Proposmon 3. 7 that the vector

[2@wwm(Y 1a (Igw = 1))+ F s (X7 12 (Igw - 1)) - mmw
= 2B e (X7 1 g0 = 1) - oM

is step. Since the sum of a constant vector and a step vector is a step vector, it follows
that the vector F yu) (X)) is step, as needed.

Case 2: X" |, (Igw — 1) is not block-step.

Setting d = lgw in Proposition 4.4, so that 2¢ = w, yields that either
X7 12 (gw =Dl = X8 12 (lgw = D] € {0,1}
and ||X) |5 lgw]||;/w = { for some integer [, or
X7 12 (lgw = Db = X572 |2 (lgw = Dla| € {w/2-1,w/2}

and || X9 |5 1gwl|; /w = I+ 1/2 for some integer I.

29

By Corollary 5.8,
1 s (XET) 12 (Igw = D)l = IXE7? 12 (lgw - 1)L

and
IF s (X X2 |y (lgw — D)l = (X&)], (lgw - D)y -

Hence, it follows that either

[1F v (X721 (lgw = D)l = IF crmy (XE 12 (Igw = 1)|| € {0.1)
and || X 1, lgwl||; /w = { for some integer [, or
[1F v (X572 1o (lgw = D) = IF sy (X7 12 (lgw = D)[L| € {w/2-1,w/2}

and [|[X |, 1gwl|; /w = { + 1/2 for some integer I.

We proceed by case analysis.
(a) Assume first that
[1F s (X7 12 (g w = D)l = [|F s (XED 12 (lgw = D)IL| € {0, 13

and || X 1, lgwl||; /w = { for some integer /.
By Proposition 6.3, it follows that

F o (X |5 1gw)

1 w w w
= X [z 1guw]i1) + |2F sz g (X 12 (Igw = 1) = Ogun| -

Since each of F (w/g)(lg (lgw —1)) and FM(w/2)(X(oqéU/2) l2 (lgw —1)) is
step, it follows by Proposmon 3.7 that the vector

[2(F s (X7 |y (Igw = 1) + F g (X7 |2 (1gw = 1)) — O(M)W
= [2F s g (X]5 (lgw = 1) = O |

is step. Since the sum of a constant vector and a step vector is a step vector, it
follows that the vector F yu) (X(*)) is step, as needed.

(b) Assume now that

[1F v (XE72) Lo (lgw=1)) 1= [F s (X7 |2 (gw=1)I1| € {w/2-1,w/2}

30

and ||X) |5 1gw||y/w = I+ 1/2 for some integer {. By Proposition 6.3:
FM(w)(X(w))

1 , I (w w
= EHX(@”) la g w1t + [51(4 2F)y (XU o (Igw — 1)) = Oaw)w :
By definition of the vectors E(*) and O(®),

%1W)—Oam _ %ﬂm__ow>: £

It follows that
F i (X))
= %Hx(w) [2 lgw|p 1) 4 [2F | uray s (X 15 (Igw - 1) + EO]
SmwemhdFMwm(b(@w—l»mﬂFMwm(Dy (lgw — 1)) is
step, it follows by Proposmon 3.8 that the vector
[3208 oy KL 13 (0= 1)) 4 F s (K7 1o (10— 1)) + B0
= [2FM<£/2>7M$/2>(X(W) 2 (Igw— 1)+ B

is step. Since the sum of a constant vector and a step vector is a step vector, it
follows that the vector F) (X(*)) is step, as needed.

By Lemmas 6.2 and 7.2, it follows from Theorem 5.10 that the network M(*) is a merging
network, as needed. [|

We finally argue:
Theorem 7.3 The network B : X(*) — Y () is q counting network.

Proof: By induction on w. For the base case, where w = 2, B(?) consists of a single balancer
which, by Proposition 5.1, produces a step output vector.

Assume inductively that B(*) is a counting network for each k& < w/2 that is a power of
two. We show that B(*") is a counting network. By construction of B(*) (Section 6.2) and
induction hypothesis, each of Z%/z) and ZEIZ;/UZ) is a step vector. Since, by Theorem 7.1, the
network M(®) is a merging network, it follows that the output vector Y(*) is step, as needed.

