
Verification Techniques for Distributed

Algorithms

Anna Philippou and George Michael

Department of Computer Science, University of Cyprus,
Kallipoleos Street, 1678 Nicosia, Cyprus

{annap, gmichael}@cs.ucy.ac.cy

Abstract. A value-passing, asynchronous process calculus and its as-
sociated theory of confluence are considered as a basis for establishing
the correctness of distributed algorithms. In particular, we present an
asynchronous version of value-passing CCS and we develop its theory of
confluence. We show techniques for demonstrating confluence of complex
processes in a compositional manner and we study properties of conflu-
ent systems that can prove useful for their verification. These results
give rise to a methodology for system verification which we illustrate by
proving the correctness of two distributed leader-election algorithms.

1 Introduction

Distributed systems present today one of the most challenging areas of research
in computer science. Their high complexity and dynamic nature and features
such as concurrency and unbounded nondeterminism, render their construc-
tion, description and analysis a challenging task. The development of formal
frameworks for describing and associated methodologies for reasoning about dis-
tributed systems has been an active area of research for the last few decades and
is becoming increasingly important as a consequence of the great success of
worldwide networking and the vision of ubiquitous computing.

Process calculi, otherwise referred to as process algebras, such as CCS [8],
the π-calculus [10], and others, are a well-established class of modeling and
analysis formalisms for concurrent and distributed systems. They can be con-
sidered as high-level description languages consisting of a number of operators
for building processes including constructs for defining recursive behaviors. They
are accompanied by semantic theories which give precise meaning to processes,
translating each process into a mathematical object on which rigorous analysis
can be performed. In addition, they are associated with axiom systems which
prescribe the relations between the various constructs and can be used to rea-
son algebraically about processes. During the last two decades, they have been
extensively studied and they have proved quite successful in the modeling and
reasoning about system correctness. They have been extended for modeling a va-
riety of aspects of process behavior including mobility, distribution, value-passing
and asynchronous communication.

A. Shvartsman (Ed.): OPODIS 2006, LNCS 4305, pp. 172–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification Techniques for Distributed Algorithms 173

Confluence arises in a variety of forms in computation theory. It was first
studied in the context of concurrent systems by Milner in [8]. Its essence, to
quote [9], is that “of any two possible actions, the occurrence of one will never
preclude the other”. As shown in the mentioned papers, for pure CCS processes
confluence implies determinacy and semantic-invariance under internal compu-
tation, and it is preserved by several system-building operators. These facts make
it possible to reason compositionally that a system is confluent and to exploit
this fact while reasoning about its behavior. Work on the study of confluence
in concurrent systems was subsequently carried out in various directions. In [2]
various notions of confluence were studied and the utility of the ideas was illus-
trated for state-space reduction and protocol analysis. Furthermore, the theory
of confluence was developed for value-passing CCS in [16,18]. In the context
of mobile process calculi, such as the π-calculus and extensions of it, notions
of confluence and partial confluence were studied and employed in a variety of
contexts including [5,11,13,14,15].

The aims of this paper is to study the notion of confluence in an asynchronous,
value-passing process calculus and to develop useful techniques for showing that
complex asynchronous processes are confluent. Based on this theory, we develop
a methodology for the analysis of distributed algorithms. We illustrate its utility
via the verification of two distributed leader-election algorithms.

The extension of the theory of confluence to the asynchronous setting is at
most places pretty straightforward. Thus, due to the lack of space, we omit the
proofs of the results and draw the attention only to significant points pertain-
ing to the ways in which the presence of asynchrony admits a larger body of
compositional results. We then take a step from the traditional definition of
confluence in value-passing process calculi, and we introduce a new treatment of
input actions, motivated by the notion of “input-enabledness” often present in
distributed systems. Our main result shows that the resulting notion allows an
interesting class of complex processes to be shown as confluent by construction.
These compositional results and other confluence properties are exploited in the
verification of both of the algorithms we consider. We illustrate the application
of the theory for the algorithm verification in detail.

The remainder of the paper is structured as follows. In the next section we
present our asynchronous extension of value-passing CCS while, in Sect. 3, the
theory of confluence is developed. Section 4 contains application of our verifi-
cation methodology for establishing the correctness of two distributed leader-
election algorithms and Sect. 5 concludes the paper.

2 The Calculus

In this section we present the CCSv process calculus, an amalgamation of value-
passing CCS [8,18], with features of asynchronous communication from the asyn-
chronous π-calculus [1,4] and a kind of conditional agents.

We begin by describing the basic entities of the calculus. We assume a set of
constants, ranged over by u, v, including the positive integers and the boolean

174 A. Philippou and G. Michael

values and a set of functions, ranged over by f , operating on these constants.
Moreover, we assume a set of variables ranged over by x, y. Then, the set of
terms of CCSv, ranged over by e, is given by (1) the set of constants, (2) the set
of variables, and (3) function applications of the form f(e1, . . . en), where the ei

are terms. We say that a term is closed if it contains no variables. The evaluation
relation � for closed terms is defined in the expected manner. We write r̃ for a
tuple of syntactic entities r1, . . . , rn.

Moreover, we assume a set of channels, L, ranged over by a, b. Channels pro-
vide the basic communication and synchronization mechanisms in the language.
A channel a can be used in input position, denoted by a, and in output position,
denoted by a. This gives rise to the set of actions Act of the calculus, ranged
over by α, β, containing

– the set of input actions which have the form a(ṽ) representing the input
along channel a of a tuple ṽ,

– the set of output actions which have the form a(ṽ) representing the output
along channel a of a tuple ṽ, and

– the internal action τ , which arises when an input action and an output
action along the same channel are executed in parallel.

For simplicity, we write a and a for a(〈〉) and a(〈〉), where 〈〉 is the empty
tuple. We say that an input and an output action on the same channel are
complementary actions, and, for a non-internal action α, we denote by �(α) the
channel of α. Finally, we assume a set of process constants C, ranged over by C.

The syntax of CCSv processes is given by the following BNF definition:

P ::= 0 | a(ṽ) |
∑

i∈I

ai(x̃i).Pi | P1 ‖ P2 | P\L

| cond(e1 � P1, . . . , en � Pn) | C〈ṽ〉
Process 0 represents the inactive process. Process a(ṽ) represents the asyn-
chronous output process. It can output the tuple ṽ along channel a. Process∑

i∈I ai(x̃i).Pi represents the nondeterministic choice between the set of pro-
cesses ai(x̃i).Pi, i ∈ I. It may initially execute any of the actions ai(x̃i) and then
evolve into the corresponding continuation process Pi. It is worth noting that
nondeterministic choice is only defined with respect to input-prefixed processes.
This follows the intuition adopted in [1,4] that, if an output action is enabled, it
should be performed and not precluded from arising by nondeterministic choice.
Further, note that, unlike the summands ai(x̃i).Pi, the asynchronous output
process does not have a continuation process due to the intuition that an out-
put action is simply emitted into the environment and execution of the emitting
process should continue irrespectively of when the output is consumed.

Process P‖Q describes the concurrent composition of P and Q: the component
processes may proceed independently or interact with one another while execut-
ing complementary actions. The conditional process cond(e1 � P1, . . . , en � Pn)
offers a conditional choice between a set of processes: assuming that all ei are
closed terms, it behaves as Pi, where i is the smallest integer for which ei � true.

Verification Techniques for Distributed Algorithms 175

In P\F , where F ⊆ L, the scope of channels in F is restricted to process
P : components of P may use these channels to interact with one another but
not with P ’s environment. This gives rise to the free and bound channels of a
process. We write fc(P) for the free channels of P , and fic(P), foc(P) for the free
channels of P which are used in input and output position within P , respectively.

Finally, process constants provide a mechanism for including recursion in the
process calculus. We assume that each constant C has an associated definition
of the form C〈x̃〉 def= P , where process P may contain occurrences of C, as well
as other process constants.

Each operator is given precise meaning via a set of rules which, given a process
P , prescribe the possible transitions of P , where a transition of P has the form
P

α−→ P ′, specifying that process P can perform action α and evolve into process
P ′. The rules themselves have the form

T1, . . . , Tn
T φ

which is interpreted as follows: if transitions T1, . . . , Tn, can be derived, and
condition φ holds, then we may conclude transition T . The semantics of the
CCSv operators are given in Table 1.

Table 1. The operational semantics

(Sum)
�

i∈I ai(x̃i).Pi
ai(ṽi)−→ Pi{ṽi/x̃i} (Out) a(ṽ)

a(ṽ)−→ 0

(Par1) P1
α−→ P ′

1

P1‖ P2
α−→ P ′

1‖P2

(Par2) P2
α−→ P ′

2

P1‖P2
α−→ P1‖P ′

2

(Par3)
P1

a(ṽ)−→ P ′
1, P2

a(ṽ)−→ P ′
2

P1‖P2
τ−→ P ′

1‖P ′
2

(Res)
P

α−→ P ′, �(α), �∈ F

P\F α−→ P ′\F

(Cond) Pi
α−→ P ′

i

cond(e1 � P1, . . . , en � Pn)
α−→ Pi

ei � true, ∀j < i, ej � false

(Const)
P{ṽ/x̃} α−→ P ′

C(ṽ)
α−→ P

C(x̃)
def
= P

We discuss some of the rules below:

– (Sum). This axiom employs the notion of substitution, a partial function from
variables to values. We write {ṽ/x̃} for the substitution that maps variables
x̃ to values ṽ. Thus, for all i ∈ I, the input-prefixed summation process can
receive a tuple of values ṽi along channel ai, and then continue as process
Pi, with the occurrences of the variables x̃i in Pi substituted by values ṽi.