31

8 Concluding Remarks

We presented a new proof that the bitonic network is a counting network. Our proof consists
of a routine verification of the necessary and sufficient conditions involved in combinatorial
characterization theorems for counting and merging networks shown in [8]. This proof is a
concrete instance of a paradigmatic methodology, suggested in this work, for showing cor-
rectness of balancing networks. For other instances where this methodology has already been
applied and yielded corresponding proofs of comparable modularity and simplicity, we refer
the reader to [7, 10].

It would yet be interesting to further investigate the generality of our proof technique
by applying it to other constructions of counting networks. Good candidates would be the
periodic counting network with fan-out 2 [5] and the periodic smoothing network with fan-out
p* [13]. Finally, recent randomized constructions of counting and smoothing networks [2], using
randomized balancers, call for corresponding methodologies for proving probabilistic properties
of randomized constructions.

Acknowledgements:

We have had helpful discussions with Maurice Herlihy and Nancy Lynch on our initial ideas
on investigating techniques for proving correctness of constructions of balancing networks,
based on the theory developed in [8], in the context of a concrete example. Special thanks
go to Mauricio Resende and an anonymous referee for many helpful editorial and wording
comments.

32

References

[1] E. Aharonson and H. Attiya, “Counting Networks with Arbitrary Fan-Out,” Proceedings

[2]

[3]
[4]

[9]

[10]

[11]

[12]

of the 3rd Annual ACM-STAM Symposium on Discrete Algorithms, pp. 104-113, January
1992.

W. Aiello, R. Venkatesan and M. Yung, “Coins, Weights and Contention in Balancing
Networks,” Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing, pp. 193-205, August 1994.

M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.

T. E. Anderson, “The Performance of Spin Lock Alternatives for Shared-Memory Multi-
processors,” IEFEFE Transactions on Parallel and Distributed Systems, Vol. 1, No. 1, pp.
6—16, January 1990.

J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks and Multi-Processor Coordi-
nation,” Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pp.
348-358, May 1991.

Expanded versions: “Counting Networks,” Technical Memo MIT/LCS/TM-451, Labora-
tory of Computer Science, MIT, June 1991, and: “Counting Networks,” Technical Report

CRL 93/11, Digital Equipment Corporation, Cambridge Research Laboratory, August
1993.

K. E. Batcher, “Sorting Networks and their Applications,” Proceedings of AFIPS Spring
Joint Computer Conference, pp. 307-314, 1968.

C. Busch, N. Hardavellas and M. Mavronicolas, “Contention in Counting Networks,”
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
pp- 404, August 1994.

C. Busch and M. Mavronicolas, “A Combinatorial Treatment of Balancing Networks,”
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
pp- 206215, August 1994.

C. Busch and M. Mavronicolas, “A Depth-Contention Optimal Counting Network,” sub-
mitted for publication.

C. Busch and M. Mavronicolas, “Odd-Even Counting Networks,” in preparation.

M. Dowd, Y. Perl, L. Rudolph and M. Saks, “The Periodic Balanced Sorting Network,”
Journal of the ACM, Vol. 36, No. 4, pp. 738-757, October 1989.

E. W. Felten, A. LaMarca and R. Ladner, “Building Counting Networks from Larger
Balancers,” Technical Report 93-04-09, Department of Computer Science and Engineering,
University of Washington, April 1993.

33

[13]

[16]

[17]

[18]

N. Hardavellas, D. Karakos and M. Mavronicolas, “Notes on Sorting and Counting
Networks,” Proceedings of the Tth International Workshop on Distributed Algorithms
(WDAG-93), Lecture Notes in Computer Science, Vol. # 725 (A. Schiper, ed.), Springer-
Verlag, pp. 234-248, September 1993.

M. Herlihy, B.-C. Lim and N. Shavit, “Low Contention Load Balancing on Large-Scale
Multiprocessors,” Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 219-227, July 1992.

M. Herlihy, N. Shavit and O. Waarts, “Low Contention Linearizable Counting Networks,”
Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science,
pp. 526-535, October 1991.

M. Klugerman and C. Plaxton, “Small-Depth Counting Networks,” Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pp. 417-428, May 1992.

D. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming,
Addison-Wesley, 1973.

D. Loeb and G.-C. Rota, “Formal Power Series of Logarithmic Type,” Advances in Math-
ematics, Vol. 75, No. 1, pp. 1-118, May 19809.

34