For example: a(x, y). b(x)+c(z).0
a(2,5)−→ b(2) and a(x, y). b(x)+c(z).0

c(1)−→ 0.

176 A. Philippou and G. Michael

– (Par1). This axiom (and its symmetric version (Par2)) expresses that a com-
ponent in a parallel composition of processes may execute actions indepen-

dently. For example, since a(3)
a(3)−→ 0, a(3) ‖ a(v).b(c)

a(3)−→ 0 ‖ a(v).b(c).
– (Par3). This axiom expresses that two parallel processes executing comple-

mentary actions may synchronize with each other producing the internal
action τ : a(3) ‖ a(v).b(v) τ−→ b(3).

– (Cond). This axiom formalizes the behavior of the conditional operator. An

example of the rule follows: cond(2 = 3 � b(3), true � c(4))
c(4)−→ 0.

– (Const). This axiom stipulates that, given a process constant and its as-
sociated definition C〈x̃〉 def= P , its instantiation C〈ṽ〉 behaves as process
P with variables x̃ substituted by ṽ. For example, if C〈x, y〉 def= cond(x =

y � b(x), true � c(y)), then C(2, 2)
b(2)−→ 0.

An additional form of process expression derivable from our syntax and used
in the sequel is the following: ! P def= P ‖ ! P , usually referred to as the replicator
process, represents an unbounded number of copies of P running in parallel.

We recall some useful definitions. We say that Q is a derivative of P , if there
are α1, . . . , αn ∈ Act, n ≥ 0, such that P

α1−→ . . .
αn−→ Q. Moreover, given

α ∈ Act we write =⇒ for the reflexive and transitive closure of τ−→, α=⇒ for the
composition =⇒ α−→=⇒, and α̂=⇒ for =⇒ if α = τ and α=⇒ otherwise.

We conclude this section by presenting a notion of process equivalence in
the calculus. Observational equivalence is based on the idea that two equivalent
systems exhibit the same behavior at their interfaces with the environment. This
requirement was captured formally through the notion of bisimulation [8,12].
Bisimulation is a binary relation on states of systems. Two processes are bisimilar
if, for each step of one, there is a matching (possibly multiple) step of the other,
leading to bisimilar states. Below, we introduce a well-known such relation on
which we base our study.

Definition 1. Bisimilarity is the largest symmetric relation, denoted by ≈,
such that, if P ≈ Q and P

α−→ P ′, there exists Q′ such that Q
α̂=⇒ Q′ and

P ′ ≈ Q′.

Note that bisimilarity abstracts away from internal computation by focusing on
weak transitions, that is, transitions of the form â=⇒ and requires that bisimilar
systems can match each other’s observable behavior. We also point out that,
while two bisimilar processes have the same traces, the opposite does not hold.

Bisimulation relations have been studied widely in the literature. They have
been used to establish system correctness by modeling a system and its spec-
ification as two process-calculus processes and discovering a bisimulation that
relates them. The theory of bisimulation relations has been developed into two
directions. On one hand, axiom systems have been developed for establishing
algebraically the equivalence of processes. On the other hand, proof techniques
that ease the task of showing two processes to be equivalent have been proposed.
The results presented in the next section belong to the latter type.

Verification Techniques for Distributed Algorithms 177

3 Confluence

In [8,9], Milner introduced and studied a precise notion of determinacy of CCS
processes. The same notion carries over straightforwardly to the CCSv-calculus:

Definition 2. P is determinate if, for every derivative Q of P and for all
α ∈ Act, whenever Q

α−→ Q′ and Q
α̂=⇒ Q′′, then Q′ ≈ Q′′.

This definition makes precise the requirement that, when an experiment is con-
ducted on a process, it should always lead to the same state up to bisimulation.
As in pure CCS, a CCSv process bisimilar to a determinate process is deter-
minate, and determinate processes are bisimilar if they may perform the same
sequence of visible actions. The following lemma summarizes conditions under
which determinacy is preserved by the CCSv operators.

Lemma 1

1. 0 and a(ṽ) are determinate processes.
2. If P is determinate so is P\F .
3. If, for all i ∈ I, each Pi is determinate and the ai are distinct channels,∑

i∈I ai(x̃i). Pi is also determinate.
4. If, for all i ∈ I, each Pi is determinate so is cond(e1 � P1, . . . , en � Pn).
5. If P1 and P2 are determinate and fic(P1) ∩ fc(P2) = ∅, fic(P2) ∩ fc(P1) = ∅,

then P1‖P2 is also determinate.

Proof: The interesting case is Clause (5). The proof consists of a case analysis
on all pairs of actions that can be taken from a derivative of P1‖P2 and it
takes advantage of the asynchronous-output mechanism. Intuitively, since output
actions have no continuation, if two identical outputs are concurrently enabled
within a system, it does not matter which one is fired first. �

Note that, in the case of parallel composition, previous results in CCS and
the π-calculus apply a stronger side-condition than the one of Clause (5) above.
Namely, these side-conditions require that the parallel components P1 and P2

have no channels in common. Here, however, the asynchronous nature of output
actions allows us to weaken the condition as shown.

According to the definition of [9], a CCS process P is confluent if it is de-
terminate and, for each of its derivatives Q and distinct actions α, β, given the
transitions to Q1 and Q2, the following diagram can be completed.

Q
α−→ Q1

β ⇓ β̂ ⇓
Q2

α̂=⇒ Q′
2 ∼ Q′

1

Let P be the CCSv-calculus process P
def= a(x). b(x).0 and consider the tran-

sitions P
a(2)−→ b(2).0 and P

a(3)−→ b(3).0. Clearly, the two transitions cannot be
‘brought together’ in order to complete the diagram above. Despite this fact,
it appears natural to classify P as a confluent process. Indeed, investigation of

178 A. Philippou and G. Michael

confluence in the context of value-passing calculi resulted in extending the CCS
definition above to take account of substitution of values [16,18]. The definitions
highlight the asymmetry between input and output actions by considering them
separately. Here we express this separation as follows:

Definition 3. A CCSv process P is confluent if it is determinate and, for each
of its derivatives Q and distinct actions α, β, where α and β are not input actions
on the same channel, if Q

α−→ Q1 and Q
β

=⇒ Q2 then, there are Q′
1 and Q′

2 such

that Q2
α̂=⇒ Q′

2, Q1
β̂

=⇒ Q′
1 and Q′

1 ≈ Q′
2. �

We may see that bisimilarity preserves confluence. Furthermore, confluent
processes possess an interesting property regarding internal actions. We define a
process P to be τ-inert if, for each derivative Q of P , if Q

τ−→ Q′, then Q ≈ Q′.
By a generalization of the proof in CCS, we obtain:

Lemma 2. If P is confluent then P is τ -inert.

As observed in [2], τ -inertness implies confluence for a certain class of pro-
cesses. An analogue result also holds in our setting, as stated below.

Lemma 3. Suppose P is a fully convergent process. Then P is confluent iff P
is τ -inert and for all derivatives Q of P

1. if α ∈ Act and P
α−→ P1, P

α−→ P2, then P1 ≈ P2, and
2. if α, β are distinct actions and are not input actions on the same channel,

if Q
α−→ Q1 and Q

β−→ Q2 then, there are Q′
1 and Q′

2 such that Q2
α̂=⇒ Q′

2,

Q1
β̂

=⇒ Q′
1 and Q′

1 ≈ Q′
2.

Note that this is an alternative characterization of confluence for fully convergent
systems which is useful in that the original transitions to be matched are single
transitions. The proof of the result is a simple modification of the one found in [2].
We proceed with a result on the preservation of confluence by CCSv operators.

Lemma 4

1. 0 and a(ṽ) are confluent processes.
2. If P is confluent so are P\F and a(x̃).P .
3. If, for all i ∈ I, each Pi is confluent so is cond(e1 � P1, . . . , en � Pn).
4. If P1 and P2 are confluent and fic(P1)∩ fc(P2) = ∅, fic(P2)∩ fc(P1) = ∅, then

P1‖P2 is also confluent.
5. if P is confluent and fic(P) ∩ foc(P) = ∅, then !P is confluent.

Of course, here, the guarded summation clause is missing.
A main motivation in [8] for studying confluence was to strengthen determi-

nacy to an interesting property preserved by a wider range of process-calculus
operators. Here, we are also interested in such compositional results in the set-
ting of asynchronous processes. To achieve this, we observe that, despite the
rational behind the treatment of input actions in the definition of confluence, it

Verification Techniques for Distributed Algorithms 179

is often the case that distributed systems are input-enabled. This notion, which
has been fundamental in the development of the I/O-Automata of Lynch and
Tuttle [7], captures that input actions of a system are not under the control of
the system and are always enabled. This suggests that the execution of an input
along a certain channel does not preclude the execution of another input along
the same channel. As such, a confluence-type property can be expected to hold
for input actions which we formulate as follows:

Definition 4. A CCSv process P is F i-confluent, where F ⊆ L, if, for all deriva-

tives Q of P and for all a ∈ F , if Q
a(ṽ)−→ Q1 and Q

a(ũ)−→ Q2 then, there are Q′
1

and Q′
2 such that Q2

a(ṽ)
=⇒ Q′

2, Q1
a(ũ)
=⇒ Q′

1 and Q′
1 ≈ Q′

2. �

We may see that F i-confluence implies that, if at some point during execution
of a process an input action becomes enabled, then it remains enabled. For the
case that F = L we simply write i-confluence for Li-confluence. F i-confluence
is preserved by the following operators.

Lemma 5

1. 0 and a(ṽ) are i-confluent processes.
2. If P is F i-confluent and a ∈ F , P\L, !P , a. P and !a(x̃). P are also F i-

confluent.
3. If Pi, i ∈ I, are F i-confluent so is cond(e1 � P1, . . . , en � Pn).
4. If P1 and P2 are F i-confluent so is P1‖P2.

We conclude with our main result:

Theorem 1. Suppose P = (P1 ‖ . . . ‖ Pn)\L, where (1) each Pj is confluent,
(2) each Pj is F i

j -confluent, where Fj = fic(Pj) ∩ (
⋃

k �=i foc(Pk)), and Fj ⊆ L,
and (3) fic(Pi) ∩ fic(Pj) = ∅, for all i �= j. Then P is confluent.

Proof: The proof, which is too long to include here in its full technical detail,
employs Lemma 3. We show that any derivative Q of P is τ -inert by a case
analysis on the possible internal actions of Q. Suppose that this arises by a

communication of the form Qi
a(ṽ)−→ Q′

i and Qj
a(ṽ)−→ Q′

j. Then, the {a}i-confluence
of Qi and the confluence of Qj imply that any action enabled by Qi and Qj is still
possible by Q′

i and Q′
j. Further, since a �∈ fic(Pk), for all k �= i, this transition

cannot be precluded from arising. Then, Clause (1) of the lemma is easy to
establish using the assumption that fic(Pi) ∩ fic(Pj) = ∅, for all i �= j, whereas
Clause (2), employs similar arguments and the fact that Fj ⊆ L for all j. �

4 Two Applications

We proceed to illustrate the utility of the CCSv framework and its theory of
confluence via the analysis of two distributed algorithms for leader-election in
a distributed ring. We assume that n processes with distinct identifiers, chosen

180 A. Philippou and G. Michael

from a totally-ordered set, are arranged around a ring. They are numbered 1
to n in a clockwise direction and they can communicate with their immediate
neighbours in order to elect as the leader the node with the maximum identifier.

Our verification methodology consists of the following steps. First, we describe
an algorithm and its specification as CCSv processes, our aim being to establish
that the two processes are bisimilar. We achieve this as follows: (1) We show
that the process representing the algorithm contains at least one specification-
respecting execution. (2) We show that this process is confluent. By confluence
properties we then obtain the required result. We point out that the first of
the algorithms we consider here was also proved correct in [6] using the I/O-
Automata framework.

4.1 The LCR Algorithm

The LCR algorithm [6] is a simple, well-known algorithm for distributed leader-
election with time complexity O(n2). Communication between the nodes of the
ring can only take place in a clockwise direction. Figure 1 presents the algorithm
architecture. Each node of the ring executes the following:

It sends its identifier to its right neighbour. Concurrently, it awaits to
receive messages from its left neighbour. For each incoming message, if
it contains an identifier greater than its own, it forwards the message in
a clockwise direction. If it is smaller it discards it and, if it is equal, it
declares itself to be the leader.

P1

P2

P3

P4

P5

Pn

c1

c2

c3

c4c5

cn

cn-1

Fig. 1. The LCR-algorithm architecture

This informal description can be formalized in CCSv: We assume a set of
channels c1, . . . , cn, where channel ci connects processes Pi and Pi+1, for 1 ≤
i < n, and cn connects processes Pn and P1. For simplicity, hereafter, we write
i + 1 for 1 if i = n, and i + 1 otherwise, and, similarly, i − 1 for n if i = 1, and
i − 1, otherwise. The behavior of a node-process is described as follows:

Pi〈ui〉 def= Si〈ui〉 ‖Ri〈ui〉
Si〈ui〉 def= ci(ui)
Ri〈ui〉 def= ! ci−1(x). cond(x < ui � 0,

Verification Techniques for Distributed Algorithms 181

x > ui � ci(x),
true � leader (ui))

In Pi〈ui〉, ui is the unique identifier of the process. The process has ci−1 as
its input channel and ci as its output channel. It is composed of two parallel
processes: a sender, Si〈ui〉, and a receiver, Ri〈ui〉. The function of the sender
process is to emit the node’s identifier along channel ci, whereas, the receiver is
continuously listening along the input port of channel ci−1 for messages. On a
receipt of a message, it discards it in case it is smaller than ui, it forwards it
in a clockwise direction in case it is larger (as expressed by the clause ci(x)),
and it declares itself the leader along the common channel leader , if the received
identifier is equal to its own.

The network is represented by as the parallel composition of the n nodes

LCR = (P1〈u1〉 ‖ . . . ‖Pn〈un〉)\L

where L = {c1, . . . , cn} contains all channels whose use is restricted within the
system. The intended behavior of the algorithm is that the node with the maxi-
mum identifier is elected as the leader. In process-calculus terminology, we prove
the following correctness result:

Theorem 2. LCR ≈ leader (umax), where umax = max(u1, . . . , un).

The proof is carried out in two steps. First, we show that LCR is capable of
producing the required leader output and terminate. Then, we establish that it
is confluent. The required result then follows easily from properties of confluence.

Lemma 6. LCR =⇒leader(umax)−→ =⇒≈ 0

Proof: Without loss of generality, we assume that node P1 is the owner of
umax. Let us write LCR1 = (R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖ (Pn〈un〉 ‖ cn(u1)))\L. From
the definitions, it can be seen that LCR =⇒ LCR1 in n−1 transitions where, in
the ith transition, processes Pi and Pi+1 communicate on channel ci forwarding
u1 from the former to the latter. Clearly, these communications are enabled due
to the fact that u1 > ui for all i �= 1. Consequently, we may derive:

LCR1
τ−→ (Q1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

leader(u1)−→ (R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

where Q1〈u1〉 = leader(u1) ‖ R1〈u1〉. Let us now consider the remaining pro-
cesses. For P2, we have that u2 can be forwarded for at most n − 2 steps. That
is, there is a transition

(R1〈u1〉 ‖P2〈u2〉 ‖ . . . ‖Pn〈un〉)\L =⇒ (R1〈u1〉 ‖R2〈u2〉 ‖ . . . ‖Pn〈un〉)\L

and, similarly, all ui, i > 2, can proceed up to at most node P1, and then become
blocked:

182 A. Philippou and G. Michael

(R1〈u1〉 ‖R2〈u2〉 ‖ . . . ‖Pn〈un〉)\L =⇒ LCR2 = (R1〈u1〉 ‖ . . . ‖Rn〈un〉)\L

By observing the definitions of the processes, we conclude that, since all processes
are only willing to receive, but none is ready to send, the resulting process is a
deadlocked process, that is, a process bisimilar to 0. This completes the proof.

�

We now have our key observation:

Lemma 7. LCR is confluent.

Proof: This follows from Theorem 1 of the previous section. We check its
hypotheses: Each Pi is clearly a composition of two confluent components. Thus,
by Lemma 4(4), it is confluent. Since, in addition, (1) by Lemma 5 all processes
are i-confluent, (2) exactly one process takes input from each channel ci and (3)
each ci ∈ L, by Theorem 1, we may conclude that LCR is a confluent process.

�

From the two previous results, and since confluence implies τ -inertness, we have
that LCR ≈ LCR1, LCR1 ≈ leader (umax).LCR2 and LCR2 ≈ 0. Consequently,
LCR ≈ leader (umax), as required.

4.2 The HS Algorithm

The second algorithm that we study is the HS algorithm of Hirschberg and Sin-
clair [3]. It is distinguished from the LCR algorithm in that here communication
between the ring nodes is bidirectional, and the time complexity is O(n lg n).

In the HS algorithm, execution at a node proceeds in phases. In phase k, a
node forwards its identifier in both directions in the ring. The intention is that the
identifier will travel a distance of 2k, assuming that it does not encounter a node
with a greater identifier and, then, it will follow the opposite direction returning
to its origin node. If both tokens return to their origin, the node enters phase
k + 1 and continues its execution. If the identifier completes a cycle and reaches
its origin in the outbound direction, then, the node declares itself as the leader.
For the correct execution of the algorithm, messages transmitted in the ring are
triples of the form 〈id, dir, dist〉, where id is a node identifier, dir ∈ {in, out}
is the direction of the message (in represents the inward direction and out the
outward direction) and dist is the distance the node has still to travel.

Let us describe the precise behavior of an HS-node in CCSv. The architecture
considered is shown in Fig. 2. We assume a set of channels {ci,i−1, ci,i+1 | 1 ≤
i ≤ n}, where channel ci,j connects process Pi to process Pj . (Note that we
employ the same interpretation of the summation and substraction operators as
described in Sect. 4.1.)

A node-process is then modeled as follows, where ui is the identifier of the
process and φi the phase of the process, initially set to 0.

Pi〈ui, φi〉 def= (Si〈ui, φi〉 ‖ Ri〈ui〉 ‖ Ei〈ui〉)\{cph, elect}

Verification Techniques for Distributed Algorithms 183

Pn

c1,2

c2,3

c3,4

c1, n c2,1

cn,1

cn-1,n

P1

P2

P3

.

.
 .

c3,2

c4,3

cn,n-1

Fig. 2. The HS-algorithm architecture

Thus Pi is the parallel composition of three components responsible for send-
ing and receiving messages and for electing a leader:

Ei〈ui〉 def= elect. leader(ui)
Si〈ui, φi〉 def= ci,i+1(ui, out, 2φi)

‖ ci,i−1(ui, out, 2φi)
‖ cph. cph. Si〈ui, φi + 1〉

Ri〈ui〉 def= ! ci−1,i(x, d, h).
cond((x < ui) � 0,

(x > ui ∧ d = out ∧ h �= 1) � ci,i+1(x, out, h − 1),
(x > ui ∧ d = out ∧ h = 1) � ci,i−1(x, in, 1),
(x �= ui ∧ d = in) � ci,i+1(x, in, 1),
(x = ui ∧ d = in) � cph,
true � elect)

‖ ! ci+1,i(x, d, h).
cond((x < ui) � 0,

(x > ui ∧ d = out ∧ h �= 1) � ci,i−1(x, out, h − 1),
(x > ui ∧ d = out ∧ h = 1) � ci,i+1(x, in, 1),
(x �= ui ∧ d = in) � ci,i−1(x, in, 1),
(x = ui ∧ d = in) � cph,
true � elect)

Thus, Ei awaits a notification (triggered by process Ri) that a leader-event
should be produced. Si emits the message (ui, out, 2φi) in both directions along
the ring. Concurrently, it waits the receipt of two confirmations via channel
cph (emitted by process Ri) that the token has successfully travelled in both
directions through the ring, in which case it increases the phase by 1. On the
other hand, process Ri is listening on ports ci,i−1 and ci,i+1. The first summand
of the process deals with the former channel, and the second with the latter. We
consider the first summand, the second one is symmetric. If a message (x, d, h)
is received on channel ci−1,i, six cases exist:

184 A. Philippou and G. Michael

1. If x < ui, the message is ignored.
2. If the message is travelling in the outbound direction and h > 1, it is for-

warded to node i + 1 with h decreased by 1.
3. If the message is travelling in the outbound direction and h = 1, it is sent

back to node i − 1 to begin its inward journey.
4. If x �= ui and the message is travelling its inward journey, it is forwarded

towards its origin.
5. If the node’s own identifier is received by the process while travelling its

inward journey, process Ri emits a notification along channel cph.
6. Finally, if none of the above holds, implying that x = ui and d = out (that

is the identifier has survived performing a cycle around the ring), the node
produces a notification (to be received by process Ei) that the node should
be declared ring leader.

The network is represented by the parallel composition of the n nodes

HS = (P1〈ui, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L

where all channels in L = {ci,i−1, ci,i+1 | 1 ≤ i ≤ n} are restricted within the
system. The correctness criterion is expressed, again, as the following equivalence
between the algorithm and its specification:

Theorem 3. HS ≈ leader (umax), where umax = max(u1, . . . , un).

As before, the proof is carried out in two steps: We show that HS is capable of
producing the required leader output and terminate, and that it is confluent.

Lemma 8. HS =⇒leader(umax)−→ =⇒≈ 0

Proof: Without loss of generality, we assume that node P1 is the owner of
umax. Let us write HSi = (P1〈u1, i〉 ‖ P2〈u2, 0〉 ‖ . . . ‖ Pn〈un, 0〉)\L. From the
definitions, it can be seen that

HS =⇒ HS1 =⇒ HS2 =⇒ . . . =⇒ HSk

where k = �lg n�. Specifically, the transition HSi =⇒ HSi+1 consists of 2 · 2 · 2i

internal actions pertaining to the outward and inward journey of distance 2i, of
identifier u1 in the clockwise and anticlockwise direction within the ring. Clearly,
these communications are enabled due to the fact that u1 > ui for all i �= 1.
Then, we may derive:

HSk (τ−→)n+1 HSk+1 = (P1,1〈u1, k〉 ‖P2〈u2, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L
leader(u1)−→ HSk+2 = (P1,2〈u1, k〉 ‖P2〈u2, 0〉 ‖ . . . ‖Pn〈un, 0〉)\L

where P1,2〈u1, k〉 = (ci,i−1(ui, out, 2k) ‖ cph. cph. S〈u1, k〉 ‖R1〈u1〉)\{cph, elect}
and P1,1〈u1, k〉 = P1,2〈u1, k〉 ‖ leader(u1). These n + 1 internal steps correspond
to a cycle of u1 in a clockwise direction, and its return to its origin node while in

Verification Techniques for Distributed Algorithms 185

the outbound direction. This triggers R1 to produce the message elect , received
by process Ei which in turn proceeds to declare the node as the leader.

Let us now consider the remaining enabled communications. First note that
the prefix ci,i−1 (u1, out, 2k) can trigger a cycle of u1 in the anticlockwise direc-
tion, while all other processes will forward their identifiers in the clockwise and
anticlockwise direction. It is easy to show that the journey of each of these iden-
tifiers will eventually become blocked, on reaching a node with a larger identifier,
possibly P1. This gives rise to the transition

HSk+2 =⇒ HSk+3 = (P1,3〈u1, k〉 ‖Q2〈u2〉 ‖ . . . ‖Qn〈un〉)\L

where P1,3〈u1, k〉 = (cph. cph. S〈u1, k〉 ‖R1〈u1〉‖elect)\{cph, elect}, and for 2 ≤
i ≤ n, Qi〈ui〉 = S′

i〈ui, φi〉 ‖Ri〈ui〉 ‖Ei〈ui〉)\{cph, elect} where S′
i〈ui, φi〉 is one

of the processes cph. cph. Si〈ui, φi〉 and cph. Si〈ui, φi〉. By observation, no com-
munication is enabled in the resulting process, a fact that renders it bisimilar to
0. This completes the proof. �

We now have our key observation:

Lemma 9. HS is confluent.

Proof: This follows from a multiple application of Theorem 1. To establish
the confluence of a Pi we observe that, by Lemma 5, each of Ei, Si and Ri is
i-confluent. Lemma 4 and simple observation leads to the conclusion that the
components are also confluent. Since the components share between them only
the names cph and elect , which are hidden at the top level of the process, and
no two components share an input name, by Theorem 1, each Pi is confluent.

Since, in addition, (1) all Pi are i-confluent, (2) exactly one process takes input
from each channel ci,j , and (3) each ci,j ∈ L, by Theorem 1, we may conclude
that HS is a confluent process. �

From the two previous results, and since confluence implies τ -inertness, we have
that HS ≈ HSk+1, HSk+1 ≈ leader (umax).HSk+2 and HSk+2 ≈ 0. Conse-
quently, HS ≈ leader (umax), as required.

5 Conclusions

We have considered an asynchronous process calculus and we have developed
its associated theory of confluence. In doing this, our main objective has been
the elaboration of concepts and techniques useful in proving the correctness of
distributed algorithms. Specifically, we have given results for establishing the
confluence of systems in a compositional manner and we have exploited the
property of τ -inertness possessed by confluent systems for showing that systems
are correct. Using these ideas, we have illustrated the correctness of two leader-
election algorithms. As we have already mentioned, these two algorithms were
also proved correct in [6] using the I/O-Automata framework. In our view, our
proofs offer additional interesting insights in that the use of confluence aids
towards the algorithms’ understanding and simplifies their analysis.

186 A. Philippou and G. Michael

Regarding the applicability of the proposed methodology, initially, it appears
that it can be useful in a variety of contexts were confluent computations are
running in parallel, e.g., parallel and distributed algorithms for function com-
putation. In future work, we plan to further investigate the applicability of the
methodology and, especially, the notion of F i-confluence. (We are currently con-
sidering application of the results to verify distributed leader-election algorithms
in networks of arbitrary topological structures). Further, we would like to ex-
tend the theory to a setting with mobility and location primitives. Naturally, the
property of confluence is not satisfied in general by distributed algorithms, thus,
a final research direction is the development of analogous results for algorithm
verification which employ weaker partial-confluence properties.

References

1. G. Boudol. Asynchrony and the π-calculus. Technical Report RR-1702, INRIA-
Sophia Antipolis, 1992.

2. J. F. Groote and M. P. A. Sellink. Confluence for process verification. In Proceed-
ings of CONCUR’95, LNCS 962, pages 204–218, 1995.

3. D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular
configurations. Communications of the ACM, 23(11):627–628, 1980.

4. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proceedings of ECOOP’91, LNCS 512, pages 133–147, 1991.

5. X. Liu and D. Walker. Confluence of processes and systems of objects. In Proceed-
ings of TAPSOFT’95, LNCS 915, pages 217–231, 1995.

6. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.
7. N. A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI-

Quarterly, 2(3):219–246, 1989.
8. R. Milner. A Calculus of Communicating Systems. Springer, 1980.
9. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

10. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1 and 2.
Information and Computation, 100:1–77, 1992.

11. U. Nestmann. On Determinacy and Non-determinacy in Concurrent Programming.
PhD thesis, University of Erlangen, 1996.

12. D. Park. Concurrency and automata on infinite sequences. In Proceedings of 5th

GI Conference, LNCS 104, pages 167–183, 1981.
13. A. Philippou and D. Walker. On transformations of concurrent object programs.

In Proceedings of CONCUR’96, LNCS 1119, pages 131–146, 1996.
14. A. Philippou and D. Walker. On confluence in the π-calculus. In Proceedings of

ICALP’97, LNCS 1256, pages 314–324, 1997.
15. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

16. M. Sanderson. Proof Techniques for CCS. PhD thesis, University of Edinburgh,
1982.

17. D. Sangiorgi. A theory of bisimulation for the π-calculus. In Proceedings of
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 127–142.
Springer, 1993.

18. C. Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD thesis,
University of Edinburgh, 1990.

	Introduction
	The Calculus
	Confluence
	Two Applications
	The LCR Algorithm
	The HS Algorithm

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

